
28 TRANSPORTATION RESEARCH RECORD 1145

Application of Expert Systems to
Left-Turn Signal Treatment

EDMOND CHIN-PING CHANG

Left-turn treatments are essential to signal capacity and opera­
tional safety at signalized Intersections. Left-turn warrants
and guidelines are sets of evaluatlon procedures designed to
maximize level of service, minimize approach delay, and re.­
duce left-turn-related accidents. Currently, three left-turn
phaslngs are used to allow vehicles to mnke left turns on a
green arrow or a circular green lndlcatlon: permissive, exclu­
sive, and exclusive/permissive. An experimental expert system
design for recommending alternative lt!l'l-lurn pha c selection
on microcomputer systems was investigated. The goal of this
study was to computerl7.e lert-turn phase selection by using
artificial Intelligence languages and knowledge engineering.
This tudy focuses on Investigating expert systems progrnm­
ming lL'>lng PROLOG and the INSIGHT 1 system In an IBM
PC/XT/AT microcomputer ell\•lronment. Three experimental
systems were developing uslng tbe PD l'ROLOG system, the
TURDO PROLOG system, and the INSIGHT 1 knowledge
engineering system. The background of the study, the artlficlal
intelUgence concept, the baste system de lgn, and the practical
experience gained are discussed. Potential advantages and dis·
advantages of developing expert systems using different artili­
dal intelligence languages and the knowledge engineering for
traffic engineering applications arc evfllunted. The resulL~ of
this limited study indicate that It Is feasible to combine artifi­
cial Intelligence and traffic engineering technologies for alter·
native traffic signal analysis.

This study was developed by the Texas Transportation Institute
to investigate the feasibility of applying artificial inLelligence
(Al) teclmology and expert systems design concepts 10 a con­
fined traffic engineering problem using an IBM PC[XT/AT
microcomputer. Prototype expert systems were experimented
with 10 analyze user input ; evaluate it using variou. paths of
reasoning; offer a conclusion; and, finally, suggest suirable lcft­
tum phase treatment. The guidelines applied in this study were
developed from a paper by Jonathan E. Upchurch (1).

Three prototype expert systems were developed wi1h Al
programming tools for expert systems using PROLOG and lhe
1NSIGHT I system in IBM PC/XT/AT-compalible microcom­
puter ys terns (2-4). Two slighlly different expert systems were
designed using AI languages; another system was built with a
knowledge engineering tool. These systems include the ones
developed in the Al programming languages PD PROLOG and
TURBO PROLOG as well as the lNSIGHT I production rule
language (5-1 J). All three expert ystems were completed and
observed to perform successfully; advanliigcs and disadvan­
tages were noted for each of the expert system programming
teclmiques.

Texas Transportation Institute, Texas A&M University System, Col­
lege Station, Tex. 77843.

PD PROLOG is a public-domain experimental PROLOG
system that follows very closely the structure and syntax of an
AI computer programming language as described by W. F.
Clocksin and C. S. Mellish (5). This A.D.A. PROLOG inter­
preter was developed for educational and public-domain usage
(8). TURBO PROLOG is a commercially available Al pro­
gramming language compiler developed and released in May
1986 by Borland Incorporated (9). It follows more closely the
function and syntax of the LISP AI programming language
than did the original PROLOG languages, such as the PD
PROLOG system. The major advantage of the TURBO PRO­
LOG system is its capability of compiling and generating
object codes as quickly as the TURBO PASCAL compiler. It
also has built-in editing and tracing functions, a knowledge
inquiry environment, knowledge data base management sys­
tems, and programming development environments.

INSIGHT 1, as mentioned previously, is a commercially
available knowledge engineering tool developed by Level Five
Research (JO, 11). It was used in this study to investigate the
feasibility of designing expert systems using knowledge engi­
neering tools in an IBM PC/XT/AT-based microcomputer en­
vironment. Jn general, AI progranuning can be implemented
through the LISP- or PROLOG-based language system with a
minimum of difficulty. Knowledge engineering tools like the
INSIGHT 1 system can allow noncomputer-oriented users and
knowledge engineers to prototype a specialized problem area
quickly. Knowledge engineering tools can assist users to de­
velop their own customized expert system applications and
define the logical reasoning structure in less time than it would
take any other computer-progranuning language or system.

BACKGROUND

Left-tum trea.Lments are essential to signal capacity and opera­
tional safely at an intersection. Left-tum guideline.s are sets of
procedures designed to maximize level of service, minimize
approach delay, and reduce left-turn-related accidents. Three
lefl-tum phasings are commonly used to allow vehicles to
make left turns on a green arrow or circular green indication:
permissive, exclusive, and exclusive/permissive left-Lum treat­
ments (1). Selecting proper left-tum phasings involves a series
of engineering decisions instead of an algorithmic process. The
experience and knowledge of a traffic engineer can greatly
improve final solutions. The design process begins with de­
s iibing iii~ iukrsecrion geometry, traffic movement , and
available signal control equipment. Next, traffic volume data
are investigated. When enough information has been collected,

Chang

the traffic engineer can propose alternatives. Then the traffic
engineer can modify or insert new production rules based on
his design experience.

