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Designing Optimal Transportation 
Networks: An Expert Systems Approach 

ROBERT SHIENG-l TUNG AND JERRY B. SCHNEIDER 

A knowledge-based expert system (KDES) approacb can be 
used to solve the single-mode (automobile), fixed-demand, dis· 
crete, multlcrlterla, equlUbrlum transportation network de­
sign problem. Previous work on this problem revealed that 
mathematlcnl programming methods perform well on small 
networks wlllt only one objective. A solution technique is 
needed that can be used on large networks that have multiple, 
conflicting criteria with different weight-. of relative Impor­
tance. The KllES approach discussed In this paper represents 
a new way to solve network design problems. The development 
of an expert system Involves three major tasks: knowledge 
acquisition, knowledge representation, and testing. For knowl­
edge acquisition, a computer-alded network des.lgn and evalua­
tion model (UFO ) was developed to explore the deslgTI space. 
Tills study Investigated the problem or designing an optlmaJ 
transportation network by adding and deleting capacity incre­
ments to or from any link In the network. Three weighted 
criteria were adopted for use in evaluating each design alterna­
tive: cost, average volume-to-capacity ratio, and average travel 
time. The best nondomlnated design Is determined by a multl­
crlterla evaluation technique called concordance analysis. T.he 
research started wlth a design exerdse conducted by a group of 
students who were asked to find a series of link capacity 
changes that wouJd produce a series of successively better 
designs. The results were carefully examined and used to gen­
erate the facts and ru les that make up the knowledge base of 
the network design expert system (EXPERT-UFOS). It has two 
phases of analysis. The macrolevel analysis recommends a total 
budget using trade-off functions for each pair of criteria. The 
mkroleveJ antt lysls provides advice about how to add or delete 
capacity on each link to avoid paradoxes. Test results show 
that EXPERT-UFOS found, with fewer design cycles, designs 
that were better than any of the 76 student designs Included In 
Uie test. EXPERT-UFOS may have enough simplicity to deal 
with large networks. The results of this study, In which a 
laboratory-based knowledge acquisition method was employed 
uccessfully to generate a functional knowledge base, suggest 

that the KllES approach Is an approprlute method for dealing 
with the computational complexities of network design 
problems. 

Contemporary transportation network designers face two major 
problems. The first is computational complexity that has re­
stricted the classical solution method (mathematical program­
ming) to small problems. The second is that traditional single­
objective formulations are not well suited to dealing with 
practical multicriteria problems. A new design process that 
provides a capability for dealing with a multicriteria evaluation 
and decision-making process and is computationally feasible 
for large problems is needed. 
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The JimilaLinns of ttaditional mathemntical progranuning 
models for dealing with network design problems have been 
examined thoroughly by many researchers (1-3). Basically, 
any transportation network design problem encounters a com­
binatorial explosion because of the discrete nature of the at­
tributes of the transportation network. When searching for a 
unique optimwn solution, intensive calculation is required. 
Experience has shown that these models can handle only small­
to medium-sized networks witl1 currently available computers 
within a reasonable time. This computing requirement has 
limited the applicability of such techniques to small problems 
only. 

Approximation methods (i.e., machine-based heuristics or 
heuristic search and man-machine interaction or interactive 
problem solving) have shown more promise for dealing with 
large problems. Heuristic search techniques use empiricaUy 
derived rules (e.g., add, delete, interchange) to systematically 
search for near-optimal solutions. In contrast, interactive 
methods use man's intuitive capabilities and knowledge to 
guide a search of the combinatorial solution space. Both heuris­
tic search and interactive methods can reduce the size of the 
search space to some extent. Heuristic search techniques, 
which usually use a single global heuristic, can often consis­
tently find optimal solutions, but the computational require­
ments are still prohibitive for dealing with large problems (2). 
Interactive methods use more heuristics and domain knowledge 
and usually can find acceptable solutions within reasonable 
compuling times, but lhese t<:chniques lack consistency be­
cause Lhey depend heavily on human knowledge, experience, 
and perceptual skills. 

The need for a multicriteria evaluation component has added 
to the complexity of the transportation network design task. 
Only a few researchers have used optimization methods to 
tackle the multicriteria network design problem (4). The results 
indicate that such methods are generally not applicable to large 
problems because of computational difflcullies. The resuhs 
suggest again that approximate methods are likely to be most 
appropriate for large real-world problems. 

