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Optimization Strategies for Transit 
Systems in Urban Corridors 

YORGOS J. STEPHANEDES AND EIL KWON 

SOLON-IO is a microcomputer-based interactive design pro
cedure for the incremental optimization of performance of 
transit routes and transit systems based on the concept of 
elasticity and the total differential. The purpose of this method 
is to find the set of optimum service policies, such as fare and 
frequency changes, that management can Incrementally imple
ment through time to achieve a certain objective, such as 
maximizing ridership, under given performance constraints. 
The method Is applied in an urban transit system In Minnesota 
and the selection of the optimum set of policy changes is 
illustrated. Using this method, the transit manager can deter
mine the forecast optimum transit system performance 
through time as well as the optimum scheduling and pricing 
policies needed to reach the desired performance level. The 
data requirements of SOLON-IO include conventional so
cioeconomic and transportation information. The method Is 
initially developed primarily for use in metropolitan transit 
corridors and urban transit systems In which competition 
among routes does not occur or Is weak. Because it assumes no 
previous computer knowledge, this method can substantially 
increase management productivity. 

Recent technological advances and new microcomputer-based 
techniques now allow the transit industry to employ innovative 
tools and aggressively seek, define, and fight for market niches. 
Engineering innovations in transportation monitoring elec
tronics can be effectively implemented to aid the management 
of transit operations and improve the attractiveness of public 
travel. Furthermore, new interactive techniques allow the com
prehensive analysis of transit scenarios throughout the life of a 
transit operation, and make possible the design of high-perfor
mance service alternatives based on substantially limited data 
needs. 

Using the new techniques, transit managers can adopt the 
desired alternative by selecting the best options from an 
extensive set of policies (e.g., policies dealing with fare, 
frequency, and route changes). To be sure, traditional planning 
methods cannot deal effectively with this complex problem, 
especially since it is subject to continually changing constraints 
and often requires different solutions at different stages of 
development of an operation. The new techniques, on the other 
hand, can accomplish the desired analysis while effectively 
reflecting the major trade-offs and simplifications in the policy 
selection process. 

Initially, the new techniques concentrated on being able to 
quickly sort through a great number of policy alternatives and 
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advise the decision maker of the desirability of a choice or 
choices given the stated performance criteria (i.e., the emphasis 
was on the development of effective simulation tools) (J). 
Later, however, as transit managers discovered that even quick 
simulation tools can be time-consuming if used repetitively, it 
became clear that the usefulness of the new tools would hinge 
on their ability to make suggestions based on optimization 
features. To be successful, the new tools should be able to 
directly determine the optimum service policy (e.g., pricing 
and scheduling) through time for a given transit route as well as 
a system of transit routes. Such are the features of SOLON-IO 
(SOLON-Incremental Optimization), the interactive method 
presented here. 

Although several quick-response planning methods have 
been developed (J-4), SOLON (the simulation module at the 
heart of SOLON-IO) was the only interactive system that 
began to address the time i~teractions between the major 
elements that give rise to changes in transit route performance. 
The method is rather straightforward and is distinguished by 
three unique characteristics: 

• It provides solutions at any specified time or continuously 
through the life of a transport service by tracing the interactions 
between scheduling changes, route ridership, and service cost
effecti veness. 

• It explicitly treats time delays (e.g., capital procurement 
and ridership) that hamper route performance. 

• Its modules (demand, supply, and performance) operate 
interactively or independently and can be modified by the user. 
For instance, trip purpose (work or shopping) and market 
segments (by auto ownership, transit availability, and so forth) 
can be selected, and demand specifications can be updated (J). 

SOLON initially aimed to aid management in improving the 
performance of transit operations at the route level. However, 
prior to addressing the optimization problem, it was necessary 
to extend the theory and the simulation tool so that it could be 
implemented in a system of routes. This was essential since 
management realistically makes performance optimization de
cisions based on evaluation of the performance of a complete 
system of transit routes, rather than of one route. Similarly, 
funding agencies make major funding decisions after assessing 
the viability of complete transit systems. 

Transit system performance evaluation and policy selection 
could, of course, be performed without the benefit of an 
interactive optimization graphics system. The dynamic simula
tion method initially developed by this author did not have the 
benefit of optimization capabilities (1). However, inclusion of 
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the optimization capabilities creates substantial savings in the 
time required to identify the optimum set of policies. fu 
addition, SOLON-IO has been implemented in a way that 
allows easy access by decision makers with little or no com
puter experience. As a result, it enables experienced policy 
analysts to examine the consequences of expected performance 
improvements in greater depth and to fine tune selected policies 
prior to implementation. Further, it can substantially improve 
personnel training productivity as suggested by Twin Cities 
transit specialists and the managers of transit operations in 
several cities in Minnesota who had hands-on experience with 
several versions of this method fu fact, development of the 
management tool is a continuing process as these users make 
recommendations that are incorporated in the method prior to 
initiating its support for a transit system in a Minnesota city. 

