28

TRANSPORTATION RESEARCH RECORD 1145

Application of Expert Systems to
Left-Turn Signal Treatment

EpmonND CHIN-PING CHANG

Left-turn treatments are essential to signal capacity and opera-
tional safety at signalized Intersections. Left-turn warrants
and guidelines are sets of evaluation procedures designed to
maximize level of service, minimize approach delay, and re-
duce left-turn—related accidents, Currently, three left-turn
phasings are used to allow vehicles to make left turns on a
green arrow or a circular green indication: permissive, exclu-
sive, and exclusive/permissive. An experimental expert system
design for recommending alternative lefl-turn phase selection
on microcomputer systems was investigated. The goal of this
study was to computerize left-turn phase selection by using
artificial intelligence languages and knowledge engineering.
This study focuses on investigating expert systems program-
ming using PROLOG and the INSIGHT 1 system in an IBM
PC/XT/AT microcomputer environment. Three experimental
systems were developing using the PD PROLOG system, the
TURBO PROLOG system, and the INSIGHT 1 knowledge
engineering system. The background of the study, the artificial
intelligence concept, the basic systems design, and the practical
experience gained are discussed. Potential advantages and dis-
advantages of developing expert systems using different artifi-
cial intelligence languages and the knowledge engineering for
traffic engineering applications are evaluated. The results of
this limited study indicate that it is feasible to combine artifi-
cial intelligence and traffic engineering technologies for alter-
native traffic signal analysis.

This study was developed by the Texas Transportation Institute
to investigate the feasibility of applying artificial intelligence
(AI) technology and expert systems design concepts 1o a con-
fined traffic engineering problem using an IBM PC/XT/AT
microcomputer. Prototype expert systems were experimented
with to analyze user input; evaluate it using various paths of
reasoning; offer a conclusion; and, finally, suggest suitable left-
turn phase treatment, The guidelines applied in this study were
developed from a paper by Jonathan E. Upchurch (7).

Three prototype expert systems were developed with Al
programming tools for expert systems using PROLOG and the
INSIGHT 1 system in IBM PC/XT/AT-compatible microcom-
puter systems (2—4). Two slightly different expert systems were
designed using Al languages; another system was built with a
knowledge engineering tool. These systems include the ones
developed in the Al programming languages PD PROLOG and
TURBO PROLOG as well as the INSIGHT 1 production rule
language (5-11). All three expert systems were completed and
observed to perform successfully; advantages and disadvan-
tages were noted for each of the expert system programming
techniques.

Texas Transportation Institute, Texas A&M University System, Col-
lege Station, Tex. 77843.

PD PROLOG is a public-domain experimental PROLOG
system that follows very closely the structure and syntax of an
Al computer programming language as described by W. E
Clocksin and C. S. Mellish (5). This A.D.A. PROLOG inter-
preter was developed for educational and public-domain usage
(8). TURBO PROLOG is a commercially available AI pro-
gramming language compiler developed and released in May
1986 by Borland Incorporated (9). It follows more closely the
function and syntax of the LISP AI programming language
than did the original PROLOG languages, such as the PD
PROLOG system. The major advantage of the TURBO PRO-
LOG system is its capability of compiling and generating
object codes as quickly as the TURBO PASCAL compiler. It
also has buili-in editing and tracing functions, a knowledge
inquiry environment, knowledge data base management sys-
tems, and programming development environments.

INSIGHT 1, as mentioned previously, is a commercially
available knowledge engineering tool developed by Level Five
Research (10, 11). It was used in this study to investigate the
feasibility of designing expert systems using knowledge engi-
necering tools in an IBM PC/XT/AT-based microcomputer en-
vironment. In general, Al programming can be implemented
through the LISP- or PROLOG-based language system with a
minimum of difficulty. Knowledge engineering tools like the
INSIGHT 1 system can allow noncomputer-oriented users and
knowledge engineers to prototype a specialized problem arca
quickly. Knowledge engineering tools can assist users to de-
velop their own customized expert system applications and
define the logical reasoning structure in less time than it would
take any other computer-programming language or system.

BACKGROUND

Left-turn treatments are essential to signal capacity and opera-
tional safety at an intersection. Left-turn guidelines are sets of
procedures designed to maximize level of service, minimize
approach delay, and reduce left-turn—related accidents. Three
left-turn phasings are commonly used to allow vehicles to
make left tums on a green arrow or circular green indication:
permissive, exclusive, and exclusive/permissive left-turn treat-
ments (). Selecting proper left-turn phasings involves a series
of engineering decisions instead of an algorithmic process. The
expericnce and knowledge of a traffic engincer can greatly
improve final solutions. The design process begins with de-
scribing the Iniersection geometry, traffic movements, and
available signal control equipment. Next, traffic volume data
are investigaied. When enough information has been collected,

Chang

the traffic engineer can propose alternatives. Then the traffic
engineer can modify or insert new production rules based on
his design experience.