Approximate methods that include a multicriteria evaluation 
component are still under development. The purpose of an 
approximate method is to derive robust search heuristics that 
can find high-quality solutions within a reduced solution space. 
Both heuristic and interactive methods have been developed to 
achieve this objective. The diCfcrence between them is the way 
in which the search strategy and knowledge (heuristics anrl 
facts) are generated and used. Heuristic methods often emulate 
optimization algorithms. They integrate a search strategy with 
available knowledge. Heuristics can consistently find solutions 
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that are locally optimal. However, they have no pattern recog­
nition capability and cannot recognize local constraints. Inter­
active methods have separate simulation and control functions. 
The control function tends to rely more on human guidance and 
such inputs can often produce an efficient and effective search. 
Such search behavior is·usually called "intelligent search" and 
relies on man's powerful pattern recognition capabilities and 
domain expertise. However, this pattern recognition capability 
and domain expertise cannot be stored and coded in an explicit 
form, which makes system performance user dependent. Thus 
this method lacks consistency, and its reliability cannot be 
guaranteed. 

There are no conflicts between heuristic search and interac­
tive methods. An ideal system would use them both. Heuristics 
can be created by using interactive methods and then coded as 
machine-based algorithms. However, not every idea discovered 
using interactive techniques can be algorithmically defined as 
required by the traditional heuristic search method. More im­
portant, traditional heuristic search methods cannot flexibly 
handle various rules, facts, and associated domain knowledge 
while maintaining a user-friendly dialog with the designer. This 
is why the knowledge-based expert systems approach can be 
used to tackle this problem. 

The knowledge-based expert systems (KBESs) approach has 
evolved from research in artificial intelligence. In contrast with 
traditional algorithmic methods, the expert systems approach 
has separated the control strategy from the knowledge base. It 
can flexibly handle various heuristics (or rules) and facts. Also, 
it is interactive and user friendly. The expert systems approach 
has been found to be useful in many fields (5). However, most 
applications so far are diagnosis oriented. Only a few applica­
tions are in the transportation area (6). No previous research 
has attempted to deal with the multicriteria equilibrium net­
work design problem using this new approach. It is hypoth­
esized that this new method will be useful for dealing with 
design problems on large networks. 

KNOWLEDGE ACQUISITION 

To develop an expert system, normally either a human expert or 
some written expertise must exist and be available for use. 
Unfortunately, no human experts exist who can handle the 
complexity of transportation network design problems. Written 
expertise does not exist either. However, not all expertise must 
come from long experience. Design expertise can also be 
generated by using a simulation model. In dealing with com­
binatorial design problems, simulation may be the only effec­
tive way to generate such expertise. To test this fundamental 
hypothesis, a computer-aided design and evaluation model 
(UFOS) was developed. Using the UFOS model, a design 
exercise was conducted with a group of students. The results of 
this design exercise provided much valuable design knowledge 
that was then used to develop the knowledge base for a network 
design expert system. 

Network Simulation Model 

UFOS is designed to allow a user to formulate and test a wide 
variety of ideas about the design of a transportation network. It 
has the capability of performing both fixed-demand analysis 
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FIGURE 1 Modules of UFOS. 
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and elastic-demand analysis. In this study, only fixed-demand 
analyses have been used. UFOS contains four individual mod­
ules (Figure 1). 

These four modules are linked to provide a user-friendly 
interactive design and evaluation environment. UFOS has 
built-in link attribute settings. Five roadway link types are 
available for conducting network design activities: 

Capacity Speed Cost Factor 
Type Lanes (vehicles/hr) (mph) ($/lane-mi) 

1 1 250 35 1 
2 2 800 35 1 
3 3 1,300 35 1 
4 2 2,000 60 10 
5 3 3,000 60 10 

Types 1-3 represent arterial standards. Types 4 and 5 represent 
freeway standards. These different link types have different 
construction costs, and these costs represent one of the perfor­
mance criteria used in the evaluation process. 

Design Exercise 

The network for the design exercise is defined by nine nodes 
that represent nine large zones in the eastern part of the Central 
Puget Sound region (Figure 2). These nodes are connected by 
24 roadway links. This network forms a linear urban shape that 
usually generates high congestion in its central area. An eve­
ning peak origin-destination pattern with a total trip volume of 
19,500 vehicles per hour represents the travel demand 
requirement. 