METHOD OVERVIEW 

The structure of SOLON-10 can be analyzed at several levels 
of detail (Figure 1). At the route level, it may be pictured as a 
simple demand-supply model with the transit route perfor
mance sector acting as a link between supply and demand. For 
instance, a transit frequency increase in the service supply 
sector of a route results in waiting time reduction in the 
performance sector of that route; as level of service improves, 
so does route travel demand. In tum, as demand for and use of 
transit grow along the route, cost-effectiveness measures (e.g., 
load factor, operating ratio, route deficit) improve and call for 
service adjustments. 
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However, route service and pricing adjustments are limited 
by the financial health of the whole transit system. In particular, 
at the system level, SOLON-IO can be considered a combina
tion of simulation and optimization modules with the system 
performance sector acting as a link between the two. For 
example, when expected (simulated) improvements in the 
ridership of a particular route call for service adjustments, the 
system performance sector first updates the system deficit by 
summing up all route deficits. The system performance is then 
optimized based on the system objective (e.g., maximum 
ridership) and subject to budget constraints. If the budget 
allows, system optimization recommends service adjustments 
and the service supply of each route is improved as necessary. 
Following such adjustments, performance measures are further 
modified and the interactions continue full circle. 

Service and pricing adjustments are, further, limited by 
government regulations. For example, it may be impossible to 
increase fares in order to clear the market at given levels of 
transit service supply. ln addition, many of the desired changes 
in service (e.g., number of stops and frequency modifications), 
supply resources (e.g., equipment and funding acquisition), and 
travel patterns can be accomplished only over relatively long 
periods of time or at infrequent time intervals (J, 2, 4, 5). Such 
substantial physical and information delays to transit supply 
and demand changes, together with regulatory restrictions, 
imply that a realistic model of transport supply-demand inter
actions should be able to treat the time dynamics of response to 
policy changes. SOLON-IO achieves this by tracing the inter
actions shown in Figure 1 continuously through time. 
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FIGURE 1 Structure of SOLON-IO. 
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As simulation and optimization continue to interact, each 
pass through the optimization module (at infrequent, user
specified intervals) determines a new value for the service level 
of each transit route. Each time the optimum service level is 
determined, the simulation module continues with simulating 
the supply-demand interaction until the next service change 
time. At these service change intervals, the user can optimize 
one or more indicators at a time, depending on the objective 
and the constraints. The optimization-simulation continues 
through time until the objective is reached. When this happens, 
optimization shuts down and simple simulation takes over until 
the end of the time horizon. 

The tables and plots of the optimum service levels and the 
resulting performance indicators through the study period are 
the major products of SOLON-IO and are discussed in a later 
section. These performance records can facilitate the transit 
system decision making and management process by assisting 
managers in assessing the consequences of expected perfor
mance improvements in greater depth and by advising funding 
agencies in making subsidy decisions on the basis of perfor
mance potential. The rest of this paper presents a summary of 
the SOLON-IO system and an application example. 

METHOD COMPONENTS 

Tracing the simulation-optimization interactions through time 
is accomplished on the basis of component equations housed 
within each of the two major SOLON-IO modules shown in 
Figure 1. A summary of the contents of the modules (i.e., logic, 
empirical base, and data requirements) is presented in this 
section. This exposition focuses on the optimization module 
inasmuch as the simulation part is more completely docu
mented elsewhere (J). Although this exposition is necessarily 
constrained by space, it should nevertheless expose the 
strengths and limitations of the methodology. The summary 
should further aid the reader to identify the assumptions and, 
therefore, the applicability of SOLON-IO to specific decision 
making and policy selection situations. 

Simulation 

Travel Demand 

The demand equation incorporated in this methodology had to 
be capable of estimating ridership as a function of time and 
level-of-service measures based on initial route and system 
conditions only (i.e., without the need for extensive time-series 
data for the entire policy evaluation period) (J). In addition, it 
had to be able to consider the information delay between the 
time a service policy is implemented and the time residents of 
the service area become aware of the new service. Because of 
the limitations of the existing models, a dynamic demand 
equation was developed that fulfilled the specifications of a 
time-sensitive technique such as SOLON. 

Assuming, for the purpose of this discussion, that the trip 
generation and distribution are completed, the dynamic de
mand equation adopted from SOLON (J) states that Pr+l• the 
estimated probability of selecting transit from a set of alterna
tives at time t + 1, is a function of the current probability Pr 
estimated equilibrium probability Pe and a demand time con
stant Tp: 
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(1) 

The demand time constant reflects the time necessary for the 
information on level-of-service changes to be transmitted to the 
population and the time for demand decisions to be modified. 