This left-tum phase expert system follows the guidelines
recommended by Upchurch (1). Many prcidentified factors and
rules are required to determine the logical choices among
different design alternatives. The evaluation guidelines, as
shown in Figure 1, recommend different phasing selections by
considering left-tum volumes, opposing through volumes,
number of opposing lanes, cycle length, approach speed, sight
distance restrictions, and historical records of severe left-turn­
related accidents. This selection guideline represents the typi­
cal analysis process of (a) an algorithmic method, (b) knowl­
edge inference capabilities, and (c) the knowledge base of a
traffic engineer. The first evaluation determines the critical
volume cross-product calculation from the input. The forward­
chaining inference mechanism models the dependencies among
different decision-making activities in the human reasoning
process. The reasoning or inference process optimizes design
objectives by starting from known information. The third pro­
cess models the domain knowledge in IF-AND-THEN-ELSE
rules to resemble the human decision-making process. For
example, the existence of sight distance restrictions and severe
left-tum accidents can justify the provision of protected left­
tum signal treatments.

These decision rules and reasoning processes are particularly
useful for solving problems in instances that may not be cov­
ered by established guidelines. Problem-solving expert systems
based on established guidelines can provide users with reason­
ing knowledge similar to that of a human expert constantly

Yes

Yes

Input Traffic Volumes
Throuyh mo't'ements

Left turn movements

Calculate Criti cal
Volume Cr oss Produc t

Input 1 eft turn demand
left turn demand > 2 1

Input opposing lanes

No

Is sight distance
restr i cted ?

No

Can eii.c lu si ve pha se
correct accident ?

N~

Can exclusive phcHie
correct ace i dent ?

Yes

No

Is sight distance
restrtcted ?

No

Can exc 1 us lve ph dS«!!
correct accident ?

No

FIGURE 1 Recommended guidelines for selecting type of
left-turn phasing (1).

29

available for assistance in the specialized area (3, 4). The
expert system can generate solutions that resemble the tradi­
tional design and that may be used by other traffic engineers for
determining proper traffic control. Because only a few heuristic
decisions that might lead to the best solutions are selectively
analyzed each time, the system is quite efficient. Most traffic
engineering problems have characteristics similar to left-tum
phasing selection as described in this paper. Traffic engineering
expert systems are useful for assisting users to solve recurring
design problems, sharing common working experience for mu­
tual learning, and providing better design alternatives in the
future. By correctly constructing the knowledge-based expert
system, traffic engineers can further refine their mental deci­
sion-making process to reflect experience obtained from the
previous design process.

ARTIFICIAL INTELLIGENCE TECHNOLOGY

Artificial intelligence (AD technology, including knowledge­
based systems and expert systems, has promising applicability
to engineering problems (2-4). The relationships among Al,
knowledge-based expert systems (KBESs), and expert system
(ES) design are shown in Figure 2. Since World War II, scien­
tists have developed computerized techniques to simulate hu­
man behavior and decision making. Behavioral scientists, me­
chanical engineers, and computer scientists are all active in Al
research to produce programs that can solve problems that
humans solve well. It is anticipated that the AI study will
eventually lead to intelligent computerized applications in spe­
cialized areas. The research includes decision-making systems,
robotic devices, and various approaches to computerized
speech synthesizing. Today, the United States, Japan, Britain,
and other countries of the European Economic Community are
all implementing knowledge-based systems and expert sys­
tems. However, expert systems research in this country is
confined to only a few university research laboratories, mainly
those at Stanford, Carnegie-Mellon, and the Massachusetts
Institute of Technology.

Knowledge-Based Expert Systems

The knowledge-based expert system (KBES) is a collection of
AI techniques and analysis processes that enables a computer
to assist people in analyzing specialized problems. KBESs
were introduced to extend computer applications. A KBES

EXPERT SYSTEMS ARE KNOWLEDGE-BASED SYSTEMS

INTELLIGENT
ARTIFICIAL INTELLIGENCE . HEURISTIC

PROGRAMS APPLICATION

KNOWLEDGE-BASED SEPERATE
SYSTEMS . DOMAIN

KNOWLEDGE

EXPERT APPLY TO
SYSTEMS REAL-WORLD

PROBLEMS

FIGURE 2 Artificial intelligence, knowledge
system, and expert systems (3).

30

provides human expertise through both the knowledge engi­
neering language and the program-supporting environment (3).
The AJ/KBES application requires development of a gener­
alized knowledge base that permits traffic engineers to interact
with the following three components: the traffic characteristic
data, the theoretical or simulation results, and the specific
hypothesis for measuring the effects of traffic control system
measures. The structured guidelines for traffic engineering
problems are suitable for KBES applications because explicit
algorithms do not exist and the traditional programs can
provide only restricted problem-solving capability. A rule­
based expert system (RBES) is another knowledge-based
mechanism available for design applications. It should be noted
that a KBES may also be an RBES.