This network was used as the basis for a design problem that 
was assigned to eight graduate students enrolled in a course on 
transportation and land use models. The purpose of this ex­
ercise was to search for a network design that would produce 
an efficient loading pattern with minimal congestion, minimal 
average trip times, and the lowest possible cost. Using the 
given travel demand pattern, each student was asked to search 
for an efficient roadway network design by increasing or de­
creasing the capacity and speed on various links. The travel 
behavior of each trip maker was assumed to follow the user­
optimum principle. As a result, trip makers change their routes 
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FIGURE 2 Puget Sound test network. 

in response to various capacity allocations that produce dif­
ferent congestion patterns. The performance of each design is 
evaluated using three weighted criteria: total cost, average 
vehicle-to-capacity (V/C) ratio, and average trip time (ATT). 

Theoretically, given a travel demand (origin-destination) pat­
tern and a fixed number of link types, the possible lower-bound 
and upper-bound values of each design criterion can be calcu­
lated by simply setting all links at minimum capacity ('!ype 1) 
or at maximum capacity (Type 5). The bounding values for this 
problem are given in Table 1. 

TABLE 1 BOUNDING VALUES 

Design 999 Design 888 
(maximum (minimum 

Criterion capacity) capacity) Objective 

Cost($) 8,915.5 (UB) 356.62 (LB) Less is better 
V/C 0.56 (LB) 3.99 (UB) Less is better 
ATT (min) 29.76 (LB) 4795.04 (UB) Less is better 

NoTE: LB = lower bound and UB = upper bound. 

The best design for this problem is one of the 524 = 
59,604,644,775,380,625 possible alternatives in this design 
space. Each will have criterion values that lie somewhere 
between the bounds. Note that the design with a minimum 
capacity roadway network has the best (lowest) cost but the 
worst V /C and ATI. On the other hand, the design with all links 
set at maximum capacity has the best performance in V /C and 
ATT but is worst (highest) in cost. In reality, there are many 
conflicts like this among performance criteria. A preferred 
design is a design that can satisfy most of the objectives well, 
that is, a best-compromise design. 

The exercise started with a network in which all !irLlcs had 
been set at minimum capacity. Each student was asked to 
generate at least six designs to explore the combinatorial design 
space. The students were asked to record their link-specific 
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design decisions and design performance expectations. It was 
hoped that they would detect some cause-and-effect relation­
ships between link-type changes and performance criteria that 
might become rules that could be used to buiid the knowiedge 
base for an expert system. 

The evaluation was a two-stage process. In the first stage, the 
students evaluated their design against their own design set and 
the two given bounding designs (Designs 888 and 999). In the 
second stage, the best designs from each student were aggre­
gated and comparatively evaluated. A single weighting scheme 
was used throughout: Cost, 0.5; V/C, 0.25; and ATI, 0.25 

Design Strategy Analysis 

Given such a partially structured problem, the designer wants 
to devise a strategy that will produce a sequence of suc­
cessively better designs. Such strategies can be developed from 
the knowledge and experience of the designer (expert). Usu­
ally, the construction of a design strategy involves using both 
"deep knowledge" or "hard information" (e.g., an explicit 
model with assumptions, relationships, and constraints) and 
"surface knowledge" and "soft information" (e.g., intuitive 
constructs). Moreover, the designer's ability to implement a 
certain strategy depends on the ability to interpret the hard 
information in the results and effectively integrate it with the 
soft information. Usually, for engineering-oriented design 
problems, a clear understanding of the deep knowledge aspects 
of the problem is necessary. Thus a domain expert can usually 
perform better than a novice designer. However, given the right 
computer-based design aids, many novice designers can reach 
high performance levels rather quickly. This design exercise 
allows the student to explore the performance of certain design 
concepts quickly and easily. By observing their progress, it is 
possible to learn how effective various design strategies are in 
dealing with a partially structured problem. 

Two basic types of design strategies were used: incremental 
exploration and logic based. Each strategy has its strengths and 
weaknesses. Two criteria can be used to evaluate these strat­
egies in terms of their effectiveness and efficiency in producing 
high-performance designs. First, how consistent was the strat­
egy in finding successively better designs? Second, how effi­
cient was the search strategy used to find an optimum design? 
The following two examples are used to illustrate these points. 

