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Modeling Mode Choice in New Jersey 

KEVIN NEELS AND JOSEPH MATHER 

In this paper, a mode choice model developed for NJ Transit 
and the Port Authority of New York and New Jersey to assist 
in the evaluation of proposals for Increasing the capacity and 
use of the existing Hudson River crossing connecting Manhat­
tan and northern New Jersey is described. The model focuses 
on the choices of a.m. peak period eastbound commuters. It 
allocates demand across seven primary modes, including auto­
mobile, bus, two park-and-ride modes (automobile to bus and 
automobile to PATH), and three rail modes (commuter rail to 
Penn Station, commuter rail with transfer to PATH, and local 
access to PATH). The emerging trans-Hudson crisis that 
provided the impetus for the model development effort, the 
planning program of which it was a part, the data sources used 
In the effort, the speclficatton of the model, the procedures 
used to estimate the model coefficients, the statistical results of 
the model estimation, and the model's forecasting performance 
are also discussed. 

In this paper, the mode choice model developed by NJ Transit, 
the Port Authority of New York and New Jersey, and Charles 
River Associates is described. This model is explicitly de­
signed to be sensitive to the presence and comparative quality 
of the large number of travel alternatives available in that 
market. With the large number of modes it handles (se,ven) and 
the flexible way in which it captures intermodal competition, it 
represents one of the most ambitious efforts to date to forecast 
travel demand in a complex, multimodal environment. 

The model was developed to help NJ Transit and the Port 
Authority to deal with the trans-Hudson crisis. Over the past 
several years, the growth in service employment in Manhattan 
has stimulated a rapid increase in journey-to-work travel. 
Largely a result o~ its high-quality and comparatively inexpen­
sive housing stock, New Jersey has provided a growing share 
of the workers filling these new jobs. According to the Bureau 
of the Census, in 1980, 10 of every 100 Manhattan jobs were 
held by New Jersey residents. However, recent Port Authority 
estimates suggest that of the new Manhattan jobs being created 
in the late 1980s, 34 of every 100 jobs will be held by New 
Jersey residents. Already in the first half of the decade, trans­
Hudson commuters have experienced lengthening backups and 
delays at the Hudson River crossings and passenger loadings 
that strain the capacity of trans-Hudson transit links. The trans­
Hudson crisis is due to the system's inability to serve current 
demand and the constraint this places on New Jersey's eco­
nomic development. 

Because of the problems the model was intended to address, 
the development team had to strike a balance among a number 
of distinct and sometimes conflicting goals. There were a 
number of important features that were incorporated into the 
model, including 
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• Statistical estimation of model parameters, 
• Accurate representation of intermodal competition, 
• Appropriate responses to policy changes, 
• High levels of forecast accuracy, and 
• Ease of estimation and use. 

The primary requirement was that the model parameters be 
eslimated statistically from locally collected data. This pro­
cedure was the only way to achieve the best fit to the data, to 
ensure that the model parameters fully reflected local patterns 
of behavior, and to guarantee the objectivity of the model 
results. 

It was also critically important that the model be able to deal 
with the large number of modal alternatives that are available 
in the trans-Hudson commuter market and provide an accurate 
representation of the complex patterns of competition that exist 
among them. In this complex, multimodal environment charac­
terized already by extremely heavy transit usage, policy makers 
and planners had to know not just how many commuters might 
be attracted to a new service, but also from where they would 
be drawn. To contribute to the solution of the trans-Hudson 
crisis, a transportation improvement had to draw commuters 
out of automobiles and other low-occupancy vehicles, and not 
simply cannibalize existing high-eapacity transit ridership. 

It was decided early in the development effort to build into 
the model appropriate responses to key policy variables. The 
most important goal of the calibration effort was to produce a 
model that would provide appropriate and accurate predictions 
of the responses of trans-Hudson commuters to changes in 
service levels or modal attributes. To achieve this goal, the 
process had to build into the model appropriate values for the 
key behavioral parameters. Specifically, the model had to imply 
reasonable values for self- and cross-elasticities of demand. It 
also had to be sensitive to the service attributes that were 
important from a policy point of view. 