The equilibrium probability, P •' is estimated for each trip 
purpose (e.g., work, shopping) and market segment by a 
disaggregate logit specification calibrated with the data from 
the area of application and is generally a function of fare (W) 
and frequency (Q) (as well as other factors that may not be of 
interest here): 

P. = F(W, Q) (2) 

When implementing SOLON, the suggested logit parameter 
values, previously validated at several rural and urban areas 
(1, 2, 4, 6), can be updated with a small data sample (7). 
Alternatively, any steady-state demand model such as ULOGIT 
(8) or a simple regression model could replace the existing 
specification to estimate the equilibrium probability of demand. 
The data needs of the demand specifications include conven
tional demographic, socioeconomic, and trip information tradi
tionally required by logit models (e.g., automobiles per house
hold, travel cost, time, etc.). A summary of the data 
requirements for an example application of SOLON-IO in the 
city of Mankato, Minnesota, is presented in Table 1. Most of 
the updating data are entered when the method is initialized. 
Additional information reflecting inflation, energy costs, and 
other national trends could also be entered but is not necessary. 

TABLE 1 DATA REQUIREMENTS FOR SOLON-IO 

Coclea Data 

Socioeconomic Data for Route i Corridofb 

HINC 
NCAR/NLIC 
NPER 
DISHINC 

Work population 
Annual household income ($ thousands) 
Automobiles per licensed driver 
Persons per household 
Disposable household income = HINC * 1,000 -

980 • NPER 

Trip Characteristics for Route i Corridor 

OPTC One-way out-of-pocket travel cost (cents): gasoline 

INVT 
DIST 
BAT 
AEGT 

cost (automobile), fare (bus) 
One-way in-vehicle travel time (minutes) 
One-way trip distance (miles) 
One-way bus access time (minutes) 
One-way automobile egress time (minutes) 

Initial Route i Condition 

HEAD Bus headway (minutes) 
Route length (miles) 
Peak-hour ridership (trips per week) 
Peak-hour operating hours per week 
Operating cost per vehicle-mile 

a Abbreviation used in the logit model. 
bGcneraUy defined as the area within 1/2 mi from the route. 

Route and System Performance 

Route efficiency, effectiveness, productivity, and quality in
dicators describing the route performance are needed by the 
demand component for estimating ridership decisions during 
simulation. Further, the performance updates for each route are 
needed by the system performance component for transmitting 
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to the system optimization module at each management deci
sion interval (Figure 1). The library of performance indicators 
is extensive and reflects the knowledge gained from the earlier 
work by several researchers (see, e.g., 2, 9, JO) who sought to 
identify the measures that can best be used to evaluate transit 
performance. To be sure, the user can easily create additional 
indicators using the output generated by SOLON. An example 
of a selected set appears in other work by the principal author 
(J). Similarly, the user can work with a smaller set that is 
generated automatically at the output and never use the library; 
such a small sr.t c.onlrl, for in.stance, be adequate for performing 
a preliminary analysis of a small-city transit system. 

Performance indicators are determined on the basis of identi
ties, assumptions, and simple algebraic equations calibrated in 
the area of application. For instance, equilibrium ridership for 
route i is the product of demand Di for that route and the 
probability of demand P •i estimated from Equation 2: 

Route i ridership = D; Pei (3) 

Similarly, total system ridership is the summation of the 
ridership on all N system routes: 

N 
System ridership = L Di Pei 

i 
(4) 

As another example, the system operating ratio is defined as 
system fare revenue, determined from system ridership esti
mates (Equation 4), divided by system operating cost. Previous 
experience with SOLON users indicates that most systems 
break the operating cost down to a variable and a fixed unit cost 
component; further, if operating vehicle hours are not constant, 
the variable component is broken down to a mile-based and an 
hour-based component: 

N 
System operating cost = L ai (vehicle milesi) 

i 

where a is in dollars per vehicle mile, b is in dollars per vehicle 
hour, and c is in dollars. Route values for the unit costs a, b, 
and c are usually available from transit operations or can be 
determined from routinely recorded information on gas, oil, 
insurance, wages, maintenance, and other cost components. For 
small-city operations, the unit costs tend to be the same across 
all system routes thus simplifying the above equation. A more 
complete discussion of the equations involved in calculating 
the system performance equations is found in the Appendix. 

