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Using Conversion Factors to Lower 
Transit Data Collection Costs 

PETER G. FURTH AND BRIAN MCCOLLOM 

Monitoring passenger use measures such as boardings, 
revenue, passenger-miles, and load can be an expensive task 
for transit systems. One way to reduce data collection costs Is 
to measure only one of these Items, the auxiliary Item, and then 
apply multiplicative factors that are estimated from a small 
joint sample to Its estimated mean to estimate the means of the 
other items. Statistical aspects of the conversion factor ap­
proach are presented, Including sample size estimation and 
determination of the accuracy of both the conversion factors 
and the Inferred estimates. An optimal sampling plan that 
minimizes the combined cost of estimating the conversion fac­
tors and estimating the mean of the auxiliary Item Is deter­
mined. Cost savings between 0 and 75 percent of the cost of 
direct estimation are obtained for various situations. 

Collection of passenger use data (e.g., boardings, peak load, 
revenue) at both the route and system level constitutes a signifi­
cant expense for transit systems. With the exception of system­
level revenue, few transit systems collect these data on every 
trip. For cost reasons, sampling is used at most systems. Dif­
ferent sampling techniques are available, entailing different 
measurement techniques, sample sizes, sampling plans, and 
costs. One especially suitable technique for estimating pas­
senger use measures is conversion factors. Although the infor­
mal use of conversion factors is widespread throughout the 
transit industry, the research effort reported in this paper repre­
sents the first treatment, to the authors' knowledge, of statisti­
cal issues, such as sample size and accuracy, related to the use 
of conversion factors in transit. 

Although sampling has been done in the transit industry for 
decades-in bus system8, the abolition of tickets made it neces­
sary-the subject of statistical determination of sample size 
and accuracy for transit has scarcely been started A data 
collection manual published in 1947 by the American Transit 
Association ( 1 ), recommends sample sizes but does not suggest 
the rnsultant level of precision. A more recent report (2) de­
scribes current data collection techniques but says nothing 
about sample size or accuracy. 

In 1979, UMTA began the Bus Transit Monitoring Study to 
improve the state of the art in transit data collection and service 
monitoring practices. As part of that study, the first Bus Transit 
Monitoring Manual (3) was completed in 1981. A later edition 
of this manual was published in 1985 under the title Transit 
Data Collection Design Manual (TDCDM) (4). In these man­
uals, procedures are offered for determining accuracy and sam-
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pie size. The later edition includes procedures for using conver­
sion factors under certain conditions that are described later. 
This paper draws on the results of the Bus Transit Monitoring 
Study and describes the statistical theory of conversion factors 
and their application to transit more fully. 

A conversion factor expresses a relationship between two 
variables: Y, called the inferred item, and X, the auxiliary item. 
The conversion factor is estimated from a paired sample of X 
and Y. The following notation is used in this paper: 

N = population size, 
Y; = value of Y for population element i, 

N 

YT = L Y; = population total of Y, 
i-1 

y = Y .p N = population mean of Y, 
n = size of paired sample, 
Y; = value of Y for sample observation i, 

n 

y, = L Y; = sample total of Y, 
i=l 

y = y.pn =sample mean of Y, 

s~ 1 N 

= L (Y; - Y)2 = variance of Y, 
N-1 i=l 

s 
v, = ! = coefficient of variation (COV) of Y, 

y 
and 
N 
L (Y; - Y) (X; - X) 
i=l 

r"l' = = correlation 
(N - l)S1S" 

coefficient of X and Y. 