• Incremental exploration design strategies: Most students 
used an incremental exploration strategy. They simply added 
some capacity to the links with the highest V /C ratios during 
each design session. They kept on driving congestion levels 
down while keeping costs as low as possible. This type of 
strategy was conservative but did produce better designs easily. 
The experiences of Student A are typical of this type of design 
behavior. Table 2 gives his experience for the six designs. The 
total capacity trends clearly show the incremental changes he 
made. Only a few of the most congested links were upgraded to 
the next level of capacity during each design cycle. Table 3 
gives the overall design performance of the six designs and 
Table 4 give~ the ranking results produced by a serit:s of 
multicriteria evaluations. As the ranking results show, this 
student found a series of designs that were, except for the last, 
successively better. In addition, his best design (005) was the 
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TABLE 2 DESIGN EXPERIENCE OF STUDENT A 

+---L~g~ --+--~:~se~~ -+~:~a~~~-F:~a~~~ -+~:~0~~~-+~:~0~~~-+~:~o~~~-+~:~ae~~+ l ___________ ________ ! _________ __ _____ 1 ________ 1 ________ 1 ________ 1 _____ __ 1 
1 250 6.2 800 2.4 800 3.8 

2 250 2.4 250 6.7 800 2.4 

3 250 6.8 800 4.1 800 4.0 

4 25() 1. 6 250 6.6 1300 1. 2 

5 250 6.7 800 4.5 800 4.1 

6 250 2.9 250 4.1 250 4.3 

7 250 5.0 250 5.2 800 2.9 

8 250 7. 7 800 1.8 800 1. 5 

9 250 3.7 250 5.5 800 2.5 

10 250 3.7 800 6.9 800 2.5 

11 250 5.6 250 2.6 800 3 .1 

12 250 2.2 250 5.1 250 1. 8 

13 250 4.6 250 4.1 800 3.2 

14 250 0.0 250 2.0 250 0.0 

15 250 4.0 250 6.2 800 3.3 

16 250 1.1 250 1. 8 250 1. 8 

17 250 3.7 250 5.5 250 5 .1 

18 250 2.0 250 3.8 250 3 .1 

19 250 1. 4 250 2.7 250 4.5 

20 250 3.1 250 4.6 250 3.3 

21 250 5.1 250 6.3 800 2.7 

22 250 4. 7 250 4.7 250 5.6 

23 250 3.7 250 6.0 800 2.5 

24 250 6.9 800 4.3 800 4.4 

second best in the class. However, an incremental strategy may 
cause paradoxical resu.lts. As the data in Table 3 indicate, 
Design ()()1 has a higher capacity than the lower-bound design 
(888), but it also has higher V /C and ATT. Paradoxes can cause 
problems in design and must be avoided. 

• Logic-based design strategy: Some students chose to try to 
develop more sophisticated design strategies. They wished to 
use mathematical principles to tackle the problem. To do this, 
they needed to develop a deeper understanding of various 
aspects of the design problem such as the design-to-perfor­
mance and node-to-link relationships. For example, they knew 
that the low-cost designs would be preferred because the 

TABLE 3 DESIGN CRITERIA MEASURES OF 
DESIGNS OF S1UDENT A 

Design Cost($) V/C ATT (min) 

888 356.62 3.94 4795.04 
999 8,915.50 0.56 29.76 
002 565.31 4.48 4881.95 
002 804.51 3.06 1404.37 
003 1,141.18 2.13 659.69 
004 1,360.78 1.68 196.10 
005 1,584.31 1.37 85.87 
006 3,351.41 1.01 47.88 

NoTE: 888 and 999 are bounding designs. 