This left-turn phase expert system follows the guidelines
recommended by Upchurch (7). Many preidentified factors and
rules are required to determine the logical choices among
different design alternatives. The evaluation guidelines, as
shown in Figure 1, recommend different phasing selections by
considering left-turn volumes, opposing through volumes,
number of opposing lanes, cycle length, approach speed, sight
distance restrictions, and historical records of severe left-turn—
related accidents. This selection guideline represents the typi-
cal analysis process of (a) an algorithmic method, (b) knowl-
edge inference capabilities, and (¢) the knowledge base of a
traffic engineer. The first evaluation determines the critical
volume cross-product calculation from the input. The forward-
chaining inference mechanism models the dependencies among
different decision-making activities in the human reasoning
process. The reasoning or inference process optimizes design
objectives by starting from known information. The third pro-
cess models the domain knowledge in IF-AND-THEN-ELSE
rules to resemble the human decision-making process. For
example, the existence of sight distance restrictions and severe
left-turn accidents can justify the provision of protected left-
turn signal treatments.

These decision rules and reasoning processes are particularly
useful for solving problems in instances that may not be cov-
ered by established guidelines. Problem-solving expert systems
based on established guidelines can provide users with reason-
ing knowledge similar to that of a human expert constantly

Input Traffic Volumes
Throuygh movements
Left turn movements

[

Calculate Critical
Volume Cross Product

Input left turn demand 3= Can exclusive phase ——B
left turn demand > 2 7 No. correct accident 7 | No

Yes

|

l Input opposing lanes I

2 lane 3 lane

rvcp > 144000 ;] I vep > IOUUOM
Yes

Yes No No
'" |
Consider Input opposing speed Input opposing speed Consider
E Yes |speed > 45 7 tpeed > 45 ? Yes E
No No
B‘— Is sight distance Is sight distance ——--B
Yes restricted ? restricted ? Yes
No No
E‘———u Can exclusive phase Can exclusive pnase
Yes correct accident ? correct accident ? | Yes

No Ko

FIGURE 1 Recommended guidelines for selecting type of
left-turn phasing (1).

29

available for assistance in the specialized area (3, 4). The
expert system can generate solutions that resemble the tradi-
tional design and that may be used by other traffic engineers for
determining proper traffic control. Because only a few heuristic
decisions that might lead to the best solutions are selectively
analyzed each time, the system is quite efficient. Most traffic
engineering problems have characteristics similar to left-tum
phasing selection as described in this paper. Traffic engineering
expert systems are useful for assisting users to solve recurring
design problems, sharing common working experience for mu-
tual learning, and providing better design alternatives in the
future. By correctly constructing the knowledge-based expert
system, traffic engineers can further refine their mental deci-
sion-making process to reflect experience obtained from the
previous design process.

ARTIFICIAL INTELLIGENCE TECHNOLOGY

Atrtificial intelligence (AI) technology, including knowledge-
based systems and expert systems, has promising applicability
to engineering problems (2—4). The relationships among Al,
knowledge-based expert systems (KBESs), and expert system
(ES) design are shown in Figure 2. Since World War II, scien-
tists have developed computerized techniques to simulate hu-
man behavior and decision making. Behavioral scientists, me-
chanical engineers, and computer scientists are all active in Al
research to produce programs that can solve problems that
humans solve well. It is anticipated that the Al study will
eventually lead to intelligent computerized applications in spe-
cialized areas. The research includes decision-making systems,
robotic devices, and various approaches to computerized
speech synthesizing. Today, the United States, Japan, Britain,
and other countries of the European Economic Community are
all implementing knowledge-based systems and expert sys-
tems. However, expert systems research in this country is
confined to only a few university research laboratories, mainly
those at Stanford, Camegie-Mellon, and the Massachusetts
Institute of Technology.

Knowledge-Based Expert Systems

The knowledge-based expert system (KBES) is a collection of
Al techniques and analysis processes that enables a computer
to assist people in analyzing specialized problems. KBESs
were introduced to extend computer applications. A KBES

EXPERT SYSTEMS ARE KNOWLEDGE-BASED SYSTEMS

INTELLIGENT

ARTIFICIAL INTELLIGENCE HEURISTIC

PROGRAMS APPLICATION
KNOWLEDGE-BASED SEPERATE
SYSTEMS & DOMAIN

KNOWLEDGE

EXPERT APPLY TO

SYSTEMS <% REAL-WORLD
PROBLEMS

FIGURE 2 Artificial intelligence, knowledge
system, and expert systems (3).

30

provides human expertise through both the knowledge engi-
neering language and the program-supporting environment (3).
The AI/KBES application requircs dcvclopment of a gener-
alized knowledge base that permits traffic engineers to interact
with the following three components: the traffic characteristic
data, the theoretical or simulation results, and the specific
hypothesis for measuring the effects of traffic control system
measures. The structured guidelines for traffic engineering
problems are suitable for KBES applications because explicit
algorithms do not exist and the traditional programs can
provide only restricted problem-solving capability. A rule-
based expert system (RBES) is another knowledge-based
mechanism available for design applications. It should be noted
that a KBES may also be an RBES.