Expert Systems Design

Expert systems (ESs), as part of the AJ/KBES technology, are
computer programs that incorporate the knowledge and think­
ing processes of experts to provide operational people the
insights gained from years of experience. Expert systems differ
from conventional data-processing programs. The latter rely on
defining logical algorithms for a program. The major dif­
ferences among ESs are expert performance, symbolic reason­
ing, depth of knowledge representation, and self-knowledge for
logical operation. Traditional programs are developed by ex­
plicitly stating all of the applicable rules and execution se­
quences. Usually, algorithmic programming states only the
action parts of the rules. A KBES, on the other hand, uses the
same action rules as algorithmic programs but specifies inde­
pendently all of the heuristic parts of the selection sequence.
The rules can be programmed in symbolic relationships and
treated ns the knowledge base.

A practical ES includes three elements: the knowledge data
base, the support environment, and the end user. These are
usually specified by a knowledge engineer or Al programmer
who specializes in ES and a domain expert who understands
the specific problem or domain area of the designated program.
By conducting extensive interviews with the domain expert,
the knowledge engineer can summarize the expert's knowledge
into commonly known facts and rule-of-thumb tricks that the
expert has acquired from years of experience. Three modules
are generally programmed in ES: the explanation module, the
knowledge acquisition module, and the user interface module.
The explanation module provides the ES with the ability to
recommend problem-solving strategies based on the reasoning
process. The knowledge acquisition module coded in the
knowledge base is usually constructed in rigid format for logi­
cal processing. The knowledge interface module often uses a
set of problem-oriented questions presented through a friendly
interface. The interface module helps the user to monitor sys­
tem performance, supply information, request explanations,
and redirect possible recommendations.

The ES design combines the decision-making process and
rule-of-thumb guidelines for specific problem solving. This
design process combines the algorithmic method, knowledge
inference capabilities, and the knowledge base of the traffic
engineer. Sequential control is used to evaluate the critical
volume cross-product from input traffic. The forward-chaining
concept evaluates the dependencies among different activities

TRANSPORTATION RESEARCH RECORD 1145

in the human reasoning process. This reasoning proce s opti­
mizes objectives by starting from known infonna1ion. In the
decision-making process, the domain knowledge is written
with IF-THEN-ELSE rules to resemble the human decision­
making process. For example, the existence of sight distance
restrictions and severe left-tum accidents may justify the use of
a protected left-tum signal treatment, which might also be
recommended by an experienced traffic engineer. Expert sys­
tems have been applied in many disciplines. However, not all
areas are suitable for expert system formulation (6).

Other Representation Frameworks

Representing knowledge in an AI program means choosing a
set of conventions and structures for describing the objects,
relations, and processes (4). First, a conceptual framework is
chosen to represent the problem, either symbolically or numer­
ically. Then conventions within given computer languages are
chosen for implementing the design. The former is difficult and
important; the latter is less difficult and of less importance
because good programmers can find ways of working with
almost any concept within any kind of programming language.
Representing knowledge in procedures is one alternative that
domain experts in every scientific field have tried hard to avoid.
The definition of production rules offers opporlunity for mak­
ing a knowledge base easier to understand and modify.

Artificial Intelligence Languages

A knowledge engineer converts an expert's knowledge into
rules that a computer understands. Most programming is done
in high-level languages, such as BASIC, COBOL, FORTRAN,
PASCAL, and C. AI languages are useful in designing an ES.
They include (a) high-level AI conventional languages, (b)
knowledge engineering development tools, and (c) portability
among different operating systems. Figure 3 shows Al lan­
guage development (2). AI researchers have been developing
LISP machines that can run the .knowledge systems more
efficiently than does conventional hardware using a standard
operating system. If portability is the primary concern, the
researchers will choose to translate their codes into conven­
tional languages that can be run on conventional operational
systems. On the other hand, if more sophisticated ESs are
needed, the tools may be coded for LISP- or PROLOG-based
machines.

Currently, several AI languages are available for building
expert systems. Specifically, an ES may be implemented as part
of the KBES using a general-purpose programming language,
general-purpose representation language, or domain-indepen­
dent expert system framework. These high-level Al languages
contain some special features, such as developing reasoning
strategies. AI languages contain powerful abstract mechanisms
that make the programming of human reasoning logic flexible
and easy. Currently, KBESs built using LISP and PROLOG are
popular among researchers. ES development tools or knowl­
edge engineering tools can comp.ilc these English-like rules
into an efficic111 m~<: ·ne cod for developing production expert
systems.

The AT programming language normally used is LISP (LISt
Processin~). LISP is preferred by AI engineers in the United