800 3.4 1300 1.9 1300 1.6 3000 0.7 

800 2.4 800 2.2 1300 1.7 2000 1.0 

800 3.5 1300 2.4 2000 1.8 3000 0.9 

800 1.6 800 1.6 800 1.8 800 1. 3 

800 3.8 1300 2.5 2000 2.1 3000 1.5 

800 0.4 800 0. 9 800 1. 5 800 1.8 

800 2.4 800 2.0 800 1.4 800 1.4 

800 1. 3 800 1. 2 800 1. 5 800 1.2 

800 2.5 800 2.5 1300 1.5 1300 1.5 

800 2.5 1300 1.5 1300 1.5 1300 1. 5 

800 3.0 1300 1.7 1300 1.7 3000 0.9 

800 0.4 800 0. 7 800 1.1 800 1.1 

800 2.8 1300 2.0 1300 1.7 2000 1.0 

800 0.0 800 0.0 250 0.0 250 0.0 

800 2.4 800 2. 2 1300 1.6 2000 1.1 

800 0.4 800 0.2 800 0.6 800 0.3 

800 2.2 800 1. 9 800 1. 4 800 0.9 

800 1.0 800 0.8 800 0.4 800 0.3 

800 1.1 800 1. 2 800 0.4 800 0.4 

800 1. 9 800 1.6 800 1. 3 800 1.0 

800 2.8 1300 1.8 1300 1.7 3000 0.9 

800 2.5 800 2. 2 1300 1.6 3000 1.0 

800 2.5 800 2.5 1300 1.5 1300 1.5 

800 4.4 1300 2.7 2000 1.8 3000 1.2 

TABLE 4 MULTICRITERIA EVALUATION 
RANKS OF DESIGNS OF STUDENT A 

Design 

Run 888 999 002 003 004 005 006 

1 2* 2* 1 
2 3* 3* 2 1 
3 4* 4* 3 2 1 
4 5* 5* 4 3 2 
5 6* 6* 5 3 2 4 

NoTE: 1 is best. * = not above average. 

weight of "cost" is greatest (0.5). They determined that a link 
should have the highest possible capacity if it was congested in 
Design 999, in which all links had the maximum capacity 
setting. Similarly, they knew a link should be given the lowest 
capacity setting if it had no loading even in Design 888, in 
which all links had the maximum capacity setting. They de­
vised efficient strategies for adding and deleting capacity. They 
knew that a network with an average V/C ratio of around 1.0 
could produce the best combination of values for the criteria. 
Thus they simply added capacity in rough proportion to the 
V/C ratios. However, even with this knowledge, they could not 
always predict the results correctly. Student Bused this type of 
design strategy. Table 5 gives his design results for the six 
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TABLE 5 DESIGN EXPERIENCE OF STUDENT B 

+---ci~k---1----000---+--061- -- + --552---+--553---+--554---+-- 555 --- + -- 555 · -+ 

!--- -~~ ---- --~~~-~~~ - 1~~ ~- ~ ~ ~ -1~~~ -~~~ - 1~~~-~~~-1~~~-~~~-1~~~-~~~-1~~~-~ ~~ 1 
1 250 6.2 2000 1.5 2000 1.3 2000 1.2 2000 1.2 2000 1.6 2000 1.4 