Expert Systems Design

Expert systems (ESs), as part of the AI/KBES technology, are
computer programs that incorporate the knowledge and think-
ing proccsses of experts to provide operational people the
insights gained from years of experience. Expert systems differ
from conventional data-processing programs. The latter rely on
defining logical algorithms for a program. The major dif-
ferences among ESs are expert performance, symbolic reason-
ing, depth of knowledge representation, and self-knowledge for
logical operation. Traditional programs are developed by ex-
plicitly stating all of the applicable rules and execution se-
quences. Usually, algorithmic programming states only the
action parts of the rules. A KBES, on the other hand, uses the
same action rules as algorithmic programs but specifies inde-
pendently all of the heuristic parts of the selection sequence.
The rules can be programmed in symbolic relationships and
treated as the knowledge base.

A practical ES includes three elements: the knowledge data
base, the support environment, and the end user. These are
usually specified by a knowledge engineer or Al programmer
who specializes in ES and a domain expert who understands
the specific problem or domain area of the designated program.
By conducting extensive interviews with the domain expert,
the knowledge engineer can summarize the expert’s knowledge
into commonly known facts and rule-of-thumb tricks that the
expert has acquired from years of experience. Three modules
are generally programmed in ES: the explanation module, the
knowledge acquisition module, and the user interface module.
The explanation module provides the ES with the ability to
recommend problem-solving strategies based on the reasoning
process. The knowledge acquisition module coded in the
knowledge base is usually constructed in rigid format for logi-
cal processing. The knowledge interface module often uses a
set of problem-oriented questions presented through a friendly
interface. The interface module helps the user to monitor sys-
tem performance, supply information, request explanations,
and redirect possible recommendations.

The ES design combines the decision-making process and
rule-of-thumb guidelines for specific problem solving. This
design process combines the algorithmic method, knowledge
inference capabilitics, and the knowledge base of the traffic
engineer. Sequential control is used to evaluate the critical
volume cross-product from input traffic. The forward-chaining
concept evaluates the dependencies among different activities

TRANSPORTATION RESEARCH RECORD 1145

in the human reasoning process. This reasoning process opti-
mizes objectives by starting from known information. In the
decision-making process, the domain knowledge is written
with IF-THEN-ELSE rules to resemble the human decision-
making process. For example, the existence of sight distance
restrictions and severe left-turn accidents may justify the use of
a protected left-turn signal treatment, which might also be
recommended by an experienced traffic engineer. Expert sys-
tems have been applied in many disciplines. However, not all
areas are suitable for expert system formulation (6).

Other Representation Frameworks

Representing knowledge in an Al program means choosing a
set of conventions and structures for describing the objects,
relations, and processes (4). First, a conceptual framework is
chosen to represent the problem, either symbolically or numer-
ically. Then conventions within given computer languages are
chosen for implementing the design. The former is difficult and
important; the latter is less difficult and of less importance
because good programmers can find ways of working with
almost any concept within any kind of programming language.
Representing knowledge in procedures is one alternative that
domain experts in every scientific field have tried hard to avoid.
The definition of production rules offers opportunity for mak-
ing a knowledge base easier to understand and modify.

Artificial Intelligence Languages

A knowledge engineer converts an expert’s knowledge into
rules that a computer understands. Most programming is done
in high-level languages, such as BASIC, COBOL, FORTRAN,
PASCAL, and C. Al languages are useful in designing an ES.
They include (a) high-level AI conventional languages, (b)
knowledge engineering development tools, and (c) portability
among different operating systems. Figure 3 shows Al lan-
guage development (2). Al researchers have been developing
LISP machines that can run the knowledge systems more
efficiently than does conventional hardware using a standard
operating system. If portability is the primary concern, the
researchers will choose to translate their codes into conven-
tional languages that can be run on conventional operational
systems. On the other hand, if more sophisticated ESs are
needed, the tools may be coded for LISP- or PROLOG-based
machines.

Currently, several Al languages are available for building
expert systems. Specifically, an ES may be implemented as part
of the KBES using a general-purpose programming language,
general-purpose representation language, or domain-indepen-
dent expert system framework. These high-level Al languages
contain some special features, such as developing reasoning
sirategies. Al languages contain powerful abstract mechanisms
that make the programming of human reasoning logic flexible
and easy. Currently, KBESs built using LISP and PROLOG are
popular among researchers. ES development tools or knowl-
edge engineering tools can compile these English-like rules
into an efficient machine code for developing production expert
systems.