Because the output of the model would be used to evaluate 
the financial feasibility of alternative capital improvements and 
to make key engineering decisions regarding capacity and 
station location, it was essential that the model be able to 
reproduce and forecast patterns of travel behavior with a high 
degree of accuracy. 

Because this model was to be a working model that would be 
used on an ongoing basis to analyze and solve practical plan­
ning problems, it was important that the model be easy to 
estimate and easy to use. The goal was to develop an easily 
applied forecasting tool that could be used by all agencies to 
analyze trans-Hudson travel. It was also necessary to develop a 
model that could be updated by NJ Transit or Port Authority 
staff or reestimated as better or more recent data became 
available. These goals led to a decision to rely on microcom­
puters to build and run the model. 
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The remainder of this paper is divided into four sections. The 
section that follows presents the form and specification of the 
model that emerged from this effort. The third section of the 
paper describes the sources of data that were used in the model 
estimation. The fourth section describes procedures used to 
estimate the model coefficients. The final section presents es­
timation results and summarizes what was learned. 

MODEL SPECIFICATION 

The model was formulated as a set of logistic regression equa­
tions estimated across origin-destination (0-D) pairs (1). The 
dependent variable in each equation consisted of the log of the 
ratio of the transit share for the mode in question for that 
0-D pair, divided by the corresponding automobile share. Six 
equations were estimated--one for each transit mode. Auto­
mobiles were thus used as the reference mode, and the auto­
mobile share was computed from the log-odds ratio predictions 
using the constraint that the estimated shares had to sum to one. 
The mathematical form of the resulting model is shown in 
Equation 1. 

where 

share for Transit Mode i; 
share for automobile mode, 
explanatory Variable i and 
estimated Coefficient i. 

(1) 

Each demand equation is composed of three sets of indepen­
dent variables: measures describing the service offered by the 
subject mode, measures describing the service offered by com­
peting alternatives (which include the automobile reference 
mode), and measures describing characteristics of the 0-D pair 
itself. The last category includes selected socioeconomic vari­
ables, as well as dummy variables specifying whether or not 
specific modes are available for trips between an origin and 
destination. 

The principal advantage of this formulation is its explicit 
representation of the attributes of the competing modes. The 
presence of these variables permits a pair of modes to be either 
close or distant substitutes. The degree of competition between 
them can vary continuously between these two extremes, and 
can be estimated empirically. Thus, both the IIA problem that 
characterizes the multinomial logit (MNL) model and the 
sometimes arbitrary groupings that are often found in nested 
logit models can be avoided. In this respect, the trans-Hudson 
model represents a considerable advance in the analysis of 
travel behavior in multimodal environments. 

One of the thorniest problems lay in the definition of the 
modal alternatives. Mode definition was difficult not only be­
cause many different transportation technologies were avail­
able in the trans-Hudson market, but also because these tech­
nologies were used by commuters in such varied and complex 
ways. A standard technology-based approach to mode defini­
tion in this region might have resulted in only three modes: 
automobile, bus, and rail. However, a close look at the way in 
which these traditional modes manifest themselves within 
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the region quickly reveals the inadequacy of this simple 
trichotomy. 

Consider, for example, rail. A substantial number of com­
muters drive long distances to access PATH, the rapid transit 
system connecting northern New Jersey and Manhattan. The 
PATH systems serves two other distinct markets as well: local 
walk-on or bus access riders, and commuter rail riders who 
transfer to PATH for the final trans-Hudson leg of their journey. 
The commuter rail riders transferring to PATH, in turn, make 
up a different market from that of the commuters who travel 
directly to Penn Station, New York, on NJ Transit or Amtrak 
trains. 

In order to understand patterns of travel demand in this 
market it was important to account both for the characteristics 
of the technology and the way in which it was used by com­
muters. For this reason, the model was based on modal defini­
tions that reflect distinct patterns of travel behavior, rather than 
distinct vehicle or guideway technologies. The model allocates 
travel demand across seven distinct travel modes. These in­
clude automobile, three combinations of conventional transit 
(bus, commuter rail with a PATH trans-Hudson link, and com­
muter rail to Manhattan), two fringe park-and-ride modes 
(using either bus or PATH for the trans-Hudson segment), and 
local PATH (which as a mode in itself is defined to be available 
only within an inner core area along the Hudson River). 