Corresponding terms for X are similarly defined 
The conversion factor R is the ratio of populalion means. Its 

estimator A. is the ratio of sample means. Thus, 

R = Y/X = YT/XT 

R = y/x = YTlxT 

(1) 

(2) 

If the mean (X) or total (XT) of the auxiliary item is known, 
the mean or total of the inferred item can be estimated using the 
estimated conversion factor: 

~ 

Y=RX (3) 

(4) 
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where Y and YT are estimates of Y and YT· If X and XT are not 
known but are estimates, the following estimates 
are used: 

(5) 

(6) 

Examples of conversion factors in the transit industry 
abound Average fare is used to estimate route revenue from 
route boardings or vice versa. Average trip length is the conver­
sion factor (average passenger-miles divided by average board­
ings) used to estimate passenger-miles from boardings data. 
Peak-load counts could be used to estimate route boardings. 
Evidence of the value of using ratio estimates is found in a 
recent study (5) of San Diego bus routes in which the ratio of 
maximum load to total boardings on a route showed far less 
variation over the day than the absolute values of either 
measure. 

Because of the close relationship between such passenger 
use measures, a relatively small sample size is typically re­
quired for estimating conversion ratios. Armed with a set of 
ratios based on a single auxiliary item X, a transit system may 
be able to estimate all passenger use items by directly collect­
ing data only on the variable X. This approach can be especially 
cost-effective when data on X can be collected much more 
cheaply than other passenger use measures. 

Basic statistical theory is used in this paper and is therefore 
presented without proof. The theory can be found in several 
statistical texts; for example, Cochran (6). 

BIAS AND VARIANCE OF A 
CONVERSION FACTOR 

The true model can be assumed as 

Y; =RX;+£; (7) 

where £; is independently distributed with mean 0. Then R is a 
slightly biased estimator of R. Following Cochran (6), this bias 
is of the order of 1/ll and so is negligible for large samples. For 
sample sizes in the range of 10 to 30, terms of order 1/1i3 and 
higher may be neglected, and so the relative mean squared 
error (mse) is approximately the expectation 

A R-R 
[

A ]2 
mse(R) = E -R-

where 

(9) 

is a first-order approximation of the relative variance (squared 
COV) of R, derived from 
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II A 

I. (Y· - Rx-)2 
i•l I I 

n - 1 
(10) 

For many applications, X and Y have approximately equal 
coefficients of variation, so that Equation 7 reduces to 

mse(R) = vR
2 

[ 1 + ~
2 

(6 - 3r,.y) J (11) 

By using values of v,. = 0.6 and r,.>' = 0.85, worse than average 
values for route level applications observed in the UMTA Bus 
Transit Monitoring Study, vR 2 underestimates the mse by a 
factor of about (1 + 1.2/n). 

The relative bias of R, b/R, where b =bias, can be expressed 
as 

b [ A Jill R = mse (R) - v/ (12) 

When the assumed values of v,. and r,.>' are used, the relative 
bias is approximately 0.36/n. To keep the relative bias small, 
then, sample sizes below 10 should not be used. 

Another problem with small samples is the fact that the 
approximations used become less exact because of nonnor­
mality and the greater importance of neglected higher-order 
terms. Cochran (6) reports, based on empirical studies, that vR 2 

underestimates the true value by about 20 percent when the 
sample size is 10; and by about 6 percent when the sample size 
is 30. Accordingly multiplying the right-hand side of Equation 
9 by the factor n/(n -1. 7) yields 

(13) 

ACCURACY AND SAMPLE SIZE 

Accuracy is defined by two components, a relative tolerance 
and a confidence level. For example, the federal Section 15 
requirements call for estimates of systemwide boardings and 
passenger-miles to within ±10 percent at a 95 percent confi­
dence level. If an estimate 9 is normally distributed, then 

(14) 

where 

d = tolerance (e.g., d = 0.2 means ±20 percent 

c = 
tolerance); 
specified confidence level in percent (e.g., c = 
95 means 95 percent confidence level); 

z, = (c + 100)/2 percentile value of the standard 
normal distribution (e.g., z95 = 1.96 = 2); and 

= coefficient of variation of e. " v(0) 

Although ratio estimates are not normally distributed, they 
are close enough to normal for practical purposes. Extreme 
nonnormality is avoided by prohibiting smali sample sizes. 
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Because v(9) depends on the sample size used to calculate 9, 
the sample size required to achieve a specified accuracy level 
can be detennined from Equation 14. It is the sample size for 
which 

" \/(9) = d/zc (15) 

It is assumed that N is known, so that the expansion from a 
mean to the population total does not alter the COV of an 
estimate, making the sample size formulas for means and totals 
identical. For simplicity, our exposition will deal with estima­
tion of the population mean of Y. 