Optimization 

At specific time intervals, transit management conducts "con
ferences" to make decisions on needed modifications to current 
service on transit routes. These decisions may seek, for exam
ple, to increase system ridership by making appropriate service 
improvements, as necessary, on system routes. However, such 
improvements are subject to several constraints, the most 
important of which is the budgetary constraint imposed by the 
transit system. Alternatively, management may seek to mini
mize the system deficit while, at the same time, carrying a 
minimum ridership. 
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At the user-specified conference intervals, the optimization 
module makes suggestions to management regarding the opti
mum policy decisions. These suggestions arc based on the 
information transmitted by the system performance component 
at each of those intervals. More specifically, using information 
on key system performance indicators such as total system 
subsidy, system load factor, operating ratio, and ridership, the 
optimization module determines the optimum policy that will 
maximize or minimize a user-selected system performance 
indicator. For instance, SOLON-IO can solve the following 
nonlinear optimization problem (sec Appendix for mathemati
cal formulation): 

Select 

To maximize 
Subject to 

: Optimum fare (W;) and frequency (Q;) for 
each route 

: System ridership 
: System operating ratio is not less than the 

target operating ratio 
F1eet size does not exceed the number of 
available transit vehicles 

To select the optimum fare and frequency for each route that 
maximize system ridership subject to the above constraints, the 
optimization module evaluates the estimated impact of fare and 
frequency changes on future ridership. It accomplishes this by 
expressing the new probability P.2 (where Pe is the estimated 
probability following contemplated fare and frequency 
changes) as a function of the current probability Pei; fare 
before and after the change (W1 and W2, respectively), fre
quency (Q 1 and Qz); and the associated direct elasLicities of Pe 
with respect to fare (Ew) and with respect to frequency (EQ): 

Pe2 = P.1 [1 + Ew(W2 - W1)/W1 

+ EQ(Q2 - Qi)!Qi] (6) 

where a more complete description of the method for arriving 
at Equation 6 based on the definition of elasticity and the total 
differential is presented in the Appendix. 

Based on the above relationship and the estimated elasticities 
(J J), the desired system-level optimization problems, maximiz
ing or minimizing the performance indicator selected by the 
11ser, can be fonnulated using fare (W1) and service frequency 
(Q;) of each route as decision variables . A summary of the 
application procedure of SOLON-IO and its logic to complete 
the simulation-optimization process through the planning 
period is presented in Figure 2. To date, two optimization 
formulations have been developed and are available in 
SOLON-IO: 

• Maximize system ridership subject to system operating 
ratio or deficit constraint, 

• Minimize system deficit subject to system ridership 
constraint. 

Summary of Assumptions and Data Requirements 

The previous section focused on the design and capabilities of 
the SOLON optimization module. Prior work by the principal 
author offers complete documentation of the simulation com
ponent, the assumptions on which the theory of SOLON is 
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INCREMENTAL OPTIMIZATION 
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level based on the system performance 
information and objective option specified 
by user. 

Demand sector 
For each route, estimate the new ridership of 
next simulation week(D,*P,.,,,) based on the i-----
equilibriwn (D 1 *P 0 ) and current ridership 
(D

1
*P,) using the dynamic demand equation. 

FIGURE 2 Application procedure and logic of SOLON-IO. 
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based, and the data required for implementation (J). Neverthe
less, the major assumptions and data requirements are sum
marized here to further aid the reader to appreciate the ap
plicability of SOLON-IO to specific decision-making situations 
as well as the limitations of the method. 

The central assumption of SOLON is that the transit opera
tion is almost always in a dynamic state, never quite able to 
reach equilibrium. This is the result of the dynamics acting 
between the two major driving forces (demand and supply) of 
the transit operation. Trip makers always seek a "bargain," that 
is, they would be happiest if they could travel when service is 
most plentiful, least used, and least costly; conversely, if given 
a choice, they would be quick to abandon a service that falls far 
short of their expectations. Similarly, under deregulation, trans
portation managers would not hesitate to cut service if pas
senger revenue fell short of projections; further, they stand 
ready to take advantage of opportunities offered by high, price
inelastic demand (as in peak time service) to increase fares and 
improve system economics. 

More specifically, in the demand sector, the trip makers are 
continually trying to obtain the most recent information on 
service improvements that will enable them to take advantage 
of any chance to cut travel time and cost. In urban and 
metropolitan areas, increased consumer pressure, the large 
number of trip makers that can transmit information, and media 
reporting all contribute to quick information transfer from the 
transit operation to the trip maker. In particular, it has been 
found that the effective time constant involved in this process is 
approximately 3 to 9 weeks long (2, 6) and is a function, 
mostly, of current ridership level and the nature of service 
change. For instance, fare changes are felt quickly (3 to 5 
weeks) while schedule improvements filter through more 
slowly (6 to 9 weeks). 

In rural areas and small cities, where word of mouth, 
tradition, and community acceptance are often the most impor
tant factors in the transmittal and assimilation of information, 
the time constant is within a range of 6 to 26 weeks. From our 
experience, the longest time corresponds to remote areas or 
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small towns where the mean age of the population is higher 
than average, such as towns in the Appalachians or northern 
New England. 