2 250 2.4 1300 1.4 1300 1.2 1300 1.1 1300 1.1 1300 1.7 2000 1.0 

3 250 6.8 1300 1.4 2000 1.2 2000 1.4 2000 1. 4 2000 1.8 2000 1.2 

4 250 1.6 800 1.3 800 2.0 800 1.7 800 1.7 1300 1.8 1300 0.9 

5 250 6.7 3000 1.5 3000 1.5 3000 1.4 3000 1.4 3000 2.1 3000 1.5 

6 

7 

8 

9 

10 

250 2.9 

250 5.0 

250 7.7 

250 3.7 

250 3.7 

800 1. 6 1300 1. 2 

1300 1. 5 1300 1. 3 

800 1. 0 250 2.1 

1300 1.5 1300 1.5 

1300 1.5 1300 1.5 

1300 1.4 1300 1.3 1300 1.5 1300 1.2 

800 1.8 800 1. 7 1300 1.4 1300 1.3 

250 1. 7 250 1. 6 800 1. 5 800 1. 3 

1300 1.5 2000 1.0 1300 1.5 2000 1.0 

1300 1.5 1300 1.5 1300 1. 5 2000 1. 0 

11 250 5.6 2000 1.3 2000 1.4 2000 1.4 2000 1.5 2000 1.7 2000 1.5 

12 250 2.2 250 0.2 250 1.4 250 1.4 250 1.5 250 1.1 250 1.1 

13 250 4.6 2000 1.0 2000 1.1 2000 1.1 2000 1.1 1300 1.7 1300 1.0 

14 250 0.0 250 0.0 250 0.0 250 0.8 250 0.9 250 0.0 250 0.0 

15 250 4.0 1300 1.4 2000 1.1 2000 1.4 3000 1.0 2000 1.6 2000 1 .~ 

16 

17 

18 

19 

20 

21 

22 

250 1.1 250 1. 4 250 1. 5 250 1. 4 250 1. 4 250 0.6 800 0.6 

250 3.7 800 1.1 250 1. 8 800 1.1 800 1. 2 800 1. 4 800 1.1 

250 2.0 250 0.3 250 0.7 250 1. 4 250 1. 5 250 0.4 250 0.2 

250 1.4 250 0.9 250 1. 7 250 1. 3 250 1. 3 250 0.4 250 0.0 

250 3.1 800 1. 5 800 1. 0 250 1. 5 250 1. 6 1300 1. 3 800 1. 2 

250 5.1 2000 1.3 2000 1.4 3000 1.0 2000 1.5 1300 1.7 2000 1.3 

250 4.7 2000 1.4 2000 1.4 2000 1.3 2000 1.3 2000 1.6 2000 1.3 

23 250 3.7 1300 1.5 2000 1.0 1300 1.5 800 2.5 1300 1.5 1300 1.5 

24 250 6.9 3000 1.2 3000 1. 2 3000 1.2 3000 1.2 2000 1.8 2000 1.8 

i~~~~~~~~~~i~~::~~i~;~:~~:~i~i!~!~:~i~i~~~~:~i~~~~:::~i~~~:~~:~i~~~~~~:~i~!i 
d(lsigns. He made dramatic changes on the first design and only 
marginal changes on the rest of the designs. Table 6 gives the 
performing measures of these six designs, and Table 7 gives 

more difficult to predict the now pattem that will be produced 
by link capacity changes. Actually, a network designer can 
never precisely predict the flow pattern that will be computed 
by 1he equilibrium assigrunent algorithm, but it is ofccn possi­
ble 10 do so in general tcnns. 

· their multicriteria evaluation rankings. 
In general, the logic-based strategies produced good first 

designs but did not always produce high-performance designs 
quickly. As the data in Table 6 indicate, Student B finally 
reached his best design in the sixth design session and it was 
the best in the class. He had a good initial design (001), which 
was not very different from the best design. However, he did 
have problems making consistent progress (Table 7). The rea­
son for this is that when a design is close to the optimum it is 

TABLE 6 DESIGN CRITERIA MEASURES OF 
DESIGNS OF STUDENT B 

Design Cost($) V/C ATT (min) 

888 356.62 3.94 4795.04 
999 8,915.50 0.56 29.76 
001 2,112.38 1.20 56.57 
002 2,225.08 1.31 53.15 
003 2,345.43 1.36 55.43 
004 2,324.63 1.38 66.66 
005 1,873.64 1.25 61.73 
006 2,090.21 1.07 49.79 

NoTE: 888 and 999 are bounding designs. 

Ideally, a good design strategy should contain elements from 
bolh of these approaches. An incremental exploration strategy 
may be belter for large problems because it is too difficult to do 
a sophisticated analysis before the first design action is taken. 
However, as much logic as possible should be used to reduce 
the size of the search space and to avoid paradoxes that usually 
occur when an incremental exploration strategy is used. 

TABLE 7 MULTICRITERIA EVALUATION 
RANKS OF DESIGNS OF STUDENT 13 

Design 

Run 888 999 001 002 003 004 005 006 

1 2* 2* 
2 2* 2* 2 
3 3* 3* 2 3* 
4 4* 4* 2 3* 5* 
5 5* 5* " " ' 5* l ,. J .. 
6 6* 6"' 3 4 5* 7* 2 

NoTE: 1 = btsl. * = not above average. 
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The design strategies identified in the design exercise are valu­
able for building an expert system. First, the incremental ex­
ploration strategy indicates that an incremental simulation ap­
proach is an effective way to deal with large design problems. 
A series of small improvements may be the easiest way to 
approach a good design. Second, the logic-based design strat­
egy indicates that use of some deep knowledge can produce 
rapid progress toward the best design. This deep knowledge 
can be represented as facts and rules and used to construct the 
knowledge base for an expert system. 

Expert System Shell 

An expert system shell is a convenient tool for developing 
application-oriented expert systems. The PC-based expert sys­
tem shell M.1 (7) was used in this study to provide a user­
friendly interface and the capability to link with external func­
tions. The extensive number crunching of EXPERT-UFOS was 
handled by using C-based external functions. By using these 
external functions, it is possible to maintain the transparency of 
the knowledge base while having the computational efficiency 
of a C-program. The relationship between the knowledge base 
and external functions is shown in Figure 3. 

Facts and Rules in EXPERT-UFOS 

The knowledge base of EXPERT-UFOS consists of various 
facts and rules. Facts are link specific and are represented by 
object-attribute-value (0-A-V) triplets. Objects are the specific 
links of a network. Attributes describe aspects of the network-
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related deep knowledge and form the basis for making effective 
design designs. The term "value" specifies the particular na­
ture of an attribute for a given object. The attributes are further 
divided into static and dynamic categories. Attributes that are 
fixed during the entire design process are static attributes (e.g., 
type, criticality, and length). All other attributes are dynamic 
attributes (e.g., V/C, add-priority, or delete-priority). The dy­
namic attributes have to be recalculated during each consulta­
tion with EXPERT-UFOS. The full structure of the 0-A-V 
framework is given in Table 8. 