The explanatory variables used to define the level of service 
along each trip segment are those traditionally found in mode 
choice models. These include variables describing ease of 
access and egress, wait time, transfer time, cost, and line-haul 
time. In a further effort to take into account the multimodal 
trans-Hudson environment, separate coefficients for the dif­
ferent types of line-haul time were incorporated into the model 
to capture the distinctly different characteristics of the different 
line-haul technologies. 

Measures of ease of access were constructed using a parallel 
impedance formulation. This formulation, which is based on an 
analogy to electrical circuit theory, was used because of its 
ability to deal with situations in which multiple-access modes 
are available. The parallel impedance formula reflects both the 
number of access options available as well as their quality. It 
has the property that the addition of a new access mode always 
improves ease of access, regardless of the quality of the new 
option. Hence it avoids the feeder bus paradox in which the 
introduction of a new but inferior access mode increases aver­
age access time and decreases the share of the line-haul mode 
that has been improved. The exact formula used is shown in 
Equation 2 for a two-access mode example. 

(.1 1)-1 

A = lTw + Ta 

where 

A 
Tw 
Ta 

= 
= 
= 

ease of access, 
walk access time, and 
automobile access time. 

(2) 

In exactly the same way, egress parallel impedances were 
calculated for representation of the egress alternatives in this 
region. 
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DATA SOURCES 

The data set used for estimation of the model coefficients was 
constructed from two primary sources. A comprehensive set of 
travel surveys administered by the Port Authority and NJ Tran­
sit provided information on patterns of demand and selected 
socioeconomic characteristics of commuters. A combination of 
published schedules, time tables, and field measurements 
provided travel times, cost, frequency, and other level-of-ser­
vice measures. 

The funneling of the entire target travel market through the 
Hudson River crossings created an environment in which sur­
veying commuters was relatively easy. Partly for this reason, a 
large body of recently collected travel survey data was avail­
able for the model development effort. Within the 2 years 
preceding the initiation of the project, on-board surveys were 
administered to bus riders, commuter rail passengers, and users 
of the PATII system In addition, comprehensive surveys of 
users of automobile facilities were available. Usable responses 
were obtained from approximately 50 percent of all eastbound 
peak-period trans-Hudson commuters. 

Level-of-service variables were developed from schedules, 
timetables, and field measurements. Starting with times, costs, 
and frequencies for individual bus and rail lines, the data were 
first summarized to the minor civil division level for bus and 
the station level for rail. Subsequent aggregations summarized 
the information at an 0-D level using zone definitions de­
veloped specifically for this project. 

An early decision was made to rely on an aggregate ap­
proach to model development and forecasting. In contrast to 
many recent model development efforts, the project was carried 
out in a data-rich environment. Hence, the economies in es­
timation that disaggregate modeling can offer were not needed. 
The use of data based on zonal level averages offered a number 
of advantages. First, the aggregate data structure made it possi­
ble to carry out all calibration and forecasting on a microcom­
puter and thereby realize significant time and cost savings. 
Second, the small datasets and microcomputer-based process­
ing permitted by an aggregate approach gave the model the 
potential for wide distribution and easy use. Third, the use of 
aggregate data permitted the manual generation of much of the 
initial input data. This last feature was a great advantage in the 
early stages of the effort, before much progress towards auto­
mating the process of developing model inputs was made. 

Because the focus of the modeling effort was entirely on 
peak-period trans-Hudson travel, the trip table was structured 
to contain one-way (eastbound) trip flows from origins west of 
the Hudson to destinations east of the Hudson. Working within 
a practical limit of approximately 1,000 trip interchanges, the 
study region was divided into a relatively coarse zone system. 
This zone system used the region's transportation network as a 
skeletal framework. The commuting region west of the Hudson 
River was divided into 23 radial corridors. Each corridor was 
defined around either a rail line, a bus service corridor, or a 
concentration of automobile users. Within each corridor, varia­
tions in residential density and demographic characteristics 
were used to define three to four concentric sectors, as appro­
priate. The final zone system in New Jersey was composed of 
68 origin zones, each containing an average of 2,916 peak­
period trips in an area of 74 mi2. 
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The destination area east of the Hudson River was seg­
mented into 10 Manhattan central business district (CBD) anal­
ysis zones, with four additional external destination zones to 
maintain consistency with overall trip control totals. The 10 
destination zones considered in the analysis are all in Manhat­
tan, south of 60th Street. These zones were defined from 
smaller Port Authority zones primarily on the basis of prox­
imity to Manhattan's various transportation terminals. 