Chang 31

FORTRAN EXPERT

LISP KEE

PROLOG M.1 H1gh-L"'81
Al Languages

~~~-~-~.:: ........ ~.~.·ron--me•n•t----------'~ 
. PROLOG 

FIGURE 3 Development of artificial intelllgence languages 
(3). 

States whereas a similar language, PROLOG (PROgramming 
in LOGic), is preferred in Europe and Japan. PROLOG con­
tains structures suitable for programs that manipulate logical 
expression, whereas LISP contains operators that facilitate the 
creation of programs that manipulate lists. These structures are 
useful for developing symbolic computing programs for nu­
merical programming. LISP has been used for AI programming 
and ES design for nearly two decades (3, 4). It is a symbolic 
manipulation language with structures based on the number of 
constructs or statements. LISP was created by John McCarthy 
in 1958. Of all the major programming languages still in use, 
only FORTRAN is older. LISP is highly recursive, and both 
data and programs can be represented as lists. The lists can be 
nested like a Chinese "puzzle box." LISP is a "function 
application" language that uses a set of simple functions, such 
as (Plus 2 2). PROLOG, in contrast, was initially developed as 
a symbolic programming language in 1972 by A. Colmerauer 
and P. Roussel at the University of Marseilles (5, 8, 9). This 
programming language implements a simplified predicate cal­
culus as a true logical language. PROLOG is a "declarative 
query" AI language that uses simple relations among fact, rule, 
and query. 

Neither LISP nor PROLOG is an algorithm or a procedure to 
be executed in fixed sequence, but both program languages can 
represent the human inference process. In general, AI lan­
guages are more flexible and difficult to use in prototype expert 
system development. Knowledge engineering tools can help an 
engineer design an ES. 

DESIGN PROCESS 

Evaluation and design procedures are needed to develop a 
practical expert system application. The basic design process 
used to implement this left-tum phase selection ES is shown in 
Figure 4. The design process implemented includes six dif­
ferent steps: extracting basic information, defining the deter­
mining factors, defining the goals and objectives, determining 
the analysis constraints, developing the program, and finishing 
program documentation. 

EXTRACT BASIC INFORMATION 
FROM 1986 TRB PAPER 

UE SIGN UECISION TABLE 

SET UP EVALUATION GOALS 
ANO SUB-liUALS 

SELECT EVALUATION CONSTRAINTS, 
FACTS, AND RULES 

COMPLETE 
PROGRAM 

CUMPL£TE UUC!Jo!ENT 

FIGURE 4 Basic design process. 

Basic Design Process 

Extracting Basic Information 

DEVELOP 
PRUUUCT ION RULE LANGUAGE 

PROGRAM 

The first step is to describe the characteristics of the problem. 
The description was first extracted from the design procedure 
recommended by Upchurch (1). This information contains the 
analytical format for optimizing the selection of left-tum signal 
treatments. Basically, it can be classified into main goals, 
subgoals, facts, rules, and constraints. This basic functional 
relationship is used in the later analysis. The functional rela­
tionship of this particular ES application can be illustrated as 
follows: 



32 

• Study objective: Provide computerized left-tum phase se­
lection process. 

• Main goal: Recommend left-tum treatments 
1. Permissive left-tum phase, 
2. Exclusive lefHurn phase, and 
3. Exclusive/permissive left-tum phase. 

• Subgoal: Different variations of the main goals. 
• Fact: Part of the preselected necessary condition. 
• Rule: Set of prerequisite conditions to describe each of the 

subgoals as defined earlier. 
• Constraint: Each of the selected prerequisite conditions. 

Defining Determining Factors 

On the basis of the guidelines recommended for optimizing the 
left-tum signal treatment process, a decision table was ex­
tracted to study the relationships among all of the goals, sub­
goals, facts, rules, and constraints. As indicated in Figure l, 
there are six major constraints or user inputs needed in the 
decision-making process to determine proper left-turn signal 
treatments. The constraints, as defined, are the common traffic 
input information. These user inputs include amount of left­
turn demand, number of opposing through lanes, volume cross­
product of the conflicting left-tum and through movement 
pairs, opposing travel speed, sight distance restriction, and 
possibility of severe left-tum accidents. 

Defining Goals and Objectives 

From the evaluation procedure recommended in Upchurch's 
paper, the decision-making process was simplified into three 
main goals to illustrate this important study result of left-tum 
treatments. Because the major purpose of this ES is to comput­
erize left-tum phase selection, the study objective is to recom­
mend the phase sequence to be used on the basis of user input. 
As recommended in Upchurch's guidelines, the goals of this 
ES design are to recommend exclusive phase, permissive 
phase, or exclusive/permissive phase treatment as described 
earlier. To clarify the basic relationship among the outcomes of 
different data input, these main goals were further divided into 
16 different subgoals to accommodate various possible cases 
involved in the logical design. These conditions or subgoals 
were separately described as Conditions A through P, depend­