To be sure, the value of the time constant cited here is the 
average of a distribution, which has been found to be near 
normal. Empirical methods to determine the statistics of the 
distribution from small samples have been developed and 
successfuly implemented in the course of previous work by the 
principal author (2, 6). The methods are based on controlled 
experiments in which new and old transit users as well as 
nonusers are surveyed following a fare or service change along 
a transit route. Survey participants indicate their awareness of 
the change and are asked to comment on the extent of the 
influence of that change on their mode choice. For instance, in 
a well-designed controlled experiment associated with service 
improvement on a transit route, the volume of new transit users 
and the rale with which such are generated following the 
improvement can be sufficient for estimating the demand time 

External economic and environmental factors are also as
sumed to influence the performance of the transit system. Since 
these factors, such as inflation and employment, vary with 
time, it is expected that they, too, play a role in the dynamics. 
Wormation on these factors can be entered by the user in the 
course of simulation-optimization as necessary. 

A further assumption of the SOLON formulation is that 
transportation demand, unless otherwise driven, behaves as a 
first-order system (see Equation 1). While this assumption is 
based on data from several systems (1, 4), transport operations 
may exist for which higher-order effects cannot be easily 
neglected. 

As mentioned earlier, the demand parameters of the simula
tion module of SOLON have been estimated and validated for 
several small and large urban and rural areas (1, 2, 4) based on 
a logit formulation and a disaggregate data set for each area. 
The needed data were dictated by the variables incorporated in 
the disaggregate logit formulation. As Table 1 suggests, these 
data are routinely collected by metropolitan planning agencies 
such as the Metropolitan Council of the Twin Cities. It is 
indicated in the literature (7, 12) and confirmed in this paper 
that such formulations are highly transferable under certain 
conditions; however, it is suggested that the policy maker 
update the parameters where necessary and at least every 5 
years. 

Updating of the demand parameters can be accomplished in 
any of several ways established in the literature (7). Updating 
methods range from a simple adjustment of the regression or 
logit coefficients so that they conform to the newly collected 
data to more rigorous techniques such as using Bayes' formula 
in conjunction with a small-sample survey of the trip or 
socioeconomic characteristics that are suspect of change. Sur
vey designs that can be used to aid the potential SOLON user in 
surveying a small sample are found in several planning agen
cies [e.g., agencies that use ULOGIT for demand forecasting 
(8)] and are certainly available by current SOLON users in 
Minnesota such as the Minnesota Department of Transportation 
and the Mankato Urban System of Transportation (MUST). As 
mentioned earlier, the data needs of the demand specifications 
include conventional demographic, socioeconomic, and trip 
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information traditionally required by logit models (e.g., autos 
per household, travel cost, time, etc.). (Refer to Table 1 for a 
summary of the data requirements for an example application 
of SOLON-IO in the city of Mankato, Minnesota.) 

APPLICATION IN PERFORMANCE 
OPTIMIZATION 

To illustrate the performance optimization process using the 
policy design features of the interactive method, SOLON-IO is 
applied to the transit system in Mankato, a city with a popula
tion of 30,000, 120 mi south of the Twin Cities in Minnesota 
[the interested reader can see other published material (1, 4) for 
applications in the Twin Cities Metropolitan Area] . Most of the 
data used in this application were gathered with the assistance 
of MUST, the area's governing body that oversees transit 
operation. Further, logit specifications were developed to esti
mate travel modal split in Mankato. For instance, the work-trip 
sp~c.ifi~~tlon 1~ h~~P:n nn t:t~~?gg!"~g?.!~ d~!~ f!0!!! 331J h0'..!~e

holds collected during a survey of bus and auto trips in 
Mankato in April 1986. The work-trip mode choice model and 
model performance statistics are presented in Tables 2 and 3, 
respectively. The results were also used to estimate the demand 
elasticities of Mankato trip makers . The route structure of the 
Mankato City transit system is illustrated in Figure 3. 

Data initialization is the first step in applying the perfor
mance optimization method. The data requirements include 
conventional demographic, socioeconomic, and trip informa
tion, readily available to transport planners. While certain data 

TABLE 2 WORK-TRIP MODE CHOICE MODEL 

Variable Coefficient I-Statistic 

Generic 
OPTC/HINC --0.144 -2.63 
INVf --0.061 -2.91 

Automobile specific 
CONS a -3.198 -4.32 
DISHINC 0.907E- 4 6.56 
NCAR/NLIC 3.401 5.05 
AEGT --0.380 -4.33 

Bus specific 
HEAD * BAT/DIST --0.242E- 2 -1.29 

acONS = 1 for auto; 0 otherwise. 

