Cluster Sampling Techniques for Estimating Transit Patronage

PETER G. FURTH, KEITH L. KILLOUGH, AND GARY F. RUPRECHT

Sampling of trips is necessary to estimate ridership on most transit systems. Because of UMTA Section 15 and other internal requirements, it is important to know the accuracy of estimates made. Simple random sampling of trips is a technique approved by UMTA, and its accuracy formulas are well known. However, random sampling of trips is a very unnatural and wasteful method of gathering data because of time lost in traveling from one selected trip to another. A more natural way of sampling is by run-piece, the sequence of trips that a driver follows for a day or half a day. Estimation and accuracy formulas for several techniques of sampling by clusters of trips are presented, with and without conversion factors. Stratification to improve accuracy is also incorporated. A case study in Los Angeles is used to demonstrate the merits of the various techniques. Pittsburgh data are also used to evaluate cluster sampling for route-level estimates. The results confirm the superior value of cluster sampling as compared to simple random sampling in most cases.

Ever since the transit industry dropped the practice of issuing tickets to all patrons (due to the advent of the one-man crew), transit companies have had to estimate patronage. Because of zone fares, reduced fares for various groups such as elderly and students, varying transfer policies, and the popularity of passes, applying a simple average fare factor to system revenue may not necessarily yield an accurate estimate. Even if the average fare factor is to be used, it should be estimated scientifically.

Accurate patronage estimates are needed for many reasons. Many transit systems are evaluated and funded in proportion to the number of passengers they carry. Patronage estimates are needed to evaluate the impacts of fare and service changes. Recognizing the need for accurate patronage estimates, Section 15 of the Urban Mass Transportation Act requires all systems receiving federal operating assistance to report total annual unlinked trips at a specified level of accuracy, namely, a precision of ±10 percent at the 95 percent confidence level. Many transit systems have developed their own reporting requirements, which often call for accurate estimates on a monthly or quarterly basis.

Along with its Section 15 reporting requirements, UMTA has issued two circulars (1, 2) containing approved sampling techniques for making the needed estimates. Both of them take a one-way vehicle trip as the sampling unit. The first technique is measuring boardings on a random sample of about 600 trips, calculating an estimate of systemwide mean boardings per trip, and then expanding it by the number of trips in the year. The second technique, described in more detail by Furth and McCollom (3), uses revenue as an auxiliary variable. In this technique, boardings and revenue are measured on a random sample of about 200 trips, from which average cash revenue per boarding is estimated. This figure is then applied to system annual revenue to yield an estimate of system annual boardings. These estimation methods require a random sample of trips, and the UMTA circulars give clear instructions on how trips are to be selected to ensure randomness. Essentially, trips are chosen with equal probability out of a single "hat" that contains all trips. The only departure from pure random sampling allowed is the widely accepted practice of sampling the same number of trips each day.

While random selection of trips has advantages in allowing the use of simple formulas for expansion of the sample results and estimating accuracy level, it is an inefficient, unnatural way of sampling. The checker must almost always perform a round trip so as not to be stranded at the end of the line, yet only data from half the round trip are allowed. There may be long waits and distances between the selected trips, resulting in unproductive time spent either waiting or traveling. In contrast to random trip selection, transit systems have traditionally performed ride checks by having a checker stay on a bus, following the duty of a driver. This natural unit of sampling already conforms to work rules concerning the length of a workday. Furthermore, driver duties have been designed to cover the entire set of trips in the system efficiently, minimizing labor cost. Many driver duties, or runs as they are often called, consist of an early and a late piece of work of about 4 hr each, and in many transit systems these run-pieces form a natural sampling unit, as the early piece of one run can easily be matched with the late piece of another. Since most run-pieces operate exclusively on a single line, sampling a run-piece will often provide line-specific data, which are often needed for internal monitoring and decision making. When a run-piece is interlined, special checker-pieces can be designed that switch vehicles once or twice in order to stay on a line if that is desired. The procedure of sampling by a natural group of elements (in this case trips) is known as cluster sampling.

Another variation from random selection of trips that is useful is stratification. Stratification will improve accuracy when relatively homogeneous strata can be found. Perhaps more importantly, by making each line or each garage or each route type (local, express, etc.) a different stratum, estimates...
for these subdivisions can be obtained at specified accuracy levels in the process of obtaining system estimates.

Because of the unnaturalness of random sampling by trip, most transit systems that follow the UMTA-published procedures perform their Section 15 ride checks separately from the ride checks performed for other purposes, and they use the Section 15 data for no purpose other than Section 15 reporting. Other transit systems have tried to develop patronage estimating procedures that involve sampling by run-piece and stratification and provide estimates that are used for internal as well as Section 15 reporting. In order to satisfy the Section 15 requirements, however, the transit system must demonstrate that its procedures are unbiased and that they meet the statistical accuracy target.

In the following sections of the paper, several unbiased cluster sampling techniques will be described. Where appropriate, stratification is incorporated. Estimation and variance precision formulas are also supplied. A case study is then described in which these techniques were applied to data from the Southern California Rapid Transit District (SCRTD). Finally, data from both SCRTD and the Port Authority for Allegheny County (Pittsburgh) are presented indicating the increase in sampling rate called for by cluster sampling (versus simple random sampling) in estimating items at the system, route, and route/direction time period levels.