The Al programming language normally used is LISP (LISt
Processing). LISP is preferred by Al engineers in the United

Chang

Hohiowl AP

31

Conventional Languages
FORTRAN EXPERT
LISP KEE
PROLOG M.1
m;ul;?:s Environment Tool

FIGURE 3 Development of artificial intelligence languages

3)-

States whereas a similar language, PROLOG (PROgramming
in LOGic), is preferred in Europe and Japan. PROLOG con-
tains structures suitable for programs that manipulate logical
expression, whereas LISP contains operators that facilitate the
creation of programs that manipulate lists. These structures are
useful for developing symbolic computing programs for nu-
merical programming. LISP has been used for Al programming
and ES design for nearly two decades (3, 4). It is a symbolic
manipulation language with structures based on the number of
constructs or statements. LISP was created by John McCarthy
in 1958. Of all the major programming languages still in use,
only FORTRAN is older. LISP is highly recursive, and both
data and programs can be represented as lists. The lists can be
nested like a Chinese “puzzle box.” LISP is a “function
application” language that uses a set of simple functions, such
as (Plus 2 2). PROLOG, in contrast, was initially developed as
a symbolic programming language in 1972 by A. Colmerauer
and P. Roussel at the University of Marseilles (5, 8, 9). This
programming language implements a simplified predicate cal-
culus as a true logical language. PROLOG is a ‘‘declarative
query” Al language that uses simple relations among fact, rule,
and query.

Neither LISP nor PROLOG is an algorithm or a procedure to
be executed in fixed sequence, but both program languages can
represent the human inference process. In general, Al lan-
guages are more flexible and difficult to use in prototype expert
system development, Knowledge engineering tools can help an
engineer design an ES.

DESIGN PROCESS

Evaluation and design procedures are needed to develop a
practical expert system application. The basic design process
used to implement this left-turn phase selection ES is shown in
Figure 4. The design process implemented includes six dif-
ferent steps: extracting basic information, defining the deter-
mining factors, defining the goals and objectives, determining
the analysis constraints, developing the program, and finishing
program documentation.

EXTRACT BASIC INFORMATION
FROM 1986 TRB PAPER

[Aﬁksxuu DECISLON TABLE]

SET UP EVALUATION GOALS
AND SUB-GUALS

SELECT EVALUATIUN CONSTRAINTS,
FACTS, AND RULES

|

DEVELOP DEVELOP DEVELOP
P PRULOG TURBO PROLOG PRUODUCTION RULE LANGUAGE
PROGRAM PRUGRAM PROGRAM

DEBUG DEBUG DEBUG

PROGRAM PRUGRAM PROGRAM

COMPLETE COMPLETE COMPLETE
PROGRAM PROGRAM PROGRAM

| CUMPLETE DUCUMENT I

FIGURE 4 Basic design process.

Basic Design Process

Extracting Basic Information

The first step is to describe the characteristics of the problem.
The description was first extracted from the design procedure
recommended by Upchurch (). This information contains the
analytical format for optimizing the selection of left-turn signal
treatments. Basically, it can be classified into main goals,
subgoals, facts, rules, and constraints. This basic functional
relationship is used in the later analysis. The functional rela-
tionship of this particular ES application can be illustrated as
follows:

32

o Study objective: Provide computerized left-turn phase se-
lection process.
e Main goal: Recommend left-turn treatments
1. Permissive left-turn phase,
2. Exclusive left-turn phase, and
3. Exclusive/permissive left-turn phase.
e Subgoal: Different variations of the main goals.
o Fact: Part of the preselected necessary condition.
e Rule: Set of prerequisite conditions to describe each of the
subgoals as defined earlier.
® Constraint: Each of the selected prerequisite conditions.

Defining Determining Factors

On the basis of the guidelines recommended for optimizing the
left-turn signal treatment process, a decision table was ex-
tracted to study the relationships among all of the goals, sub-
goals, facts, rules, and constraints. As indicated in Figure 1,
there are six major constraints or user inputs needed in the
decision-making process to determine proper left-turn signal
treatments. The constraints, as defined, are the common traffic
input information. These user inputs include amount of left-
turn demand, number of opposing through lanes, volume cross-
product of the conflicting left-turn and through movement
pairs, opposing travel speed, sight distance restriction, and
possibility of severe left-turn accidents.

Defining Goals and Objectives

From the evaluation procedure recommended in Upchurch’s
paper, the decision-making process was simplified into three
main goals to illustrate this important study result of left-turn
treatments. Because the major purpose of this ES is to comput-
erize left-turn phase selection, the study objective is to recom-
mend the phase sequence to be used on the basis of user input.
As recommended in Upchurch’s guidelines, the goals of this
ES design are to recommend exclusive phase, permissive
phase, or exclusive/permissive phase treatment as described
earlier. To clarify the basic relationship among the outcomes of
different data input, these main goals were further divided into
16 different subgoals to accommodate various possible cases
involved in the logical design. These conditions or subgoals
were separately described as Conditions A through P, depend-
ing on their probabilities of occurrence.