TABLE 3 MODEL PERFORMANCE 
STATISTICS 

Calculation 

Sum of chosen probabilities 
Sum of all probabilities 
Sum probability ratio (%) 
L* (Q )a 
L* (O)b 
p2 = 1 - [L* (Q)!L* (O)] 

Result 

258.66 
330.00 

78.38 
-114.81 
-228.74 

0.50 

au (Q) =log likelihood at convergence. 
bu (0) =log likelihood at zero. 

needs of SOLON-IO are tied to the needs of the logit specifica
tion developed by this research team, those needs could be 
simplified by the use of alternative, simpler demand estimation 
models. A summary of data initialization, with current (May 
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FIGURE 3 Route structure of Mankato Transit System. 

1987) values from the Mankato application, is presented in 
Tables 4 and 5. 

Selection of the desired objective option, constraints, and 
control variables is next performed by the user. In this applica
tion. for instance, MUST employs route frequency of service as 
a control policy and seeks to maximize system ridership subject 
to a system budget constraint (i.e., within a system deficit 
limit). In particular, MUST is willing to modify the frequency 
of one or more system routes but does not want to change the 
fare at this stage. The system deficit constraint is $1,000/week, 
a value that the SOLON-IO user soon realizes is unrealistic, at 
least initially. To be sure, following the initial session with the 
interactive tool, the user may repeat the analysis based on 
different choices for the above options. 

Following initialization, SOLON-IO begins to operate by 
computing the initial value of each route and system perfor
mance indicator. Ridership, service elasticities, load factor, 
operating ratio, and deficit are key indicators in this applica
tion. since they provide the basis for making decisions about 
the service changes. 

System optimization, the next stage in the process, is acti
vated only at regular time intervals, corresponding to the points 
in time that management selects for making decisions regard
ing service improvements. In this example, the selected con
ference interval is 20 weeks. If optimization is not activated, 
the simulation module of SOLON-IO takes over and travel 
demand is estimated for all routes, for the next time interval 
(e.g., next week or month, depending on the unit selected by 

TABLE 4 TRANSIT DATA INITIALIZATION 

TABLE 5 SOCIOECONOMIC DATA INITIALIZATION 

Annual 
Household Persons Cars per 

Route Work Income per Licensed 
Number Population ($) Household Driver 

2 2,447 28,500 2.76 0.76 
3 7,043 22,400 3.10 0.72 
4 2,148 28,300 2.76 0.76 
5 4,330 28,700 3.36 0.75 

the user). This information is required to update the perfor
mance indicators. 

If, on the other hand, optimization is activated, the incremen
tal optimization module begins providing the necessary back
ground information. so that the user can select realistic values 
for the problem constraints. In particular, owing to the limita
tions in the use of elasticities (13), certain restrictions are 
placed on the allowable range of policy (i.e., fare and fre
quency) changes. Specifically, at any time transit management 
wishes to make a policy change, fare and frequency changes 
are limited to within 20 percent of their value prior to the 
change, thus resulting in a restricted range of values for the 
constraints. For example, the operating ratio constraint cannot 
be set at a value beyond the range implied by a 20 percent fare 
increase and a 20 percent frequency reduction. The boundary 
values of the constraints resulting from this restriction are 
calculated and offered to the user as a guideline at each step 
during the simulation. Based on this guideline, the user can 

Route Peak-Hour 
Route Length Frequency Ridership Operating Deficit Operating 
Number (mi) (buses/hr) (trips/wk) Hours/Wk ($/wk) Ratio 

2 4.6 3.0 211 18.4 477 0.21 
3 9.0 3.0 1,616 28.4 832 0.54 
4 4.4 3.0 280 22.4 531 0.24 
5 11.1 1.5 532 20.0 498 0.39 
Total 2,639 2,338 0.40 
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approach the desired performance level on an incremental 
basis. To be sure, the user may disregard the guideline and elect 
ro set the constraints at vaiues that impiy fare and frequency 
changes that are substantially higher than the recommended 20 
percent range. On the other hand, the user could also decide to 
stay well within that range should the conditions of the transit 
environment in the particular application allow. 

The restrictions on the suggested range for the change of the 
control variables are particularly important when elasticity is 
expected to vary substantially with travel-related and other 
characteristics. However, it has been reported that the elasticity 
values remain relatively constant within city groups of similar 
size, urban structure, and transportation technology type (12). 
When the elasticity values are found to be stable, some of the 
above restrictions can be relaxed. 

The background performance information of the example 
system during the initial week (t = 0) as well as the suggested 
constraint value are summarized in Figure 4. This information 
i:; pi"c:;cutc<l ~v the u~c; fvllv-w~1i~ i.116 ii~iiciliLctiiuu sLabt;· Usiug 
this information as a guideline, the user can select the desired 
value for each target constraint. Decision on which of the 
available variables to use as controls is also made at this stage. 

In this application example, a desired final deficit level of 
$1,000/week and a wish to use only frequency change as a 
decision variable are the selected management policy options. 
However, as Figure 4 indicates, at the current condition the 
lowest suggested value for the system deficit, realized by 
changing the frequency of all routes by 20 percent, is $2,000/ 
week. Therefore, under the elasticity restrictions, the system 
cannot reach the desired performance level directly at this stage 
and, therefore, suggests an approach to the desired deficit level 
incrementally. Further, the next service change will be decided 
upon at a management conference 20 weeks from now. 