ESTIMATION 

In this section, the procedures followed in calibrating the trans­
Hudson mode split model are outlined. Calibration is defined as 
the full process of bringing up an operational model for practi­
cal use. Thus, calibration includes but is not limited to the use 
of statistical procedures to estimate model coefficients. Much 
of the hard work involved in achieving the ambitious goals set 
for this effort actually took place in the calibration process. 

Ordinary least squares estimation was used in initial explora­
tory work. This procedure was consistent with the basic form 
of the model and with the use of aggregate demand and service 
data. It generated results quickly and cheaply, and permitted 
both establishing the basic outlines of the model and refining 
the data procedures. 

In an effort to build the desired policy sensitivity into the 
model, a number of cross-coefficient constraints were imposed 
on the various demand equations. These constraints typically 
set the coefficient for one service attribute to be a multiple of 
the coefficient for a related service attribute. They were made 
necessary by the limited amount of variation in these service 
measures contained in the base data set, and the consequent 
difficulty of obtaining precise coefficient estimates directly. 

Such constraints were relied on heavily in the PATII equa­
tion and in the equations for the two park-and-ride modes. For 
example, in the case of PATH it was important for the sake of 
completeness and consistency with other modes to consider 
separately line-haul time, wait time, and transfer time. The 
PATII system is not extensive, however, and has relatively little 
variation in service frequency. The only transfer in the entire 
system is an insignificant across-the-platform transfer at the 
Journal Square Station. Rather than drop these two variables 
from the model, relationships found in travel demand literature 
were used and these two coefficients were set at twice the line­
haul time. In this way, the desired policy sensitivity was built 
into the model. 

The use of cross-coefficient constraints solved another po­
tential problem associated with this particular model specifica­
tion. The incorporation of the competing mode variables pre­
sented estimation problems in that there was a large number of 
such variables. Including all of them could have quickly ex­
hausted the available degrees of freedom. Because all that was 
sought by including these variables was a general indication of 
how attractive the alternatives were, the detailed level of ser­
vice variables for each competing mode were combined into a 
summary measure of the generalized cost of that mode. 

This generalized cost was the sum of the travel cost and the 
dollar equivalent of a weighted sum of access, waiting, line­
haul, transfer, and egress travel times for the competing mode. 
Access impedance was weighted at three times the value of 
line-haul time; and waiting, transfer, and egress times were 
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tendency to overestimate shares for these minor modes. To 
compensate for this problem. a set of threshold limits was 
estimated that set a lower bound for the estimated share for 
each mode. These thresholds were set at the values for each 
mode that best distinguished between zero and nonzero share 
0-D pairs in the baseline dataset. In applications, mode shares 
below the threshold limit are set to zero. In effect, the mode 
split model is applied conditionally, given a prior judgment 
about which modes will have nonzero shares. That judgment, 
in turn, is based on the relative attractiveness of the differ~mt 
modal options. This procedure is consistent with the way in 
which the coefficients of the model were estimated, because in 
using a logistic regression approach 0-D pairs with a zero 
mode share were eliminated from the estimation dataset. 

RESULTS 

The following list presents goodness-of-fit and summary statis­
tics for the regression carrying out the simultaneous estimation 
of the six demand equations. 

Statistic 

R2 
Corrected R2 

F statistic 
Number of observations 

Value 

0.6530 
0.6484 
142.8 
1,999 
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Despite the large number of primary modes and the complexity 
and diversity of the region the model describes, the percentage 
of variation explained by the model is relatively high. The 
model coefficients are highly significant. 

Tables 1-6 present the estimated coefficients of the six 
individual transit demand equations. As a result of the rich set 
of data available for model estimation and the use of a priori 
information in the form of cross-coefficient and cross-equation 
constraints, the individual coefficient estimates are, as a rule, 
extremely precise. Standard errors are small. 