Defining Analysis Constraints

The basic analysis constraints are the major factors that can be
used to define and describe the goal and subgoal needed in the
analysis. Design constraints, facts, and rules were then evalu-
ated according to decision table analysis. The constraints used
in this ES include the following user-input variables:

1. Amount of left-turn demand greater than or less than two
per cycle,

2. Number of opposing lanes equal to two or three,

3. Volume of cross-product value,

4. Opposing speed greater than or less than 45 mph,

5. Sight distance with or without restriction, and

6. Existence of severe left-turn accidents.

TRANSPORTATION RESEARCH RECORD 1145

As indicated, some of the questions require numerical data
input and other questions need logical data input for expanding
the constraints as well as the answer for the object-answer or
the simple-facts type of query. Each subgoal or condition is
described by the preselected conditions from the user input.
Their probability of occurrence depends on the fulfillment of
each preselected condition in the actual execution. It should
also be noted that the execution sequence of the ES is not
predefined but results from evaluating the user’s input in-
formation.

Developing the Program

After the program was designed, the computer codes were
developed using PD PROLOG, TURBO PROLOG, and the
INSIGHT 1 production rule languages. It should be noted that
these programming tools were selected to implement this ES in
the microcomputer environment. The left-turn signal phase
selection expert systems were programmed for each goal and
subgoal by using the constraints, rules, and facts defined pre-
viously. For each expert system, a prototype program was
developed, coded, and debugged, and the basic program code
was completed. As indicated earlier, AI/ES programming is
different from conventional programming because greater em-
phasis is placed on description of the solution itself than on the
solution process. Because most AI/ES programming tools are
equipped with a programming-support environment, program
development can be completed efficiently.

Finishing Program Documentation

All of the necessary program documentation was implemented
inside the ES program to provide information for each of the
expert systems. It was also noted that the structured syntax and
program code of the Al languages and knowledge engineering
tools was useful for internal program documentation.

Decision Table Analysis

A decision table can assist in the evaluation of the major study
factors and their corresponding relationships as the different
goals, subgoals, and constraints apply in the design process.
Table 1 is a simplified decision table to illustrate how an action
is represented in the evaluation. In this case, if one of the
conditions is not satisfied, no action will be recommended. As

TABLE 1 EXAMPLE OF A
SIMPLE DECISION TABLE

CONDITIONS CHOICE
(TRUE OR FALSE)

LEFT TURN DEMAND
> 2 PER CYCLE TRUE ELSE

ARE THERE TwWO
OPPOSING LANES ? TRUE ELSE

IS VOLUME CROSS
PRODUCT > 100,000 TRUE ELSE

ACTIONS

1. SUGBEST USING

EXCLUSTVE-ONACE

3

2, CHECK OTHER
[NPUT VARIABLE X

Chang

33

TABLE 2 DECISION TABLE DESIGN

LEFT TURN SIGNAL PERMISSIVE
TREATMENTS PHASE
CONDITIONS Alo|P
LEFT TURN DEMAND

o DEMAND > 2 XX

o DEMAND <= 2 X
OPPOSING THROUGH LANES

o OPPOSING LANES = 2 X

o OPPOSING LANES = 3 X
VOLUME CROSS PRODUCT

0 > 144,000

0 <= 144,000 X

0 > 100,000

o <= 100,000 X
OPPOSING SPEED

0 > 45

0 <= 45 XX
SIGHT DISTANCE

o W/ RESTRICTION

o NO RESTRICTION XX
SEVERE LEFT ACCIDENT

o COULD BE CORRECTED
BY EXCLUSIVE PHASE

o COULD NOT BE CORRECTED X| X[X
BY EXCLUSIVE PHASE

EXCLUSIVE E/P
PHASE PHASE
CIDIE|GIH|T|I|K|L[M|B F
X X)X XXX X)X X)X X
X
X| X[XPX]X|X X
XIX{x|x
X[X[X X
X)X
X
Xf x| X
X X X
X{PX| | X[X] X% X
X X X
X) 4 X X
X X XX
X

indicated, satisfying only one condition in Table 1 may indicate
that other input data are needed in the decision process.

Table 2 is the detailed decision table used in this prototype
expert system. The vertical column of the decision table lists all
of the major decision factors and their constraints. In this
particular example, there are six major determining faclors.
These factors include left-turn demand > 2 or < 1, opposing
lanes = 2 or = 3, volume cross-product > 144,000 or < 144,000
or > 100,000 or < 100,000, opposing speed > 45 or < 45 mph,
sight distance with restriction or no restriction, and the pos-
sibility of correcting severe left-turn accidents by exclusive
phase.

In the decision table, the first horizontal row lists all of the
main goals (i.e., permissive phase, exclusive phase, and exclu-
sive/permissive phase). The second horizontal row lists all of
the possible subgoals ranging from Conditions A through P. In
each column, X represents the requirements for fulfilling a
certain decision condition. For example, in Condition A under
the selection of the permissive phase, there are two Xs, one
representing left-tum demand < 2 and the other the severe left-
turn accidents that cannot be corrected by using exclusive left-
turn phasing. The existence of these two conditions causes the
permitted left-turn phase treatment to be recommended.