Assuming that management adopts the suggested value for 
the system deficit constraint and based on the selected service 
change option, the optimization module computes the optimum 
frequency level of each route, which can maximize the system 
ridership while bringing the total deficit within the required 
$2,000/week from the current value of $2,338/week. The 
optimum service levels determined at this step are implemented 
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only after a period of time; this time lag reflects the manage
ment delays resulting from the needed adjustments in the 
rolling stock and the number of available drivers (1). In the 
meantime, the current service levels remain unchanged, and the 
demand and performance components of the simulation mod
ule estimate the updated ridership and other performance 
indicators. 

At the specified service change interval-20 weeks in this 
example-the optimization module is again activated and 
provides the information illustrated in Figure 5. This informa
tion includes the system condition after the service change at 
t = 20 ("current condition") as well as the condition before 
the service change, (i.e., at t = 0) ("previous condition"). In 
this case, the system optimization would result in a frequency 
increase on one route (Route 5), but a decrease in the frequency 
on the remaining three routes. This implies that Route 5 users 
are more elastic to frequency than are the users of the remain
ing routes, so that the estimated revenue from the ridership 
im;n:i:l:St: c;an OllSel me operaring COS[ increase foUowmg the 
service improvement. However, as indicated in Figure 5, the 
system still cannot reach the desired deficit level of $1,000/ 
week directly. Having set the new constraint value at $1,700/ 
week and the service-change conference interval at 20 weeks 
(i.e., at t = 40), the user can repeat the optimization-simulation 
until the desired performance level is reached. Figure 6 illus
trates the optimum service levels and resulting performance 
variations obtained by incrementally optimizing system perfor
mance every 20 weeks. As indicated in the figure, at the end of 
80 weeks the deficit decreases by 50 percent while the ridership 
de.crease is less t.lian 10 percent. 

CONCLUDING REMARKS 

SOLON-IO is a microcomputer-based method that can be used 
to aid transit practitioners in optimizing transit system service 
interactively. The new approach is based on the time-dependent 
interactions between transit supply and demand, and the con
cepts of elasticity and the total differential. The method was 
applied to the system-level service design, and the interactive 
policy selection procedure was illustrated. Using the micro-

Control Policy : Ridership Maximization under Deficit Constraint 
(No Fare Change) 

Current System Condition Week 0 

Route Freq . Ridership Deficit O, R. 
2 3.0 211 477 o. 21 
3 3.0 1616 832 0 . 54 
4 3 . 0 280 531 0 24 

1.5 532 498 0 . 39 

Total 2639 2338 0 , 40 

Kinimcun Target Deficit at this stage by frequency change : 2000 $/week 

Do you wish to change service level ? Y/ N, Retry, Quit : Y 

Input Target Deficit ($/week) : 2000 

Input conference interval for next service change (weeks) 20 

FIGURE 4 Interactive policy design at Week 0. 
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Control Policy : Ridership Maximization under Deficit Constraint 
(No Fare Change) 

Previous System Condition Week 0 Current Condition - Week 20 

Route Freq , Rider . Deficit 0.R. Freq . Rider , Deficit O. R. 
2 3 . 0 211 477 0 . 21 Z. 4 201 366 0 . 24 
3 3.0 1616 832 0 . 54 2.4 1580 502 0 , 65 
4 3 .0 280 531 0 . 24 2 . 6 255 455 0 . 25 
5 1. 5 532 498 0 , 39 l. B 562 633 0 _35 

Total 2639 2338 0 . 40 2598 1946 0.44 

~inimum Target Deficit at this stage by frequency change : 1700 $/week 

Do you wish to change service level ? Y/N, Retry, Quit Y 

Input Target Deficit ($/week) 1700 

Input conference interval for next service change (weeks) 20 

FIGURE 5 Interactive policy design at Week 20. 

FREQUENCY VARIATION OF EACH ROUTE 
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computer graphics of this method, the manager can determine 
the optimum service policies, such as fare and frequency, that 
can be implemented in each route of a transit system at 
different time intervals to accomplish a system objective. 

tion, which enables the user to find the optimum policy that can 
achieve a desired objective subject to constraints and the 
expected performance variations directly. Thus, the method can 
reduce substantially the amount of time and effort that the 
traditional simulation techniques need to reach the same 
conclusion. 