Three different cases will be covered: when X the mean of 
the auxiliary item is known; when X is unknown and estimated 
by using d~a that are also used to estimate the conversion ratio; 
and when X is unknown and is estimated independent of the 
data used to estimate the conversion ratio. 

INFERRING WITH A KNOWN 
AUXILIARY VARIABLE 

The simplest case of using a conversion factor is when the total 
or mean of the auxiliary variable is known. An example is 
estimating systemwide boardings or passenger-miles from sys­
temwide farebox revenue, which is universally measured for 
accounting purposes. Another transportation example might be 
estimating regional vehicle-miles of travel (VMT) from total 
regional gasoline sales. • 

When X is known, estimation of Y follows Equation 3, and 
I.here fore 

• 1 
v2 (Y) = v2 (A) = -- (v,.2 + vy

2 
- 2r"l'v"vl') (16) 

n - 1.7 

Necessary sample size, applying Equation 15, is 

2 
_ Zc 2 2 

n - 2 (v" +Vy - 2r"l'v"vl') + 1.7 
d 

(17) 

The results of evaluating Equation 17 are always rounded 
upward to the next integer, with the smallest value for n of 10. 

This approach was used to analyze the potential of using a 
systemwide revenue-to-boardings conversion in the collection 
of Section 15 data for the Port Authority of Allegheny County 
(PAT), Pittsburgh's regional transit system. The population was 
all the vehicle trips in a year including all routes; Y; = boardings 
on Trip i and X; = revenue on Trip i. Analysis of data from PAT 
yielded the following estimates: 

v" = 0.786, Vy= 0.587, r"Y = 0.647 

When these parameters were used to obtain systemwide board­
ings with the specified ±10 percent tolerance at the 95 percent 
confidence level, n = 149. 

This result indicates that, in the case of PAT, 149 trips must 
be randomly sampled over the year, with trip level boardings 
and revenue observed on each trip. This procedure might be 
done by using on-board checkers to count boarding passengers 
and to take farebox readings at the start and end of each trip. 

An estimate of total passenger-miles at the same level of 
accuracy is also required in Section 15. An analysis was made 
of the potential of using a conversion factor of systemwide 
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revenue (X) to passenger-miles (Y) to estimate total passenger­
miles. An analysis of sample PAT data yielded the estimates vl' 
= 0.816 and r"l' = 0.739, resulting in a required sample size of n 
= 129. Data on both revenue and passenger-miles can be 
collected by having an on-board checker record ons and offs at 
each stop, from which passenger-miles may be derived directly, 
as well as the beginning and ending farebox reading. If on­
board checks are used for estimating conversion factors for 
both passenger-miles and boardings, PAT could meet its Sec­
tion 15 requirements for service consumed by perfonning an­
nually 149 (the larger of the two n-values) on-board checks 
chosen at random, or about 3 per week. 

In contrast, if boardings or passenger-miles are estimated 
directly without conversion for a sample of n trips, the COV of 
the sample mean would be v/n112• Applying Equation 15, the 
necessary sample size would be 

2 
Zc 2 

n= - v 
d2 y 

(18) 

For the PAT example, Equation 18 yields n = 235 for board­
ings and n = 326 for passenger-miles. Assuming that data on 
both of these items can be measured concurrently with on­
board checks, the larger sample size (n = 326) governs. In 
comparison with the 149 on-board checks needed under the 
conversion factor approach, use of revenue-based conversion 
factors saves, for this example, 56 percent of the data collection 
cost. 

On the basis of the analysis of the PAT data described here 
and of a similar analysis of data from VIA (San Antonio's 
transit system), UMTA has authorized this revenue-based ap­
proach for meeting its Section 15 requirements for boardings 
and passenger-miles (7). The approved sampling plan calls for 
208 observations per year, in contrast with the 600 or so 
observations required in the previously authorized sampling 
plan that does not involve conversion factors (8). 