This basic decision table structure can also be transformed
into the pseudocode shown in Figure 5. Two different mecha-
nisms, using either flowcharts or decision tables, are used to
illustrate both decision analysis by domain experts and expert
systems programming by knowledge engineers. A program
flowchart can help the domain expert trace a path in the pro-
gram and the knowledge engineer or programmer develop

the Al program. On the other hand, the detailed decision table
can also be used to identify the requirements for each condition
and the desired goals from the available information. By using
results from the decision table, an efficient pseudocode for later

Define decision rules,
Input 4 darterial NEMA tratfic movements: 2, 5, 6, 1.
Return the maximum amony the volume cross products of 2 ¥ 1 and 5 * 6.
[nput left turn demands and sight distance restriction,
(If (lett turn demand <= 2) then
("Can exclusive phase correct accidents?" and
Echo printouts and
(1f can then output "Exclusive phase - suyyested".) or
(If cannot then output “Permissive phase - suygested".))) or

e wN—

(Else [aput opposiny lane and
(If (the maximum product <= 144000 ; opposiny lane = 2) then
(1f {apposing lane = 3, maximum product > 100000) then
(Qurput "Exclusive phase - sugyested".) or
(Else [nput opposing speed and
(1f (opposing speed > 45) then
(Output “"Exclusive phase - suggested“.) or
{Else "Is sight distance restricted?" and
(1f signt distance 1s restricted then
(Echo printouts dnd
Qutput “"Exclusive phase - suygested".) or
(Else "Can exclusive phase correct accidents?" and
Echo printouts and
(If can then
{Output “Exclusive phase - suygested".) or
{Else
(Output "Permissive phase -sugyested".)

NI

(Else input opposinyg speed and
(If (opposing speed > 45) then
{Output "Exclusive phase - sugygested",) or
(Else "[s sight distance restricted?" and
(1f sight distance restricted then
Echo printouts and
7 {Output "Exclusive phase - suggested”.) or
(Else "Can exclusive phase correct accidents?" and
Echo printouts and
(If can then
(Output "Exclusive phase - suggested".) or
(Else
(Outpur "Exclusive/Permissive phase - suyyested",)

NN

FIGURE 5 Program pseudocode.

34

programming can be developed. In summary, the basic advan-
tages of using the decision table include definition of all con-
straints individually for each goal and subgoal, presentation of
all information clearly and systematically, and provision of
more efficient program structure.

Program Structure

As indicated in Figure 4, this logical structure was imple-
mented in three expert systems. They were programmed with
the PD PROLOG and TURBO PROLOG computer languages
and the INSIGHT 1 knowledge engineering tool (8—11).

PD PROLOG Program

A PD PROLOG program is defined with the IF-THEN-OR-
AND-ELSE rule (8). There are two major advantages to this
programming language. First, it uses the OR function that can
greatly reduce redundant rules in programming. Second, it is
quite similar to the pseudocode, as illustrated, for intemal
program documentation. These advantages make PD PROLOG
programs easier to understand. However, this programming
approach also has two major disadvantages: (a) the program is
hard to trace for program execution and () it cannot trace
backward to provide backward-chaining analysis for evaluating
a specific subgoal in this ES design.

TURBO PROLOG Program

A TURBO PROLOG program consists of four basic program-
ming blocks that include definitions of the domains, predicates,
goals, and clauses (9). The domain and predicate blocks iden-
tify all of the variables, types, and functions. The goal block
declares the desired destinations or recommendations of
searching. The clause block properly defines all of the facts,
rules, functions, and procedures. The major advantages of
TURBO PROLOG are that it is easy to understand, easy to
debug, suitable for modular programming, able to genecrate
execution files, linkable with other language programs, and
equipped with editing and tracing functions. The major draw-
back to TURBO PROLOG is its incapability of using the OR
function in the production rule. This drawback means duplicate
production rules are needed to define specific conditions for
each similar altemative in the expert systems design.

INSIGHT 1 Production Rule Language

INSIGHT 1 programs contain two basic parts (10, 11). The
first declares the goals and subgoals; the second defines all of
the rules and facts. In this study, the first part of the INSIGHT 1
program describes the goals and subgoals of the left-turn signal
treatments, such as different left-turn treatments and Condi-
tions A through P. The second part of the INSIGHT 1 program
summarizes the interrelationships of the prerequisite rules for
fulfilling the conditions in the evaluation process.

There are two ways to program an INSIGHT 1 rule with
knowledge engineering tools. The first is to separate the pro-
gramming into two separate but coordinated modules. One
module deals with the definition of the goals and subgoals. The
other module declares the individual rules, facts, and functions

TRANSPORTATION RESEARCH RECORD 1145

for each definable case in the decision-making process. In this
approach, the user can search for each individual goal or
subgoal as a separate entity. The second approach mixes the
goals with the facts and rules. That is, the main goals or
subgoals are defined again as separate facts and rules to be
included in the decision evaluation process. In either case, the
user is required to supply only the necessary information re-
lated to the query; the expert system will search for certain
main goals and decide which alternative is most suitable ac-
cording to the user’s choice for generating the optimum solu-
tion. The user may prefer the second approach that mixes the
goals and rules. However, from the programmer’s point of
view, the first approach of separating the goals and rules is
much easier to use to develop and debug the INSIGHT 1
program codes.