The ability of the model to replicate the baseline demand 
data varies somewhat by mode. Automobile and PATH modes 
are forecast with the highest accuracy. Prediction errors for 
these modes are about one-third the average number of trips per 
interchange. The model deals well with these two modes 

TABLE 4 REGRESSION RESULTS FOR RAIL-TO-PATii EQUATION IN MODAL-SPLIT MODEL 

Standard 
Variable Coefficient Error T-Statistic 

Rail-to-PATH Service Variables: 

Rail-to-PA TH Cost -.2162 .00.54 -39.828 
Rail-to-PATH Rail Time -.0301 .0008 -39.828 
Rail-to-PA TH PA TH Time -.0301 .0008 -39.828 
Rail-to-PA TH Wait Time -.0602 .001.5 -39.828 
Rail-to-PA TH Transfer 

Time -.0903 .0023 -39.828 
Rail-to-PATH Access 

Impedance -.1230 .0096 -12.825 
Rail-to-PATH Egress 

Impedance -.1748 .0217 -8.037 

Competing Mode Variables: 

Auto Time .0364 .0018 20.71.5 
Auto Cost .2871 .0137 20.927 
Bus Generalized Cost .1840 .o 167 11.041 
Direct Rail Generalized 

Cost .0026 .0004 6.906 

Modal Availability Flags: 

Local PATH Market Area 
Flag -.1353 .3000 -0.451 

Direct Rail Market Area 
Flag -~0874 .o 127 -6.906 

Other Terms: 

Intercept -2.9703 .5066 -.5.863 

NOTE: The standard error shown for the intercept term is based upon an 
approximate calculation that ignores the covariance between the 
intercept term for the pooled regression and the intercept shift for 
this equation 

SOURCE: Regression Analysis of Travel Demand and Level of Service Data 



TABLE 5 REGRESSION RESULTS FOR NONLOCAL PATH EQUATION 
IN MODAL-SPLIT MODEL 

Variable Coefficient 

Nonlocal PATH Service Variables: 

Nonlocal PA TH Cost 
Nonlocal PATH Line 

Haul Time 
Nonlocal PATH Wait Time 
Nonlocal PA TH Transfer 

Time 
Nonlocal PA TH Access 

Impedance 
Nonlocal PA TH Egress 

Impedance 

Competing Mode Variables: 

-.483.5 

-.0623 
-.1246 

-.1246 

-.1869 

-.1246 

Auto Time .0.53.5 
Au ID Cost .4 J .56 
Direct Rail Generalized 

Cost .0042 

Modal Availability Flags: 

Direct Rail Market Area 
Flag 

Other Terms: 

Intercept 

-.1392 

-2.7.571 

Standard 
Error T-Statistic 

.0322 J.5.012 

.0041 -J.5.012 

.0083 -1.5.012 

.0083 -1.5.012 

.0124 -J.5.012 

.0083 -J.5.012 

.0030 17.639 

.0236 17.639 

.000.5 7.970 

.017.5 -7.970 

• .5361 -.5.143 

NOTE: The standard error shown for the intercept term is based l4JOn an 
approximate calculation that ignores the covariance between the 
intercept term for the pooled regression and the intercept shift for 
this equation. 

SOURCE: Regression Analysis of Travel Demand and Level of Service Data 

TABLE 6 REGRESSION RESULTS FOR DIRECT RAIL EQUATION IN 
MODAL-SPLIT MODEL 

Standard 
Variable Coefficient Error T-Statistic 

Direct Rail Service Variables: 

Direct Ra ii Cost -.0779 .0254 -3.068 
Direct Rail Line Haul 

Time -.0104 .0034 -J.068 
Direct Rail Wait Time •• 0208 .0068 -J.068 
Direct Rail Transfer 

Time -.0312 .0102 -J.068 
Direct Rail Access 

Impedance -.J.593 .0141 -11.324 
Direct Rail Egress 

Impedance -.2367 .0290 -8.176 

Competing Mode Variables: 

AulD Time .0363 .0018 20.663 
AulD Cost .2865 .0137 20.884 
Rail-to-PA TH Generalized 

Cost .0098 .0079 J.248 

Modal Availability Flags: 

PA TH Market Area Flag -.1301 .452.5 -0.287 

Other Terms: 

Northeast Corridor 
1-'lag 1.4130 .2180 6.483 

Intercept -.9501 .6480 -1.466 

NOTE: The standard error shown for the intercept term is based upon an 
approxima'te calculation that ignores the covariance between the 
intercep t term for the pooled regression and the intercept shift for 
th is equation. 