ing on their probabilities of occurrence. 

Defining Analysis Constraints 

The basic analysis constraints are the major factors that can be 
used to define and describe the goal and subgoal needed in the 
analysis. Design constraints, facts, and rules were then evalu­
ated according to decision table analysis. The constraints used 
in this ES include the following user-input variables: 

1. Amount of left-tum demand greater than or less than two 
per cycle, 

2. Number of opposing lanes equal to two or three, 
3. Volume of cross-product value, 
4. Opposing speed greater than or less than 45 mph, 
5. Sight distance with or without restriction, and 
6. Existence of severe left-tum accidents. 

TRANSPORTATION RESEARCH RECORD 1145 

As indicated, some of the questions require numerical data 
input and other questions need logical data input for expanding 
the constraints as well as the answer for the object-answer or 
the simple-facts type of query. Each subgoal or condition is 
described by the preselected conditions from the user input. 
Their probability of occurrence depends on the fulfillment of 
each preselected condition in the actual execution. It should 
also be noted that the execution sequence of the ES is not 
predefined but results from evaluating the user's input in­
formation. 

Developing the Program 

After the program was designed, the computer codes were 
developed using PD PROLOG, TURBO PROLOG, and the 
INSIGHT 1 production rule languages. It should be noted that 
these programming tools were selected to implement this ES in 
the microcomputer environment. The left-tum signal phase 
selection expert systems were programmed for each goal and 
subgoal by using the constraints, rules, and facts defined pre­
viously. For each expert system, a prototype program was 
developed, coded, and debugged, and the basic program code 
was completed. As indicated earlier, Al/ES programming is 
different from conventional programming because greater em­
phasis is placed on description of the solution itself than on the 
solution process. Because most Al/ES programming tools are 
equipped with a programming-support environment, program 
development can be completed efficiently. 

Finishing Program Documentation 

All of the necessary program documentation was implemented 
inside the ES program to provide information for each of the 
expert systems. It was also noted that the structured syntax and 
program code of the AI languages and knowledge engineering 
tools was useful for internal program documentation. 

Decision Table Analysis 

A decision table can assist in the evaluation of the major study 
factors and their corresponding relationships as the different 
goals, subgoals, and constraints apply in the design process. 
Table 1 is a simplified decision table to illustrate how an action 
is represented in the evaluation. In this case, if one of the 
conditions is not satisfied, no action will be recommended. As 

TABLE 1 EXAMPLE OF A 
SIMPLE DECISION TABLE 

CONDITIONS CHOICE 
(TRUE OR FALSE) 

LEFT TURN OEMANO 
> 2 PER CYCLE TRUE ELSE 

ARE THERE T\10 
OPPOS !HG LANES 1 TRUE ELSE 

IS VOLll4E CROSS 
PRODUCT > 100, 000 TRUE ELSE 

ACT I OHS 

1. SUGGEST USING 
E'.l:CL!.!S!'!E ~H.A.S£ ~ 

2. CHECK OTHER 
INPIJT VAR!A8LE x 



Chang 33 

TABLE 2 DECISION TABLE DESIGN 

LEFT TURN SIGNAL PERM I SS I VE 
TREATMENTS PHASE 

CONDITIONS A 0 P 

LEFT TURN DEMAND 

o DEMAND > 2 x x 

o DEMAND <= 2 x 

OPPOS ING THROUGH LANES 

o OPPOSING LANES = 2 x 

o OPPOSING LANES = 3 x 

VOLUME CROSS PRODUC T 

0 > 144 ,000 

0 <= 144,000 x 

0 > 100,000 

0 <= 100,000 x 

OPPOSING SPEED 

0 > 45 

0 <= 45 x x 

SIGHT DISTANCE 

o W/ RES TR JCT ION 

o NO RES TR ! CT ION x x 

SEVERE LEFT ACCIDENT 

o COULD BE CORRECTED 
BY EXCLUSIVE PHASE 

o COULD NOT BE CORRECTED x x x 
BY EXCLUS! VE PHASE 

indicated, satisfying only one condition in Table 1 may indicate 
that other input data are needed in the decision process. 

Table 2 is the detailed decision table used in this prototype 
expert system. The vertical column of the decision table lists all 
of the major decision factors and their constraints. In this 
particular example, there are six major determining factors. 
These factors include left-tum demand > 2 or < 1, opposing 
lanes = 2 or= 3, volume cross-product > 144,000 or S 144,000 
or> 100,000 or S 100,000, opposing speed> 45 or S 45 mph, 
sight distance with restriction or no restriction, and the pos­
sibility of correcting severe left-tum accidents by exclusive 
phase. 

In the decision table, the first horizontal row lists all of the 
main goals (i.e., permissive phase, exclusive phase, and exclu­
sive/permissive phase). The second horizontal row lists all of 
the possible subgoals ranging from Conditions A through P. In 
each column, X represents the requirements for fulfilling a 
certain decision condition. For example, in Condition A under 
the selection of the permissive phase, there are two Xs, one 
representing left-tum demand S 2 and the other the severe left­
turn accidents that cannot be corrected by using exclusive left­
turn phasing. The existence of these two conditions causes the 
permitted left-tum phase treatment to be recommended. 

This basic decision table structure can also be transformed 
into the pseudocode shown in Figure 5. Two different mecha­