The main feature of the new method is the combination of 
system-level dynamic simulation and incremental optimiza-
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SOLON-IO has been applied to the transit systems at 
different cities in Minnesota as well as several transit corridors 
in the Twin Cities [a validation example with data from a 
Minneapolis suburb can be found in other published work by 
the principal author (1)] and has confirmed the expectations 
regarding the benefits to be derived from inclusion of optimiza
tion features in interactive planning tools. Further, users of the 
preliminary versions of the software have made several recom
mendations; incorporation of these in the current system has 
made it more responsive to the complex problems of the 
transportation practitioner. 

Several potential applications of the interactive optimization 
method have been suggested. For the transit system manager, 
being able to determine the potential best performance of the 
system is a most valuable asset. In addition, being able to know 
the suggested best course of action, or set of policies, that can 
be implemented to achieve that potential is a highly time
saving feature. This was especially appreciated in cases involv
ing managers who are overloaded with work and are short on 
experienced personnel. A recent effort by the state to substan
tially improve the performance of transit systems while keep
ing service closely matched with actual need has presented a 
new area of application, in which system optimization is of 
high priority for both the transit manager and the funding 
decision maker. In this case, SOLON-IO can assist both parties 
in determining the ways in which service can be modified, 
either by increasing funding where this can be productive or by 
controlling costs, to allow the transit systems to aggressively 
seek and conquer market niches. 

The restrictions of the method, which arise from the limita
tions in the use of elasticity, could be relaxed if the elasticities 
in a particular application are found to be stable. Further, 
dynamic optimization could be employed to find the best 
solutions for achieving multiple objectives under multiple 
constraints through time. In addition, whereas only peak travel 
has been addressed in this paper, the effects of off-peak travel 
policies on the overall transit route and system performance 
could also be demonstrated using this method. The method is 
initially developed primarily for use in metropolitan transit 
corridors and urban transit systems where competition among 
routes does not occur or is weak. Because it assumes no 
previous computer knowledge, it can substantially increase 
ma..'lagement productivity. SOLON-IO is designed to be imple
mented on a microcomputer (IBM-PC), thus minimizing the 
investment in computer resources needed by the user. 
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APPENDIX 

System Performance Equations 

Using the demand probability, P.2, obtained from Equation 2, 
with some simplifying assumptions, the major performance 
indicators of the transit system after the service modifications 
can be expressed as follows (assuming no competition between 
routes): 
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N 
Ridership = I, Di Pei 

Total subsidy (operating cost - farebox revenue) 

N 
I, (Bpi Qz; - Di Pei W;) 

N 
Subsidy per passenger = I, (Bpi Qi - Di Pei Wi)!(Di Pe;) 

Operating ratio (farebox revenue/operating costs) 

Route load factor (ridership/capacity) = Di Pe/(Cpi Q;) 

where 

N 
Di 

cpi 

= 

= 

total number of routes in the system, 
total trip demand of route i, 
capacity coefficient of route i, and capacity 
operating hours * frequency * seats/bus 
Cpi Qi assurning constant operating houts, 
and 

Bpi = operating cost coefficient of route i, and 
operating cost 

= cost/vehicle-hour * total vehicle-hours + cost/ 
vehicle-mile * total vehicle-miles 
Bpi Qi assuming constant operating hours. 

System Ridership Maximization 
Problem Formulation 

Select : Optimum final fare W 2i and frequency Q'.li for each 
route i 

To maximize : I, Di Peli [1 + Ewi (W2 - W1)/W1 
j 

+ EQi (Qz; - Qli)/Qli] 

Subject to ~(Bpi Qz;/~ {Di Peli [1 + Ewi (W2 - W1) 
I I 

+ EQi (Q2i - Qii)/Qli] W2} 

2:: Target O.R. I, Q2i ti <;:; fleet size 
i 

where ti is round trip time of route i. 

Formulation of Demand Probability 

Applying the definition of elasticity and the total differential to 
Equation 2, the new equilibrium demand probability Pe2 
(where Pe2 is the estimated probability following contemplated 
fare and frequency changes) can be be expressed as a function 
of the current probability Pei, fare (W), frequency (Q), and the 
associated direct elasticities as follows: 

dPe = dP .1aw * dW + dP.fdQ * dQ 
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dP )dW = Ew * Pei/W1 

aP )dQ = EQ * P eilQ1 

Let dP. = P.2 - Pei, dW = W2 - W1, dQ = Q2 - Qi· 

Then, 

Pe2 = Pei [1 + Ew(W2 - W1)/W1 
+ EQ(Q2 - Qi)/Qi) 

where 

the elasticity of P. with respect to fare, 
the elasticity of Pe with respect to 
frequency, and 
fare before and after the change. 

(6) 

It should be noted that, in the special case that the demand 
function is of product form, implying constant elasticities, 
Equation 6 becomes 

P.2 = Pe1 [1 + Ew(W2 - W1)/W1] [1 
+ EQ(Q2 - Qi)/Q1J (6) 

where Ew and EQ are the estimated arc elasticities (14, 15). 
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