CONCLUSIONS AND RECOMMENDATIONS

This study investigates the feasibility of applying Al technol-
ogy to the development of a prototype expert system in trans-
portation engineering for microcomputer application. The basic
procedure for gencralized expert systems design generated
from established guidelines has been summarized. Three
slightly different expert systems were developed using the PD
PROLOG and TURBO PROLOG languages and the INSIGHT
1 knowledge engineering tool. Table 3 gives a comparison of
the advantages and disadvantages of the three prototype expert
systems. In this table is summarized some of the design experi-
ence gained from programming this simplified traffic engineer-
ing analysis for application in the IBM PC/XT/AT microcom-
puter environment. This investigation is focused on knowledge
acquisition, knowledge representation, system programming,
and future applications. However, it is believed that this pro-
totype expert system still requires some improvements before
any practical applications can be made.

Conclusions

The following conclusions were reached in the course of de-
signing the prototype system to optimize left-turn signal
analysis:

1. Expert systems are appropriate for preidentified problem
solving,

2. Al languages and knowledge-based engineering tools
have advantages and disadvantages, and

3. The ES programming approach may be tailored for prac-
tical applications.

It was concluded that knowledge engineering tools, such as
INSIGHT 1, do indeed have some advantages over conven-
tional Al languages. The major advantages are their easy-to-
read-and-write programs, the user-friendly menus supported by
the programming environment, and the clearly defined goals
and subgoals. Built-in functions are available for explaining
questions in the knowledge engineering programming environ-
ment. For program debugging, a trace report is provided to
study program execution and the knowiedge inference process.
The program-supported windows and functions are also useful
for easy program development and operation. Most of ali, both

Chang

35

TABLE 3 COMPARISONS OF TURBO PROLOG, PD PROLOG,

AND INSIGHT 1

COMPUTER PROGRAM

TURBO PROLOG PD PROLOG INSIGHT 1
DECLARATION OF YES NO NO
VARTABLES, (DOMAINS)
0BJECTS .
DECLARATION OF NO NO
FUNCT 1ONS (PREDICATES)
OR RELATIONS.
DECLARE THE YES NO YES
SEARCHING ROUTE (GOAL) (GOALS & SUBGOALS)
SET UP RULES, DEFINE INSIDE | DEFINE INSIDE |USE RULE FUNCTION
FACTS, 8 FUNCTIONS. | CLAUSES BLOCK THE PROGRAM TO DO THE JOB
READABILITY VERY EASY EASY VERY EASY
PROGRAMMING
DIFFICULTY EASY EASY VERY EASY
CAN GENERATE
.08J FILE YES N0 NO
L(EXE FILE
INTERPRETER MODE YES YES YES
TRACE FUNCT IO YES N0 YES. (GENERATE
TRACE REPORT)
STRUCTURED PROGRAM YES YES YES
USE OF PARENTHESE N YES N
USE OF OR FUNCTION NO YES NO
CAN LINK WITH OTHER YES N0)

ADD EXPLANAT ION BY PRINT COMMAND
FOR EACH GOALS & NEED TO DIFINE

BY PRINT COMMAND |BY EXPAND FUNCTION
NEED TO DIF INE |VERY HANDY TO USE

SUBGOALS FORMAT FORMAT
DEBUGGING DIFF ICULTY VERY EASY NOT EASY EASY
SELF PROVIDE MENU, NO NO YES
WINDOW, & FUNCTION | NEED DEFINED BY | NEED DEFINED BY
KEYS PROGRAMMER PROGRAMMER
DO MATH OPERATION YES YES NO
WORK FORWARD & NO NO YES
BACKWARD NEED TO MOOIFY NEED TO MODIFY
THE PROGRAM THE PROGRAM
BUILT-IN EDITIOR YES NO YES

the forward- and backward-chaining capabilities are available
in the INSIGHT 1 system to (a) check whether goals or sub-
goals fit the input (forward chaining) and (b) check the input
for the fulfillment of specific goals or subgoals in the analysis
(backward chaining).

Recommendations

It is recommended that future expansions and improvements be
made to develop large-scale expert systems for practical traffic
management and engineering applications. Four points were
ignored in this prototype expert systems design. These were the
abilities to

1. Provide input data checking in the query process,

2. Return to previous steps to make changes during the
search process,

3. Abandon the current searching process without losing
input data, and

4. Change the data base at any time.

At present, Al researchers are trying to develop large-scale
expert systems for production usage. They have devoted a lot
of effort to making the expert systems design more flexible and

understandable for general applications. The stylized condi-
tion-action knowledge representation provides many advan-
tages because of its simplicity and restricted syntax in the
natural language interface mechanism. Similarly, explanations
and rcasoning are also simplified because the convenient back-
ward-chaining structure dynamically links the knowledge rules
for logical reasoning from both directions.