nisms, using either flowcharts or decision tables, are used to 
illustrate both decision analysis by domain experts and expert 
systems programming by knowledge engineers. A program 
flowchart can help the domain expert trace a path in the pro­
gram and the knowledge engineer or programmer develop 

EXCLUSIVE E/P 
PHASE PHASE 

c D E G H 1 J K L M B F 

x x x x x x x x x x x 

x 

x x x x x x x 

x x x x 

x x x x 

x x x 

x 

x x x 

x x x 

x x x x x x x 

x x x 

x x x x 

x x x x 

x 

the Al program. On the other hand, the detailed decision table 
can also be used to identify the requirements for each condition 
and the desired goals from the available information. By using 
results from the decision table, an efficient pseudocode for later 

l. Define dec1slon rules, 
2. In put 4 Mter1a l NEMA tratf1c movement s: 2, 5, 6, J. 
3. Weturn the maxlmLm amony the volume cross produet s of 2 • 1 and 5 • 6. 
4. Input lefl turn demand s and 5iljhl distance rt!stn c tion. 
5. ( rr (Jett turn demand (:: 2) then 

("Can exclusive µhase correct accidents.!" and 
EchO printouts ano 
(If can then output "Exclusive phase - suyye sted".) or 
(If ca nnot then output "Perm1ssive phdse - suygested",))) or 

( [I se Input oppos i ny I ane and 

/ 

(If (the mu1murn product <= 144000 ; oppos1ny lane= 2) then 
(If (opposing ldne = J, maximum product > 100000) then 

(Output "Exclusive phase - suyyested".) or 
(Else Input opposing speed and 

(If (oµposiny sµeed > 45) then 
(Output "Exclusive phi!Se - sugyested"'.) or 

(E l se "ls sight distt1nce restricted?'" and 
(If signt distance is restn c. tea then 

(Echo µrintouts dnd 
Output "Exclusive phase - suyyested".) or 

(Else "Can exclusive phase correct accidents'/" and 
Echo printouts and 

( Ir can then 
(Output "Exclusive phase - suygested ... ) or 

(Else 
(Output "Permissive pnase -suyyested".) 

)))))))))). 

(Else input opµos1ny speed and 
( If (opposing speed > 4S) then 

(Output "Exclusive µnHe - suyyested".) or 
(£1se "Is si<Jhl distance restncted.!" and 

(If Slyht distance restricted then 
[cno printouts and 

(Output "Exclusive phdse - suggested",) or 
(Else "Can exclu sive phase correct accidents?" and 

Echo printouts and 
(If can then 

(Output "Exclusive phase - suggested".) or 
(Else 

(Outµut "Exclus1ve/Permiss1Ye phase - s.uyyested" , ) 
))))))). 

FIGURES Program pseudocode. 



34 

programming can be developed. In summary, the basic advan­
tages of using the decision table include definition of all con­
straints individually for each goal and subgoal, presentation of 
all information clearly and systematically, and provision of 
more efficient program structure. 

Program Structure 

As indicated in Figure 4, this logical structure was imple­
mented in three expert systems. They were programmed with 
the PD PROLOG and TURBO PROLOG computer languages 
and the INSIGHT I knowledge engineering tool (8-11 ). 

PD PROLOG Program 

A PD PROLOG program is defined with the IF-THEN-OR­
AND-ELSE rule (8). There are two major advantages to this 
programming language. First, it uses the OR function that can 
greatly reduce redundant rules in programming. Second, it is 
quite similar to the pseudocode, as illustrat<.>.d, for internal 
program docwnentation. These advantages make PD PROLOG 
programs easier to understand. However, this programming 
approach also has two major disadvantages: (a) the program is 
hard to trace for program execution and (b) it cannot trace 
backward to provide backward-chaining analysis for evaluating 
a specific subgoal in this ES design. 

TURBO PROLOG Program 

A TURBO PROLOG program consists of four basic program­
ming blocks that include definitions of the domains, predicates, 
goals, and clauses (9). The domain and predicate blocks iden­
tify all of the variables, types, and functions . The goal block 
declares the desired destinations or recommendations of 
searching. The clause block properly defines all of the facts, 
rules, functions, and procedures. The major advantages of 
TURBO PROLOG are that it is easy to understand, easy to 
debug, suitable for modular programming, able to generate 
execution files, linkable with other language programs, and 
equipped with editing and tracing functions. The major draw­
back to TURBO PROLOG is its incapability of using the OR 
function in the production rule. This drawback means duplicate 
production rules are needed to define specific conditions for 
each similar alternative in the expert systems design. 

INSIGHT 1 Production Rule Language 

INSIGHT I programs contain two basic parts (10, 11). The 
first declares the goals and subgoals; the second defines all of 
the rules and facts. In this study, the first part of the INSIGHT I 
program describes the goals and subgoals of the left-tum signal 
treatments, such as different left-tum treatments and Condi­
tions A through P. The second part of the INSIGHT I program 
summarizes the interrelationships of the prerequisite rules for 
fulfilling the conditions in the evaluation process. 

There are two ways to program an INSIGHT I rule with 
knowledge engineering tools. The first is to separate the pro­
gramming into two separate but coordinated moduies. One 
module deals with the definition of the goals and subgoals. The 
other module declares the individual rules, facts, and functions 

TRANSPORTATION RESEARCH RECORD 1145 

