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Approaches to Model Transferability and 
Updating: The Combined Tran sf er Estimator 

MOSHE BEN-AKIVA AND DENIS BOLDUC 

The idea of model transferability is to use previously estimated 
model parameters from a different area for model estimation. 
The combined transfer estlmator Is based on the mean squares 
error criterion and extends the Bayesian procedure to ex
plicitly account for the presence of a transfer bias. The sug
gested estimator Is easy to apply because It ls expressed as a 
linear combination of the direct estimation resultc; and the 
previously estimated parameters. The combined estimator is 
shown to have superior accuracy In a mean square error sense 
to a dJrect (unbiased nontransfer) estimator whenever the 
transfer bias ls relatively small. Numerical examples of the 
transfer region-where the combined estimator is superior to 
the direct estimator-are provided. 

Model transferability is a practical approach to the problem of 
estimating a model for a study in an area for which the size of 
the available sample is small [for detailed discussions of trans
ferability methods, see Ben-Akiva (1) and Koppelman and 
Wilmot (2)]. The model transfer approach is based on the idea 
that estimated model parameters from a previous study in a 
different area may provide useful information for estimating 
the parameters for the same model in a new area, even when 
the true values of the parameters are not expected to be equal. 
In the present notation, ~ 1 and ~2 denote the true (K x 1) 
parameter vectors of Areas 1 and 2 (the new area), respectively. 
The difference A = ~1 - ~2 is called the transfer bias. In 
model transferability, one attempts to use the estimated param
eters from Area 1, denoted by b1, to improve the accuracy of 
the estimation of ~2. The difficulty occurs because b1 is an 
estimator of ~1 and not of ~2. 

If the transfer bias is negligible (as indicated, for example, 
by a Chow test of the null hypothesis that the vectors, or 
specific subvectors, of the model parameters for the two areas 
are equal), the two data sets can be pooled, and identical 
parametric values can be estimated for the two areas. Alter
natively, and particularly if the original data for Area 1 are not 
available, a Bayesian updating procedure can be used (3). 
However, these pooled and Bayesian estimators are not appro
priate for situations in which coefficients for the transfer bias 
cannot be assumed to be negligible. The transfer scaling ap
proach previously applied in these situations is described in the 
following section. It takes the estimator b1 and attempts a 
correction of the transfer bias by using the data from Area 2. 

In this paper, a new model transfer estimator, the combined 
transfer estimator, is developed. It is stated as a weighted 
average of the direct estimators b1 and b2. The term direct 
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estimator is used in this paper to mean an unbiased estimation 
procedure that would be performed if no transfer was at
tempted. The weights are assigned in such a way that for each 
value of the transfer bias, the mean square error (MSE) of the 
combined estimator is minimized. This approach is expected to 
yield better estimates of ~2 when the transfer bias is small. 

THE TRANSFER SCALING APPROACH 

A relationship between the true values of the parameters in the 
two areas is called a transfer bias model. Consider the fol
lowing: 

(1) 

where µ is a (K x 1) vector of unknown bias scale parameters 
and diag(µ) and diag(p1) are (K x K) diagonal matrices in 
which the kkth elements are µt and ~lk• respectively. For 
simplicity, the matrix diag(µ) will be denoted by M. The 
relation P2 = M~1 is such that the transfer bias, (~ 1 - ~i) = (I -
M)~1 • is nonzero unless µk = 1, V k = 1, ... , K. Denote the 
number of distinct parameters inµ by M. In general, Ms; K, 
and the usefulness of the transfer scaling approach, described 
in the following, is for cases where M < K. Gunn et al. (4) 
thoroughly tested the transfer scaling approach by classifying 
the independent variables of a travel demand model into groups 
with similar transfer bias properties. 

Equation 1 can also be expressed as 

P2 = M~1 = Mb 1 + M(~ 1 - b1) 

= diag(b 1)µ + M(~1 - b1) (2) 

If b1 is an unbiased estimator of ~1 • the vector M(~1 - b1) is a 
simple transformation of the sampling error in Area 1 estimates 
and has an expected value of zero. In a transfer scaled model, µ 
denotes the vector of parameters that are estimated from Area 2 
data. If m is called the vector of estimates for µ, the transfer 
scaling estimator of P2 is computed as diag(b1)m. In all pre
vious applications of the transfer scaling approach, the tenn 
M(~1 - b1) has been ignored. In the estimation with Area 2 
data, it represents measurement errors in the independent vari
ables. This term plays a critical role because unless it is negligi
ble, the transfer scaling estimator is inefficient and potentially 
biased because it is correlated with the independent variables in 
the model estimated with Area 2 data. 
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The transfer scaling approach can be implemented at dif
ferent levels of detail with M (the number of bias scale param
eters) ranging from none (i.e., assuming P1 - P2 = 0 by im
posing µ1 = µz = ... = µK = 1) to K (i.e., one bias scale 
parameter per model parameter). For M = K, the transfer scale 
estimator diag(b1)m is identical to Area 2 direct estimator b2. 