Rules are used to implement the heuristics for finding a 
series of successively better designs. There are four basic types 
of rules in EXPERT-UFOS: 

I. Control rules: These rules control the main flow of a 
consultation. For instance, the following rule is used to deter­
mine if a best nondominated solution has been found: 

if no_more_improvement(l) is true 
then best nondominated solution is true. - -
if evaluation _rank:(CYCLE _ N) = X 
and X > 1 
then no_more_improvement(CYCLE_N) is true. 

if CYCLE M + 1 = CYCLE N 
then nextcycle to CYCLE_M = CYCLE_N. 

if nextcycle to CYCLE_M = CYCLE_N 
and no_more_improvement(CYCLE_N) is true 
then no_more_improvement(CYCLE_M) is true. 

The following rule controls the process of equilibrium 
assignment: 

+-·------··----+ +---------------+ 

Base < - - > 
Knowledge l External 

Functions 
(C-Codes) 

< ---- > 
+··-··· ·---------1 I External Files 

(Rules + Facts) +--·---- -- -- --+ 
+-------------·- +--·- - ·--·- -·+ 
FIGURE 3 Relation between knowledge base and external functions. 

TABLE 8 LINK 0-A-V 1RIPLET REPRESENTATION 

t------ ----------- -------------------- ----------- -----------Object Attribute Possible Values 

Link # +-Type 

Static 
- Cr i tica lity 

- Length 

- Capaci ty 

(production , 
attraction, 
prod~ttion-attraction, 
s1ngle- product1on, 
single-attraction, 
buffer) 

volume of free-flow 
loadings 

mil es 

(250, 
800 
1306, 
2000 or 
3000 ve hi~ l es per 

hour ! 

+- VIC real number as deri ved 

Dynamicl ~ Add-prior i ty integer rank number 
Delete - pr i ority integer ra nk number 
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if initial_ equilibrium_ assignment is true 
and do_shortest_path(ITER_N) is true 
and do_loading_assign(ITER_N) is true 
and do_fibonacci_search(ITER_N) is true 
and do_ convergence_ check(ITER _ N) is true 
then equilibrium_ assignment(ITER _ N) is true. 

2. External rules: These rules activate the external functions 
for doing extensive calculations. For example, the following 
rules check the convergence of the assignment process: 

if no of links = NARC 
and ITER N = ITER 
and extemal(eq_converg_check, [NARC, 

ITER]) = FLOW_ STD 
then eq_ convergence_ check(ITER _ N) = FLOW_ STD. 

if eq_ convergence_ check(ITER _ N) = FLOW_ STD 
and ITER N > 1 
and 1.0- FT.OW STD= X 
and convergence_ criterion = Y 
and X>Y 
then do_ convergence_ check(ITER _ N) is true. 

3. Macrorules: These rules are used to determine the design 
goal and budget limit. For example, the following rules are 
used to determine the design goal: 

if weight(cost) = X 
and X > 0.5 
then design _goal = decrease_ capacity. 

if weight(cost) = X 
and X <= 0.5 
then design _goal = increase_ capacity. 

The budget limit is determined by the following two mac­
rorules and an external rule: 

if design _goal = decrease_ capacity 
then search_ type = downward. 

if design _goal = increase_ capacity 
then search type = upward. 

if search_type =SEARCH 
and cost(CYCLE _ N) = COST 
and vc(CYCLE _ N) = VC 
and att(CYCLE_N) = ATT 
and cost_ weight = CW 
and vc _weight = VCW 
and att_ weight = ATTW 
and extemal(budget, [SEARCH,COST,VC,ATT, 

CW,VCW,ATTW]) =BUDGET 
then budget_check(CYCLE_N) =BUDGET. 

4. Microrules: These rules are used to determine which 
links should have more or less capacity and how much. Such 
decision making is based on several fact<;, such as rriority, 
higher-capacity, cost-factor, link-length, and criticality. For ex­
ample, the following rules determine whether capacity of a link 
should be increased to a higher level: 
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if design _goal = increase_ capacity 
and capacity_ check(LINK _ N) is true 
and budget_ check(LINK _ N) is true 
anu critical_check(LINK_N) is true 
then add_ action(LINK _ N) is true. 

To verify that capacity_check(LINK_N) is true, the follow­
ing two rules are used: 

if not(no _more_ capacity(LINK _ N)) 
then capacity_ check(LINK _ N) is true. 

if design _goal = increase_ capacity 
and capacity(LINK _ N) = CA 
and CA>= 3000 
then no_ more_ capacity(LINK _ N) is true. 