for each definable case in the decision-making process. In this 
approach, the user can search for each individual goal or 
subgoal as a separate entity. The second approach mixes the 
goals with the facts and rules. That is, the main goals or 
subgoals are defined again as separate facts and rules to be 
included in the decision evaluation process. In either case, the 
user is required to supply only the necessary information re­
lated to the query; the expert system will search for certain 
main goals and decide which alternative is most suitable ac­
cording to the user's choice for generating the optimum solu­
tion. The user may prefer the second approach that mixes the 
goals and rules. However, from the programmer's point of 
view, the first approach of separating the goals and rules is 
much easier to use to develop and debug the INSIGHT I 
program codes. 

CONCLUSIONS AND RECOMMENDATIONS 

This study investigates the feasibility of applying AI technol­
ogy to the development of a prototype expert system in trans­
portation engineering for microcomputer application. The basic 
procedure for generalized expert systems design generated 
from established guidelines has been summarized. Three 
slightly different expert systems were developed using the PD 
PROLOG and TURBO PROLOG languages and the INSIGHT 
I knowledge engineering tool. Table 3 gives a comparison of 
the advantages and disadvantages of the three prototype expert 
systems. In this table is summarized some of the design experi­
ence gained from programming this simplified traffic engineer­
ing analysis for application in the IBM PC/XT/AT microcom­
puter environment. This investigation is focused on knowledge 
acquisition, knowledge representation, system programming, 
and future applications. However, it is believed that this pro­
totype expert system still requires some improvements before 
any practical applications can be made. 

Conclusions 

The following conclusions were reached in the course of de­
signing the prototype system to optimize left-tum signal 
analysis: 

1. Expert systems are appropriate for preidentified problem 
solving, 

2. Al languages and knowledge-based engineering tools 
have advantages and disadvantages, and 

3. The ES programming approach may be tailored for prac­
tical applications. 

It was concluded that knowledge engineering tools, such as 
INSIGHT 1, do indeed have some advantages over conven­
tional AI languages. The major advantages are their easy-to­
read-and-write programs, the user-friendly menus supported by 
the programming environment, and the clearly defined goals 
and subgoals. Built-in functions are available for explaining 
questions in the knowledge engineering programming environ­
ment. For program debugging, a trace report is provided to 
study program execution and the knowiedge inference process. 
The program-supported windows and functions are also useful 
for easy program development and operation. Most of ali, both 



Ch<lng 35 

TABLE 3 COMPARISONS OF TIJRBO PROLOG, PD PROLOG, 
AND INSIGHT 1 

TURSO PROLOG 

DECLARATION CJ' YES 
VAR 1 ABLES, (DOMAINS) 
OBJECTS. 

DECLARATION CJ' YES 
FUNCT 10115 ( PREO I CATES) 

OR RE LAT 10115. 

DECLARE THE YES 
SEARCHING ROUTE (GOAL) 

SET UP HULES, DEFINE INSIDE 
FACTS, 6 FUNCTIONS. CLAUSES BLOCK 

READAB 1 L lT Y VERY EASY 

PRO GRAHM 1 NG 
O!FF I CUL TY EASY 

CAN GENERATE 
.OBJ FILE YES 
.EXE F !LE 

IHTERPRETEH NOOE YES 

TRACE FUNCT 10~ YES 

STRUCTURED PROGRAM YES 

USE CJ' PARENTHESE NO 

USE CJ' OR FUNCTION NO 

CAN LINK WITH OTHER YES 
COMPUTER PROGRAM 

ADD EXPLANAT !ON BY PHINT CO~ANO 
FOR EACH GOALS 6 NEED TO OIF !NE 

SUBGOALS FORMAT 

DEBUGGING OlfF ICULTY VERY EASY 

SELf PROVIDE MENU, NO 
WINDOW, 6 FUNCTION NEED DEF !NED BY 

KEYS PROGRAMMER 

DO MATH OPEHAT !ON YES 

WORK FORWARD 6 HO 
BACKWAAD NEED TO l«JO!F Y 

THE PROGRAM 

BUILT-IN ED!T!OR YES 

the forward- and backward-chaining capabilities are available 
in the INSIGHT 1 system to (a) check whether goals or sub­
goals fit the input (forward chaining) and (b) check the input 
for the fulfillment of specific goals or subgoals in the analysis 
(backward chaining). 

Recommendations 

It is recommended that future expansions and improvements be 
made to develop large-scale expert systems for practical traffic 
management and engineering applications. Four points were 
ignored in this prototype expert systems design. These were the 
abilities to 

1. Provide input data checking in the query process, 
2. Return to previous steps to make changes during the 

search process, 
3. Abandon the current searching process without losing 

input data, and 
4. Change the data base at any time. 

At present, AI researchers are trying to develop large-scale 
expert systems for production usage. They have devoted a lot 
of effort to making the expert systems design more flexible and 

PO PROLOG 11151GKT l 

NO NO 

NO NO 

NO YES 
(GOALS 6 SUBGOALS) 

DEFINE INSIDE USE RULE FUNCTION 
THE PROGRAM TO DO THE JOB 

EASY VERY EASY 

EASY VERY EASY 

NO NO 

YES YES 

NO YES. (GENERATE 
TRACE RE PC RT) 

YES YES 

YES NO 

YES NO 

NO NO 

BY PR 1 NT COMMAND BY EXPAND FUNCTIO~ 
NEED TO O!F !NE VERY HANDY TO USE 

FORMAT 

NOT EASY EASY 

NO YES 
NEED DEFINED BY 

PROGRAMMER 

YES NO 

NO YES 
NEED TO l«JO!F Y 

THE PROGRAM 

NO YES 