Thus transfer scaling is a useful approach when the data 
available for the new area permit estimation of only a small 
number of new parameters and an accurate estimator, that is, 
one with small (b1 - p1), is available from another area. The 
latter requirement is needed to justify the assumption that the 
term M(P1 - b1) is negligible. 

In a related paper, Ben-Akiva and Bolduc (5) also develop a 
second model transferability approach-a mixed estimation 
procedure that jointly estimates the new area model and a 
transfer bias model. This mixed estimation may be viewed as 
an extension of the transfer scaling approach that overcomes 
the deficiencies due to a nonnegligible M(P1 - b1) value. 

MINIMUM MSE ESTIMATOR 

The objective of model transfer is to improve the estimation of 
~2 by combining the sample information from Area 2 with 
knowledge of b1. The transfer scaling approach achieves this 
objective by postulating a specific transfer bias model and 
estimating the parameters of the transfer bias model from Area 
2 data. The Area 2 data are used only to correct the transfer 
bias, and differences in sampling errors between the two data 
sets are not explicitly recognized. By using the two direct 
estimates b1 and b2 directly, an estimator is developed that 
treates the trade-off between sampling errors and transfer 
biases explicitly. 

The Problem 

Giwn the direct estimators b1 and b2, find a combined estima
tor defined by the function 

that in some sense is a better estimator of P2 than the direct 
estimator b2• 

We use the MSE criterion, which implies, for example, that 
for a variance reduction one is willing to allow a bias. A brief 
description of optimal MSE estimation with a single parameter 
follows. A more extended treaLment can be found in the work 
of Judge et al. (6). 

The Minimum MSE Approach 

Use the MSE criterion to find whether 

MSE(b2) S MSE(b2) 

or 

.. 2 
E(bz - Pz) s E(bz - P2)2 (3) 
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holds. An MSE is equal to the square of the bias plus the 
variance. Because b2 is assumed to be unbiased, the criterion is 
reduced to 

.. 2 
E( b2 - ~2) S Var (b2) (4) 

OT 

(5) 

where the bias of b2 is defined as B(b2) = E (b2) - P2 and the 
variance definition is, for example, Var [b2 - E(b2)]2. This 
inequality, demonstrated in Figure 1, reveals how the advan
tage gained from variance reduction [i.e. , Var(b2) S Var(b2)] 
may be significantly reduced or even totally lost by the pres
ence of a significant transfer bias. 

MSE 

MSE(b2) 

~ 

transfer no transfer 

bias 2 

FIGURE 1 When to transfer as a function of the 
transfer bias. 

For a model with K parameters, the combined transfer es
timator developed later in this paper is based on a weighted 
average of the two direct estimators (i.e., h is assumed to be a 
linear function) and is expressed as follows: 

b2 = (I - A)b2 + Ab1 

or 

(6) 

where A is a (K x K) matrix of weights. The matrix A is a 
general matrix for which element ai} of ma~~ A gives the 
relative importance of b 11 in the estimation of b2;. 

THE COMBINED TRANSFER ESTIMATOR 

The MSE optimal value for the weighting matrix A of the 
combined estimator can now be obtained First, the one param
eter case is developed in detail and then the derivation is 
extended to the multiparameter case. 
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Derivation of the Combined Transfer Estimator 

For K = l, the combined transfer estimator is expressed as a 
linear combination of the direct estimators with fixed weights, 
as follows: 

.. -1 -1 
b2 = (a.1 + Clz) a.1b1 + (a.1 + a.2) cx.zb2 

= b2 + a.(b1 - b2) (7) 

where a.1, cx.z ~ 0 and a.= (a.1 + cx.zr1cx.1. This is a non
Bayesian estimator that combines the information from the two 
samples. In a Bayesian setting the random vector b1 would be 
replaced by the fixed mean of the prior distribution of P2. 

The expected value of b2 is 

(8) 

The MSE optimal value for ex. is obtained by minimizing the 
MSE as a function of a.: 

Minimize MSE = [Var(b2) + B2(b2)] 
Cl 

where 

i = 1, 2 

The first-order condition is 

()MSE 2 ----ao: = 2cx.oi - 2(1 - cx.)oi + 2a.t. = O 

which implies 

oi oi 
ex.= - -or + o~ + 62 - D 

(10) 

where t. = P1 - P2 and D = oi + oi + 6 2. Because a. is a 
function oft. (which is an unknown quantity), in an empirical 
application 6 will have to be replaced by an observed quantity. 
Use of d = b1 - b2 is suggested. Another possibility is to apply 
the transfer scaling approach to estimate the transfer bias. 
Therefore, ex. is random in practice. The implications of this fact 
will be analyzed later on. 