The following rule is used to verify that the budget_ 
check(LINK _ N) is true to ensure that the capacity im.Tease will 
not cause the budget limit to be exceeded: 

if link_ cost(LINK _ N) = X 
and budget(LINK _ N) = Y 
and X<= Y 
then budget_check(LINK_N) is true. 

The link cost is calculated by the following rule: 

if design _goal = increase_ capacity 
and capacity_ check(LINK _ N) 
and capacity(LINK _ N) = CA 
and higher_ capacity( CA) = HC 
and cost_factor(CA,HC) =CF 
and length(LINK_N) = LN 
and CF*LN=Z 
then link_ cost(LINK _ N) = Z. 

The higher-capacity and cost-factor data are provided by 
reference to the following facts: 

higher_ capacity(250) = 800. 
higher_ capacity(800) = 1300. 
higher_ capacity( 1300) = 2000. 
higher_ capacity(2000) = 3000. 

cost_f actor(250, 800) = 2.2. 
cost_factor(800, 1300) = 2.0. 
cost_factor(1300, 2000) = 14.8. 
cost_factor(2000, 3000) = 25.0 

TESTING AND CONCLUSIONS 

EXPERT-UFOS was tested by giving it the same design prob­
lem as was given to the students. The result was that EXPERT­
UFOS needed only four cycles to conclude the best nondomi­
nated design (003) siven in Table 9. Design 003 is sub tantially 
better than the three best student designs. The helter rank 
(Table 10) indicates that Design 003 is the best known non­
dominated design for the given weighting scheme. This 
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TABLE 9 CRITERIA MEASURES OF EXPERT­
UFOS DESIGN AND BEST STIJDENT DESIGNS 

Design Cost ($) V/C ATT (min) 

888 365.62 3.94 4795.04 
999 8,915.50 0.56 29.76 
003 1,525.76 1.33 126.07 
SOI 2,090.21 1.07 49.79 
S02 1,584.31 1.37 85.87 
S03 1,544.42 1.43 149.09 

Norn: SOI to S03 are the best student designs. 

TABLE 10 MULTICRITERIA EVALUATION RANKS OF THE 
DESIGN CONTEST 

Concordance Discordance 

Dominance Dominance Average Final 
Design Value Rank Value Rank Rank Rank 

888 0 2 0.97 4 3.0 3* 
999 0 2 0.97 4 3.0 3* 
003 1.5 1 -0.51 1 1.0 I 
SOI 0 2 -0.47 3 2.5 2 
S02 -0.5 3 -0.49 2 2.5 2* 
S03 -1.0 4 -0.47 3 3.5 4* 

NoTB: * = not above average. 

result indicates that EXPERT-UFOS did find a solution that is 
better than all of the 79 designs generated by the students. 
EXPERT-UFOS performed well in its first test. It needed only 
four cycles lo find its best design. Because an equilibrium 
assignment problem must be solved in each cycle, the fewer 
cycles needed, the greater the efficiency of the method. There 
can be no absolute measure of efficiency because different 
machines have different computational speeds. Because the 
equilibrium assignment algorilhm is a standard procedu.re for 
finding an optimal Oow pattern, the less execution lime needed 
to solve the assignment, the more efficient the method. 
EXPERT-UFOS quickly reduced the search space to a mini­
mum. Part of the success of EXPERT-UFOS is the result of its 
successful prevention of the design paradox. As the results 
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show, increasing cost does reduce values of V /C and ATT. As 
long as EXPERT-UFOS can avoid paradoxes, the system 
should be able to find a high-performance design quickly using 
a cyclic approach. 

Because good results were obtained in a few cycles, EXPERT­
UFOS is cost-effective. However, this does not mean that 
EXPERT-UFOS will always be superior to interactive methods. 
The design exercise discussed was conducted by novice de­
signers under loosely defined conditions. Trade-off functions 
were unknown, and all of the students were doing this design 
task for the first time. Given the trade-off functions, an experi­
enced designer might produce a design the performance of 
which was the same as or even better than that of Design 003. 
However, this might be true only for a small network. It is 
unlikely that a human could deal effectively with a large 
network using only an intuitively guided approach. On the 
other hand, because EXPERT-UFOS can efficiently reduce the 
search space and effectively avoid paradoxes, it offers a reason­
able approach for dealing with large problems. Tests of this 
type are currently under way. 
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