Some transit systems are fortunate in that route level board­
ings are counted routinely on every trip. This makes boardings 
an ideal auxiliary variable from which to estimate other desired 
route level measures such as average revenue per trip, average 
peak load, and average boardings on a segment of the route. 
For example, average peak load for a certain route/direction/ 
time period (R/D/TP) combination (an example time period 
might be 6:30 to 9:00 a.m.) might be a desired statistic. Then 
the population is all trips in that R/D/TP, X; = boardings on 
Trip i, and Y; =peak load on Trip i. The boardings-to-peak-load 
conversi<!n factor is estimated from a sample of n joint observa­
tions as R = y/i. A joint observation is made by positioning a 
checker at the peak-load point to count the number of pas­
sengers on board. If the checker records the bus and trip 
number, this count can be matched to the boarding count taken 
on that trip. Analysis of data from a large number of routes in 
Pittsburgh, San Francisco, and Minneapolis yielded typical 
values as follows: 

v" = 0.5, Vy= 0.4, r"Y = 0.94 

For a desired accuracy of ±10 percent tolerance at the 95 
percent confidence level, the necessary sample size applying 
Equation 17 is n = 16. 
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In contrast, if peak load were estimated directly, the required 
number of observations of peak load, from Equation 18, would 
be n = 64. This four-fold difference illustrates the potential 
savings of using a known measure (e.g. boardings) that is being 
collected routinely to estimate other passenger-use measures by 
using conversion factors. 

SAMPLING FOR THE CONVERSION FACTOR 
AND THE AUXILIARY ITEM IN THE 
SAME TIME FRAME 

When there is no perfectly known auxiliary item. the mean of Y 
is estimated by using Equation 5, and both the conversion 
factor and the mean of the auxiliary item must be estimated by 
sampling. The case in which sampling for both items occurs in 
the same time frame is discussed in this section. 

A random sample of n' observations of X are made. On a 
randomly selected subset of n of the observations, Y is ob­
served as well. The following notation is used in this 
discussion: 

Yn•• Xn = sample means of Y and X from the subset of 
size n; and 

Xn• = sample mean of X from the enLire set of n' 
observations. 

For example, if Xis peak load for a particular R/D/TP, and 
Y is boardings for that R/DITP, both X and Y might be observed 
by using on-board checks on n trips, whereas point checks are 
used to measure peak load on n' - n additional trips. From 
Equation 2, the estimate of the peak load-to-boardjngs con­
version factor is .R = Yn1Xn· The estimate of X is 
Xn·· The estimate of y is 

(19) 

Its squared COV, following Cochran and using the small­
sample adjustment, is 

• v2 2. 2 2 2 
v2 (Y) = JI + Vy - rX)IVJIV)i + r"JiVXV)i - v" 

n - 1.7 n' 
(20) 

In determining the necessary sample size to achieve a desired 
accuracy, there is a trade-off between n and n'. The optimal 
choice depends on their relative costs. If the unit sampling cost 
for a paired observation is c, and the cost for a separate 
observation of Xis c', the total cost is en + c' (n' - n). 

If the following substitutions are made, 

C2 = C1 

k - 2 2 2 l - v" +Vy - rll)IVJIV)I 

k,_ = 2r"Yvxvy - vx
2 

the optimization problem is the following: 

subject to 

(21) 

(22) 

(23) 

(24) 

(25) 
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kif(n - 1.7) + k,_/n' S: d2/z2 

n <!: 10 

and 

n' > n. 

The solution, ignoring Equation 28, is 

n = k,_ - - --'----' [d2 k1 1-1 

z2 n - 1.7 

(26) 

(27) 

(28) 

(29) 

(30) 

Results of Equation 29 are a&ain to be rounded upwards, 
with the smallest allowed value for n of 10. 

If n' S n, Equation 28 is violated, implying that the direct 
estimation of Y without using a conversion factor will be less 
costly. Even if n' > n, there still may be cases where direct 
estimation of Y is the less costly alternative. Therefore the 
direct and indirect approaches must be compared. 