At this value of a., the optimal combined estimator is ex
pressed as 

Multiplying ex. by 

<oi + 62r1022 

<oi + 62r1022 

3 

implies 

For t. = 0, the weights are obtained in the Bayesian updating 
formula, which is MSE optimal if the transfer bias is zero. 

Properties of the Combined Transfer Estimator 

The optimal combined estimator b2 just derived can be com
pared with b2, the direct estimator. Substitution of a. from 
Equation 10 in the objective function of Equation 9 yields 

MSE(b2) = ex.or~ + (1 - a.) [or +D 
62

] oi + ex.~ t.2 

= a. [or ~ t.2] oi + (1 - a.) [or +D t.2] oi 

= [ oi ~ 62
] oi 

= (1 - a.)ai (11) 

Because 0 s; a. s; 1, 

MSE(b2) s; Var(b2) (12) 

Thus the optimal combined estimator always stays in the 
transfer region. It is always better because as the bias increases 
ex. decreases, and for IP1 - P21--+ 00, ex.--+ 0, and b2 --+ b2. The 
pattern of MSE(b2) as a function of the transfer bais is investi
gated next. The first and second derivatives with respect to t.2 

are as follows: 

This is because 

At t. =- 0, MSE(b2) = oi[ot/(ot + o~]. The pattern of 
MSE(b2) as a function of t.2 is shown in Figure 2. 

The results of the analysis have been obtained under the 
hypothesis that ex. is a known fixed constant. When t. is re
placed by an estimate d (i.e., a random variable), it becomes 
difficult to evaluate E(b2) and Var (b~). In what follows, these 
moments are approximated by a Taylor's series expansion. It 
will be shown that in the case of an estimated a. it is not 
impossible for the combined estimator to be inferior to the 
direct estimator. In this analysis, or and oi are assumed to be 
known, and therefore the randomness in a. arises only from the 
substitution of d for t.. 
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MSE 

0 

FIGURE 2 The combined estimator Is always 
superior. 

bias 2 

Recall the combined estimator in Equation 10, and replace A 
with its estimator d, as follows: 

(13) 

with 

where 

The b2 is a nonlinear function of the random variables b1, b2, 

and d. The moments of b2 are approximated by a Taylor's 
series expansion around the true values of P1 and P2 (as well as 
A = 13 1 - 13 2), as follows: 

E(b2) = P2 + ClA 

and 

Var(b2) = 1'"£1 

where 

and 

L. = (oi o) 
0 o2 

2 

The calculations are performed under the assumption 

(14) 

(15) 

(16) 
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The partial derivatives of b2 in J are derived by Ben-Akiva and 
Bolduc (7) and lead to 

J' = [a - 2A2a/D, 1 - ex + 2~a./D] (17) 

Substitution of Equation 17 into Equation 15 yields 

Var(b2) = orcx.2 (1 - 2fl.2!D)2 

+ ~(1 - a)2 [1 + 2A2a/D(l ...., a.)] 2 

The MSE is 

At the two limits A2 = 0 and A2 ~ oo, this MSE expression 
coincides with the one obtained before for deterministic a. 
However, depending on the values of the parameters, it is now 
possible that for a finite value of A2 the MSE of the combined 
estimator, MSE(b2), will exceed the variance of the Area 2 
direct estimator, Var(b2). This is demonstrated in the numerical 
example in Figure 3 for cry = 1 and o~ = 4. 

The combined estimator presents an improvement over a 
direct estimator only within a limited transfer region in which 
the transfer bias is relatively small. If the transfer bias is greater 
than some critical value, the combined estimator is, in fact, 
inferior to the direct estimator. Thus in practical applications 
the transfer region for the optimal combined estimator is not 
global. Clearly, any application of the notion of transferability 
is based on the prior assumption that the transfer bias is rela
tively small, or in other words, that there are a priori expecta
tions that the model parameters are similar between the two 
areas. 

The sensitivity of the transfer region to the value of <if and 
o~ is demonstrated in Figures 4 and 5, respectively. In general, 
it is shown that increasing <if or o~ leads to a larger transfer 

region. Figure 4 shows that as <if gets larger, the gain in 
accuracy from the transfer estimator is reduced in situations 
with small transfer bias. In general, as or increases, the value of 
a decreases, and the combined estimator approaches the direct 
estimator. Thus for oy --) oo (inaccurate information from 
Sample 1) the MSE(b2) curve approaches the horizontal line of 
ai. The dramatic effects of o~ on the transfer region and the 
accuracy of the combined estimator are demonstrated in Figure 
5. The size of the transfer region appears to be more sensitive 
to oi than to or. and at the limit for~ ~ 00 the transfer region 
is obviously global. 