understandable for general applications. The stylized condi­
tion-action knowledge representation provides many advan­
tages because of its simplicity and restricted syntax in the 
natural language interface mechanism. Similarly, explanations 
and reasoning are also simplified because the convenient back­
ward-chaining structure dynamically links the knowledge rules 
for logical reasoning from both directions. 

Because expert systems represent a relatively new technol­
ogy, there are two challenges that face most Al/ES applications 
today. One is how to define and represent knowledge for 
intelligent application by computers. The other is to develop 
heller ways to use expert knowledge for intelligent problem 
solving. Although new knowledge representations in Al/ES 
designs have not been fully developed, Al experts are still 
experimenting with various knowledge representations in dif­
ferent discipline areas. Specialists in many fields are encounter­
ing difficulty in encoding field expert knowledge. Many refine­
ments to the design process are still needed to satisfy demands 
for expert problem solving. These efforts include the modifica­
tion of production rules for future reasoning in a detailed and 
ill-structured domain environment. 

An expert system is best suited to applications in which the 
subject is highly detailed but tightly defined, such as practical 
traffic engineering applications. In the Al/ES design, the 



36 

requirements of each goal or subgoal may be displayed to allow 
the user to understand the decision-making process. Because 
both forward- and backward-chaining capabilities are pro­
vided, users can refine their expertise by evaluating in both 
directions to search for a specified goal or subgoal. The Al/ES 
approach has a dual function. On the one hand, it provides an 
approach to computerizing decision analysis based on expert 
knowledge. On the other hand, Al/ES development presents a 
new opportunity for domain experts in many fields to review 
their expertise systcmali.cally through Al techniques. Therefore 
the development of specialized problem-solving tools can also 
contribute to refinement of the reasoning logic of particular 
applications. 

A recommended Al/ES approach is shown in Figure 6. As 
indicated, the user's decision-making process can be us~ to 
construct the basic decision table. Then sets of knowledge 
engineering tools can be used to refine the logical reasoning 
from the knowledge representation and acquisition process 
during the construction of the production expert system. If 
more user-oriented applications are needed in the future, the 
expert system can later be translated into programs using AI 
languages for Jase execution. ln this way, the domain expert and 
user may cooperate more quickly to develop productive expert 
systems for their specialized applications. 

DECISION 
TABLE 

USER 

PRODUCTION 
EXPERT 
SYSTEM 

FIGURE 6 Recommended AI/ES 
programming approach. 

ACKNOWLEDGMENTS 

The author appreciates the research support of the Texas De­
partment of Highways and Public Transportation in coopera-

TRANSPORTATION RESEARCH RECORD 1145 

tion with the Federal Highway Administration, U.S. Depart­
ment of Transportation, and t.11e Texas Transportation fastitute. 
In addition, the constructive comments and suggestions 
provided by the TRB reviewer were helpful during the comple­
tion of this paper. 

REFERENCES 

1. J.E. Upchurch. Guidelines for Selecting Type of Left Turn Phas­
ing. Presented at 65th Annual Meeting of the Transportation 
Research Board, Washington, D.C., Jan. 1986. 

2. P.H. Winston. Artificial Intelligence, 2nd ed. Addison-Wesley, 
Inc., Reading, Mass., 1984. 

3. P. Harmon and D. King. Expert Systems: Artificial Intelligence in 
Business. John Wiley and Sons, Inc., New York, 1985. 

4. B. G. Buchanan and E. H. Shorllifo. Rule-Based Expert Systems: 
The MYCIN Experiments of the Stanford Heuristic Programming 
Project. Addison-Wesley, Inc., Reading, Mass., 1985. 

5. W. F. Clocksin and C. S. Mellish. Programming in PROLOG, 2nd 
ed. Springer-Verlag, New York, 1984. 

6. C. T. Hendrickson, D. R. Rehak, and S. J. Fenves. Expert Systems 
in Transportation Systems Engineering. Submitted to Transporta­
tion Research, 1986. 

7. C. Zozaya-Gorostiza and C. T. Hendrickson. An Expert System 
for Traffic Signal Setting Assistance. Submitted to Journal of 
Transportation Engineering, ASCE, 1986. 

8. PD PROLO~ser's Manual. PROLOG documentation for the 
educational and public-domain system Robert Morein and Auto­
mata Design Associates, Dresher, Pa., 1986. 

9. TURBO PROLOG-The Natural Language of Artificial Intel­
ligence-Owner's Manual. Borland International, Inc., Scotts Val­
ley, Calif., May 1986. 

10. INS/GI-IT 1 Reference Manual. Level Five Research, Inc., Indi­
alantic, Fla., 1986. 

11. INSIGHT 2+ Reference Manual. Level Five Research, Inc., Indi­
alantic, Fla., 1986. 

The products mentioned in this paper are trademarks of several com­
panies. IBM Personal Computer (PC) and PC DOS are products of the 
IBM Corporation. MS and MS DOS are registered trademarks of the 
Microsoft Corporation. PD PROLOG is a trademark of the Robert 
Morein and Automata Design Associates. TURBO PROWG is a 
trademark of Borland International, Incorporated. INSIGHT I is a 
trademark of Level Five Research, Incorporated. 