Because expert systems represent a relatively new technol-
ogy, there are two challenges that face most AI/ES applications
today. One is how to define and represent knowledge for
intelligent application by computers. The other is to develop
better ways to use expert knowledge for intelligent problem
solving. Although new knowledge representations in AI/ES
designs have not been fully developed, Al experts are still
experimenting with various knowledge representations in dif-
ferent discipline areas. Specialists in many fields are encounter-
ing difficulty in encoding field expert knowledge. Many refine-
ments to the design process are still needed to satisfy demands
for expert problem solving. These efforts include the modifica-
tion of production rules for future reasoning in a detailed and
ill-structured domain environment.

An expert system is best suited to applications in which the
subject is highly detailed but tightly defined, such as practical
traffic engincering applications. In the AI/ES design, the

36

requirements of each goal or subgoal may be displayed to allow
the user to understand the decision-making process. Because
both forward- and backward-chaining capabilities are pro-
vided, users can refine their expertise by evaluating in both
directions to search for a specified goal or subgoal. The AI/ES
approach has a dual function. On the one hand, it provides an
approach to computerizing decision analysis based on expert
knowledge. On the other hand, AI/ES development presents a
new opportunity for domain experts in many fields to review
their expertise systematically through Al techniques. Therefore
the development of specialized problem-solving tools can also
contribute to refinement of the reasoning logic of particular
applications.

A recommended AI/ES approach is shown in Figure 6. As
indicated, the user’s decision-making process can be used to
construct the basic decision table. Then sets of knowledge
engineering tools can be used to refine the logical reasoning
from the knowledge representation and acquisition process
during the construction of the production expert system. If
more user-oriented applications are needed in the future, the
expert system can later be translated into programs using Al
languages for fast execution. In this way, the domain expert and
user may cooperate more quickly to develop productive expert
systems for their specialized applications.

DECISION USER
TABLE | ${ DECISION
ANALYSIS PROCESS
1
KNOWLEDGE
ENGINEERING
TOOL
v PRODUCTION

IAIIES EXPERT
PROGRAM SYSTEM

FIGURE 6 Recommended AI/ES
programming approach.

ACKNOWLEDGMENTS

The author appreciates the research support of the Texas De-
partment of Highways and Public Transportation in coopera-

TRANSPORTATION RESEARCH RECORD 1145

tion with the Federal Highway Administration, U.S. Depart-
ment of Transportation, and the Texas Transportation Institute.
In addition, the constructive comments and suggestions
provided by the TRB reviewer were helpful during the comple-
tion of this paper.

REFERENCES

1. 1. E. Upchurch. Guidelines for Selecting Type of Left Tum Phas-
ing. Presented at 65th Annual Meeting of the Transportation
Research Board, Washington, D.C., Jan. 1986.

2. P. H. Winston. Artificial Intelligence, 2nd ed. Addison-Wesley,
Inc., Reading, Mass., 1984.

3. P. Harmon and D. King. Expert Systems: Artificial Intelligence in
Business. John Wiley and Sons, Inc., New York, 1985.

4. B. G. Buchanan and E. H. Shorlife. Rule-Based Expert Systems:
The MYCIN Experiments of the Stanford Heuristic Programming
Project. Addison-Wesley, Inc., Reading, Mass., 1985.

5. W. F. Clocksin and C. S. Mellish. Programming in PROLOG, 2nd
ed. Springer-Verlag, New York, 1984.

6. C. T. Hendrickson, D. R. Rehak, and S. J. Fenves. Expert Systems
in Transportation Systems Engineering. Submitted to Transporta-
tion Research, 1986.

7. C. Zozaya-Gorostiza and C. T. Hendrickson. An Expert System
for Traffic Signal Setting Assistance. Submitted to Journal of
Transportation Engineering, ASCE, 1986.

8. PD PROLOG—User's Manual. PROLOG documentation for the
educational and public-domain system. Robert Morein and Auto-
mata Design Associates, Dresher, Pa., 1986.

9. TURBO PROLOG—The Natural Language of Artificial Intel-
ligence—Owner's Manual. Borland International, Inc., Scotts Val-
ley, Calif., May 1986.

10. INSIGHT 1 Reference Manual. Level Five Research, Inc., Indi-
alantic, Fla., 1986.

11. INSIGHT 2+ Reference Manual. Level Five Research, Inc., Indi-
alantic, Fla., 1986.

The products mentioned in this paper are trademarks of several com-
panies. IBM Personal Computer (PC) and PC DOS are products of the
IBM Corporation. MS and MS DOS are registered trademarks of the
Microsoft Corporation. PD PROLOG is a trademark of the Robert
Morein and Automata Design Associates. TURBO PROLOG is a
trademark of Borland International, Incorporated. INSIGHT I is a
trademark of Level Five Research, Incorporated.