SOURCE: Regression Analysis of Travel Demand and Level of Service Data 
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weighted at twice the value of line-haul time. Time was con­
verted to dollars by using one-half the average hourly wage rate 
of the users of the competing mode as reported in on-board 
surveys. 

In subsequent refinements of the model a procedure was 
adopted that permitted estimating the coefficients of all six 
equations simultaneously. To do this, the estimation datasets 
for the six demand equations were concatenated and slope shift 
variables were introduced to allow each equation to take a 
different set of coefficients. Use of this procedure allowed the 
imposition of cross-equation constraints on coefficients and use 
of generalized least squares to correct for cross-equation cor­
relation of error terms in subsequent reestimations. 

The ability to impose cross-equation constraints on coeffi­
cients permitted more efficient estimation of model coefficients 
and ultimately improved the policy sensitivity of the model. 
These constraints were used in two ways: to incorporate prior 
information about relationships between modes, and to place 
bounds on the cross-elasticities of demand between modes. 

An example of the first use occurred with the two commuter 
rail modes, where there was ample reason to believe that an 
extra minute of commuter rail time was viewed in the same 
way by users of either mode. The coefficients on rail time in the 
two equations were constrained to be the same, thereby im­
proving the precision of the overall model estimate. 

We also used cross-equation constraints to correct a number 
of instances in which the estimated cross-elasticities of demand 
between modes were slightly negative. This typically occurred 
in cases where the modes in question were not close substitutes 

23 

and where the estimated cross-elasticity was not significantly 
different from zero. With such constraints, these elasticities 
could be constrained to remain strictly, though only slightly, 
positive. 

As part of the calibration process, two adjustments to the raw 
regression results were carried out to improve the model's 
accuracy in practical applictions. 

The first such adjustment corrected for functional form bias. 
Because the ordinary least squares method was used in con­
nection with a log-odds transformation of the underlying de­
pendent variable, the means of the model's predicted shares did 
not necessarily equal the means of the raw data. This potential 
bias was corrected by adjusting the constant terms. A set of 
mode-specific factors was estimated to adjust the total pre­
dicted demand for each mode to the total actual demand found 
in the base trip table. This procedure resulted in a distribution 
of over and under predictions at the zone level that summed to 
zero by mode and were, therefore, unbiased. An iterative pro­
cess estimated the values of these mode-specific adjustment 
factors. 

The second adjustment improved forecasts of minor share 
modes. Minor share modes (those attracting less than 2 percent 
of the trips within an interchange) result from the method used 
to define the analysis zones. Because these zones are defined 
around major transportation facilities, they tend to be domi­
nated by a single mode. Hence, at least one of the competing 
modes typically assumes a small share. For the two park-and­
ride modes, which had small shares regionwide, shares at an 
0-D level would often be zero. Because the log form of the 
model prevents estimates of a zero share, the model had a 

TABLE 1 REGRESSION RESULTS FOR BUS EQUATION IN MODAL-SPLIT MODEL 

Standard 
Variable Coefficient Error T-Statistic 

Bus Service Attributes: 

Bus Cost -.1946 .0164 -11.882 
Bus Line Haul Time -.0182 .0015 -11.882 
Bus Wait Time -.0364 .0031 -11.882 
Bus Access Impedance -.2141 .0303 -7.060 
Bus Egress impedance -.0364 .0031 -11.882 

Competing Mode Variables: 

Auto Time .0363 .0018 20.629 
Auto Cost .2865 .0137 20.884 
Rail/PA TH Generalized 

Cost .0098 .0079 1.248 

Modal Availability Flags: 

Local PA TH Market Area 
Flag .1921 .1710 1.123 

Rail/PATH Market Area 
Flag -.3928 .3147 -1.248 

Other Terms: 