An example of this approach can be shown using the data 
from the last example. The problem is to estimate mean board­
ings for a particular RID /TP to a tolerance of ±20 percent at a 
95 percent confidence level through the use of a conversion 
factor with peak load as the auxiliary variate. The COV and 
correlation estimates are the same as for the last example, 
except that load is now the independent variable X and mean 
boardings is the dependent variable Y. The correlation coeffi­
cient is unchanged, because of the identity r xy = ryx· Joint 
observations of peak load and boardings are made using an on­
board checker. If this checker will be collecting useful data in 
both directions, then the time required for one joint observation 
is t/2, where t = cycle time for the route. Observations of peak 
load alone are made wicq checkers stationed at the peak-load 
point. If the headway is h, one observation in each direction can 
usually be made in an interval h, so the time spent per observa­
tion is h/2. If t = 60 min and h = 10 min, then 

C2 = h/2 = 5 min 

C1 = (t - h)/2 = 25 min 

k1 = 0.03 

k2 = 0.22 

(z/d)2 = 100 

n = 8.33, which is increased to 10, 

n' = 34 

The cost is [en + c' (ri - n)]/60 = 7 checker-hr. For com­
parison, boardings could be estimated directly using on-board 
checkers. The unit sampling cost is t/2 = 30 min. The necessary 
sample size is, from Equation 18, n = 25. The resulting cost is 
12.5 checker-hr. These results are summarized as follows: 

Using Conversion Direct 
Factor Estimation 
(checker-hr) (checker-hr) 

On-board checks 10 25 
Point checks 24 0 

Total 7 12.5 
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The conversion factor approach is not always the least costly 
alternative. Because a less strict accuracy for route boardings 
of ±30 percent at a 90 percent confidence level (z =l.65) is 
recommended in the TDCDM, it is illustrative to look at the 
results for this case. Applying Equation 29 yields n = 3.6, 
which must be rounded up to n = 10 on-board checks. Applying 
Equation 30 yields n' = 7.5, which is less than n, indicating that 
no point checks should be taken and that direct estimation will 
be less costly. When Equation 18 is applied, it is found that 
direct estimation calls for only 11 = 8 ride checks in this case. 
This example illustrates how the requirement of having at least 
10 joint observations makes the conversion factor approach 
less desirable when only small sample sizes are needed. 

SAMPLING FOR THE CONVERSION FACTOR 
AND THE AUXILIARY ITEM 
INDEPENDENTLY 

In some cases the conversion factor and the mean of the 
auxiliary item can be estimated from independent samples. For 
example, the peak load-to-boardings conversion factor might 
be estimated in the fall and used with an estimate of peak load 
in the spring to estimate spring mean boardings. In this case, 
the conversion factor is estimated from a set of n joint observa­
tions of X and Y with unit sampling cost c, yielding the 
conversion factor estimate R = y,/i,. as before. An independent 
sample of n' observations of X with unit sampling cost c' yields 
the estimate ofi,, •. The product of R andx,,. is an estimate off, 
whose squared COV, following Cochran (6), is approximately 

2 ;., v/ + v,.2- 2r""v.,v'I v 2 
v \Y) = -, + _..!._ 

n - 1.7 n' 
(31) 

If a conversion factor has already been estimated by using a 
sample size n, it follows that the required size of the sample of 
the auxiliary item is 

(32) 

provided that the denominator is greater than zero. If the 
denominator is negative, the desired accuracy level is unattain­
able regardless of n', because there is too much uncertainty in 
the estimate of the conversion factor. 

A program for route level monitoring in which conversion 
factors are estimated during a baseline phase and are assumed 
to remain stable during a monitoring phase of a few years is 
recommended in the TDCDM. During the monitoring phase, X 
is estimated periodically (e.g., every quarter) and is multiplied 
by the conversion factor to yield periodic estimates of Y. 