Monte Carlo experiments were performed to evaluate the 
accuracy of the expression for MSE(b2) that was developed 
wider the asswnplion of known df and a~ and a first-order 
Taylor's series approximation. The experiments, described by 
Ben-Akiva and Bolduc (7), compare the true MSE and the 
MSE curve computed by using the previous approximations. 
The results clearly show that the approximate MSE curve 
significantly underestimates the point at which the true MSE 
curves intersect with al In other words, the approximate MSE 
curve provides a conservative estimate of the transfer region. 
The Monte Carlo results show that the critical value may be as 
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FIGURE 3 The transfer region of the combined estimator. 
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FIGURE 4 The effect on the transfer region of Var (1). 

high as 3 or 4 times greater than the one obtained from the 
approximate analysis. This result should be taken into account 
in empirical applications. 

THE MULTIVARIATE EXTENSION OF THE 
COMBINED ESTIMATOR 

Here, the derivation of the combined transfer estimator is 
extended to the multivariate case. The combined estimator is 
defined with nonsingular fixed-weight matrices A 1 and A 2 as 
follows: 

Let 

and note that 

40 

bias 2 
o V•(1)•8 

5 

(18) 
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FIGURE 5 The effect on the transfer region of Var (2). 

Rewrite the combined estimator (Equation 18) as 

and obtain the following expectation of b2: 

(19) 

Let !l = P1 - P2 and express the bias of b2 by 

B(b2) = E(b2) - P2 = A!l 

Denote the covariance matrices of the direct estimators by 
Var(bi) = :Ei, i = 1, 2. The two samples are independent, and as 
a consequence, b1 and b2 are independently distributed. Under 
this hypothesis, the covariance matrix of the combined estima
tor is given by 

Var(b2) = (I - A):E2(I - A)' + A:E1 A' 

= :E2 - :E2A' - A:E2 + A:E2A' + A:E1 A' 

The latter results in the following MSE expression for b2: 

MSE(b2) = :E2 - :E2A' - A:E2 

+ A(:E1 + !l!l' + :E2)A' (20) 

Define the optimal weighted average estimator as the matrix 
A that minimizes the trace of the MSE(b~) matrix, as follows: 

tr [MSE(b2)] = tr [:E2] - 2 tr [:E2A'] 

+ tr [A(:E1 + !l!l' + :E2)A'] 

The optimal value of matrix A is given by 

(21) 

which can also be written as 

For a detailed derivation, see Ben-Akiva and Bolduc (7). Note 
that in the scalar case (e.g., K = 1), the matrix A reduces to the 
value of a derived earlier. 

Equation 21 implies that the optimal weight matrices can be 
taken to be 

Substitution of these matrices in the estimator (Equation 18) 
yields 

b2 = [CE + !l!l'r1 + E21 r1 [CE1 

+ !l!l')"1b1 + Ez1b2] (22) 

As in the scalar case for !l = 0, this estimator reduces to the 
Bayesian updating formula. 

The approach used in the single parameter case is now used 
to derive an expression for MSE(b2) when the matrix A is re
placed by an estimate A. As in the one-parameter case, assume 
that :E1 and :E2 are known and that the randomness in A arises 
from the use of d, which is an estimate of ~. As suggested 
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earlier, the most straightforward estimate of Li is the difference 
between the direct estimates: d = b1 - b2. 

Recall matrix A in Equation 21 and replace Li with its 
estimate d, as follows: 

with 

where 

The Taylor's series approximation yields the following: 

where 

The partial derivatives of b2 are 

and 

where ® denotes a Kronecker product [for details, see Ben
Akiva and Bolduc (7)]. These expressions can be used to derive 
the multivariate transfer regions that are useful in situations 
with significant off-diagonal elements in ~ 1 and ~2. 

CONCLUSION 

A new approach to model transferability based on the MSE 
criterion was developed The combined transfer estimator was 
derived, and it was shown that for sufficiently small transfer 
bias it dominates the direct estimator of the model in a new 
area. The combined estimator may be viewed as an extension 
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of the Bayesian updating procedure that explicitly accounts for 
the possible presence of a transfer bias. The computational 
requirements of the combined transfer estimator are the same 
as those of the transfer scaling or the Bayesian updating 
procedures. 

A linear approximation was employed to analyze the proper
ties of the combined transfer estimator. However, results of 
Monte Carlo experiments have shown that the linear approx
imation underestimates the improvement of the c·ombined es
timator over the direct estimation. To overcome this problem, it 
will be necessary in further research to develop exact distribu
tional results for the combined estimator. 

Another approach that overcomes the statistical deficiencies 
of the transfer scaling approach but is computationally more 
demanding is to view transferability as a mixed estimation 
problem. Jn a related paper, a mixed estimator is proposed that 
jointly estimates the new area model and the transfer bias 
model used in the transfer scaling approach (5). 
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