Percent of All HH's In 
High Income Category -.0492 .0052 -9.519 

Intercept -.0233 .3240 -0.072 

SOURCE: Regression Analysis of Travel Demand and Level of Service Data 



TABLE 2 REGRESSION RESULTS FOR LONG-HAUL AUTOMOBILE-TO-BUS EQUATION IN 
MODAL-SPLIT MODEL 

Standard 
Variable Coefficient Error T-Statistic 

Auto-to-Bus Service Variables: 

Auto-to-Bus Cost - • .5089 .0904 -.5.631 
Auto-to-Bus Line Haul 

Time -.0.567 .0101 -.5.631 
Auto-to-Bus Wait Time -.113.5 .0202 -.5.631 
Auto-to-Bus Access 

Impedance -.1702 .o .30 2 -.5.631 
Auto-to-Bus Egress 

Impedance -. J J 3.5 .0202 -.5.631 

Competing Mode Variables: 

Auto Time .0.54.5 .0099 .5 • .509 
Auto Cost .4890 .0888 .5 • .509 

Other Terms: 

Intercept -3.8394 .6760 -.5.679 

NOTE: The standard error shown for the intercept term is based upon an 
approximate calculation that ignores the covariance between the 
intercept term for the pooled regression and the intercept shift for 
this equation. 

SOURCE: Regression Analysis of Travel Demand and Level of Service Data 

TABLE 3 REGRESSION RESULTS FOR LOCAL PATH EQUATION IN MODAL-SPLIT MODEL 

Standard 
Variable Coefficient Error T-Statistic 

Local PATH Service Variables: 

Local PA TH Cost -1.0370 .0917 -11.314 
Local PATH Line Haul 

Time -.0773 .0068 -11.314 
Local PA TH Wait Time -.J.54.5 .0137 -11.314 
Local PA TH Transfer Time -.1.54.5 .0137 -11.314 
Local PA TH Access 

Impedance -.2318 .020.5 -11.314 
Local PATH Egress 

Impedance -.1.54.5 .0137 -11.314 

Competing Mode Variables: 

Auto Time .0342 .001.5 22.849 
Auto Cost .2831 .0117 24.23.5 
Bus Generalized Cost .0447 .0046 9.614 

Other Terms: 

Intercept 2.6844 . .5717 ti.695 

NOTE: The standard error shown for the intercept term is based upon an 
approximate calculation that ignores the covariance between the 
intercept term for the pooled regression and the intercept shift for 
this equation 

SOURCE: Regression Analysis of Travel Demand and Level of Service Data 
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because each captures a significant number and consistent 
share of the trips within its market area. 

Bus park and ride and PATH park and ride are handled least 
well. The primary motivation for defining these travel paths as 
modes was to remove the influence of fringe park-and-ride 
users from bus and local PATH coefficient estimates. In doing 
so, two small share modes were created, neither of which had a 
strong facility orientation. They drew a small market share 
from a wide region, and were difficult to predict. However, the 
accuracy of Auto-Bus and Auto-PATH forecasts was judged 
adequate given the small number of trips these modes attract 
both across the region and within each interchange. It should 
also be noted that other modeling efforts are under way at NJ 
Transit to deal more specifically with the park-and-ride modes 
and to supplement the more aggregate forecasts of this model. 

The uniform forecast accuracy among the conventional tran­
sit modes is a positive characteristic of the model. Bus, direct 
rail, and rail with transfer to PATH are all replicated well by the 
model. Predictions for these modes are only marginally less 
accurate than the automobile forecasts. The model is not biased 
toward any of the conventional transit modes. The model also 
does not exhibit any strong geographic bias in predictive ac­
curacy. Root mean square errors by mode within the northeast 
test area (Hoboken Division) are consistent with those 
throughout the region. Predictive accuracy within the south­
west (Newark Division) is generally consistent with the region, 
though the treatment of automobiles there is somewhat less 
accurate. 
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The model has been applied extensively by NJ Transit and 
the Port Authority of New York and New Jersey, as well as by a 
variety of consultants to analyze options for improving access, 
travel times, and capacity in the trans-Hudson corridor. It has 
proven itself to be a sensitive and flexible tool that has made an 
important contribution towards resolution of the trans-Hudson 
crisis. 
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