Cost minimization should be considered in the selection of 
the sample sizes for the auxiliary item that will be taken during 
the monitoring phase and for the one conversion factor sample 
.!_aken in the baseline phase. If f = number of times a sample of 
X will be measured during the monitoring phase, then the 
problem of minimizing the total data collection cost of both 
baseline and monitoring phases is determined from the follow­
ing problem: 
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minimize en + fc' n' (33) 

subject to 

2 2 2 2 2 Y>' + vx - r ... 1vxvy v d 
~-----=---=- + .:&-.. < -

n - 1.7 n' - z2 (34) 

n ~ 10 (35) 

This problem is of the same form as Equations 25-27. 
Therefore, the solutions for n (Equation 29) and n' (Equation 
30) can be used by making the following substitutions: 

C2 =fc' 

(36) 

(37) 

(38) 

(39) 

This approach can be applied to the previously used exam­
ple, in which the problem is to estimate mean boardings Y for a 
particular RID/TD from mean peak load X. The desired toler­
ance for mean boardings is ±20 percent at the 95 percent 
confidence level. If the monitoring phase lasts 3 years and a 
quarterly estimate of Y is needed, then f = 12. Using the same 
values for v.,, vy, and r.,Y as before, n and n' are estimated as 
follows: 

C2 = 60 min 

k1 = 0.03 

v,.2 = k2 = 0.25 

(z/d)2 = 100 

n = 17 

n' = 31 

Using Equation 33, the cost for both the baseline and 
monitoring phases is estimated to be 39.5 checker-hr. In com­
parison, direct estimation of boardings, using ride checks, dur­
ing the monitoring phase requires (as before) 25 observations 
for each estimate of Y, for a cost of 150 checker-hr. This cost is 
in addition to any cost of sampling in the baseline year. 

If the same example is repeated with a ±30 percent tolerance 
at the 90 percent confidence level required, the results are 

n 
n' 

Total cost 

Using Conversion 
Factors 
(checker-hr) 

10 
9 

14 

Direct 
Estimation 
(checker-hr) 

8 

48 

In both cases, conversion factors offer a 70 to 75 percent 
reduction in data collection costs over direct estimation. 
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USING AN AUXILIARY ITEM TO INFER 
SEVERAL ITEMS 

In the transit context, a single auxiliary item may be used with 
different conversion factors to yield estimates of several items, 
such as route boardings, segment boardings, peak load, and 
revenue. For each estimated item there is a different set of 
values for vJI, rxy• and d. What, then, is ·the least-cost sampling 
plan? 

Expanding the optimization framework is straightforward if 
all of the conversion factors are estimated using the same data 
collection technique, typically ride checks. H the auxiliary item 
is known without sampling, the estimated variable that de­
mands the largest paired sample size will control the sample 
size. 

When the auxiliary item as well as several conversion factors 
must be estimated by sampling, the general solucion is cumber­
some to apply because several optimality conditions must be 
checked. One simple approach is to do a one-dimensional 
search over n, the number of ride checks. The lower bound for 
n is 10. H the conversion factor sample is independent of the 
auxiliary item sample, each inferred item will supply another 
lower bound for n, which is the integer greater than the value at 
which the denominator of Equation 32 equals 0. Then, for a 
given value of n, the required n' for each inferred item is given 
by Equation 30 or 32. The highest n' governs. With the given n 
and corresponding governing n', the cost can easily be calcu­
lated. Searching over n will reveal a value that minimizes 
overall cost. Although not proven, the cost as a function of n is 
almost certain to be convex. This implies that a local optimum 
will be a global optimum. 

CONCLUSIONS 

In this paper, formulas for sample size and accuracy determina­
tion are presented with the use of conversion factors in three 
situations: (a) when the mean X of the auxiliary 
item is known; (b) when it is estimated using the conver­
sion factor sample plus a supplemental sample of X; and (c) 
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when X is estimated independently of the conversion factor 
sample. In the latter cases, the trade-off between the costs of 
the conversion factor sample and of the sample for X is ex­
plored, and cost-minimizing formulas are presented. Examples 
are presented that demonstrate how using conversion factors 
can dramatically reduce data collection costs in comparison 
with direct estimation. 
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