NOTATION

The following variables will be used:

- \(h \) = stratum index,
- \(i \) = cluster index (each cluster belongs to a single stratum),
- \(j \) = trip index,
- \(M_{hi} \) = number of trips in cluster \(i \),
- \(y_{hij} \) = boardings on trip \(j \) of cluster \(i \),
- \(y_{hio} = \sum_{j=1}^{M_{hi}} y_{hij} \) = total boardings in cluster \(i \),
- \(\bar{y}_h = y_{hio}/M_{hi} \) = trip mean boardings for cluster \(i \),
- \(N_h \) = number of stratum \(h \) clusters in population,
- \(n_h \) = number of stratum \(h \) clusters in sample,
- \(n_0 \) = number of clusters in sample,
- \(M_{ho} \) = number of stratum \(h \) trips in population,
- \(m_{ho} \) = number of stratum \(h \) trips in sample,
- \(M_h = M_{ho}/N_h \) = mean cluster size in stratum \(h \),
- \(P_h \) = number of stratum \(h \) clusters in analysis dataset,
- \(z \) = \(z \)-value corresponding to confidence level (e.g., \(z = 1.96 \) for 95 percent confidence level when standard deviation is known), and
- \(d \) = precision (e.g., \(d = 0.1 \) means \(\pm 10 \) percent).

TECHNIQUE 1: SAMPLING CLUSTERS AS ELEMENTS

The simplest cluster sampling technique is to simply treat clusters, rather than trips, as elements to be sampled, derive the mean boardings per cluster from a sample, and then expand by the number of clusters in the population. This technique may be appropriate when the clusters are uniform throughout the system, for example, if each cluster were a round trip. This technique is likely to be more efficient than sampling one-way trips at random, since the cost of sampling the return trip is near zero and the coefficient of variation (COV) of boardings on round trips is almost certain to be less than the COV of boardings on one-way trips. Since this technique is really simple random sampling (with a different sampling unit), the estimation and variance formulas used for simple random sampling apply. This technique is not given further consideration in this paper because more gain was expected from using run-pieces as clusters than from using round trips, since randomly sampling round trips will still involve a lot of unproductive waiting and traveling time.

When clusters are run-pieces, they can vary greatly in the number of trips included and in duration, and consequently the cluster totals will vary greatly. For this reason, techniques appropriate to clusters of unequal size are needed. Four such techniques are described next.

TECHNIQUE 2: STRATIFIED RATIO-TO-CLUSTER-SIZE SAMPLING

Clusters are prestratified and are selected with equal probability within each stratum. The value for mean boardings per trip is

\[
\bar{y}_h = \left[\frac{n_h}{\sum_{i=1}^{N_h} \sum_{j=1}^{M_{hi}} y_{hij}} \right] m_{ho}
\]

which is the form of a ratio estimator (with \(n_h \) being the auxiliary variable). The theory of ratio estimators is described by Cochran (4) and by Furth and McCollom (3).

The estimator of stratum total boardings is \(Y_h = M_{ho}\bar{y}_h \), and the system total estimator is

\[
Y_o = \sum_h M_{ho} \bar{y}_h = \sum_h Y_h
\]

The variance of the stratum total estimator is estimated to be

\[
V(Y_h) = \frac{n_h}{P_h - 1} \sum_{i=1}^{P_h} \frac{(y_{hio} - M_{hi} \bar{y}_h)^2}{M_{hi}}
\]

The squared COV of the stratum total estimator (which is also the COV of the stratum mean boardings per trip) is

\[
\sigma^2(Y_h) = V(Y_h)/(N_h M_h \bar{y}_h)^2
\]

The squared COV on a per cluster basis is defined to be

\[
u_h^2 = n_h \sigma^2(Y_h) = \frac{1}{M_h^2} \sum_{i=1}^{P_h} \frac{(y_{hio} - M_{hi} \bar{y}_h)^2}{P_h - 1}
\]
The per cluster term \(u_h \) lends itself to use in the familiar equation
\[
(COV \text{ of mean or total}) = \frac{(COV \text{ of unit})}{(number \ of \ units)^{1/2}}
\]
which for this case takes the form \(v(Y_h) = u_h^2/(n_h)^{1/2} \). The \(u_h \) term is also useful because it can be calculated from the analysis dataset without prior specification of \(n_h \).

The system total variance is simply
\[
V(Y_o) = \frac{h}{n_h} V(Y_h)
\]
(6)

since the clusters in each stratum are selected independently. The system total COV is therefore
\[
v(Y_o) = \frac{\sum u_h^2 M_{ho}^2 y_h^2/n_h^{1/2}}{\sum M_{ho}^2 y_h^2} \]
(7)

and its precision (relative tolerance) is
\[
d = z \sqrt{v(Y_o)}
\]
(8)

To minimize the system total COV for a given overall sample size or to minimize overall sample size for a desired overall COV, the number of clusters sampled in stratum \(h \) should be proportional to \(u_h M_{ho} y_h \), under the assumption that sampling cost is proportional to number of clusters sampled. This is easily seen by minimizing \(v(Y_o) \) subject to a constraint on \(n_h \), or by minimizing \(n_h \) subject to a given \(v(Y_o) \).

For a given total number of clusters \(n_o \), optimal allocation is
\[
n_h = \frac{n_o u_h M_{ho} y_h}{\sum u_h M_{ho} y_h}
\]
(9)

and for a given desired precision \(d \),
\[
n_h = \frac{u_h M_{ho} y_h}{\left(\frac{d}{z}\right)^2 \sum u_h M_{ho} y_h} \]
(10)

However, if cost is proportional to the number of trips sampled (rather than number of runs), it follows that strata with more trips per run should be sampled less. Optimizing leads to
\[
n_h \propto u_h y_h (M_h)^{1/2}
\]
(11)

Most generally, if the cost of sampling a stratum \(h \) cluster is \(c_h \), optimum allocation calls for
\[
n_h \propto u_h y_h M_{ho}^{1/2} (c_h)^{1/2}
\]
(12)

However, Cochran (4) and others point out that the optimum is relatively flat, in the sense that even moderate departures from optimal allocation will lead to little deterioration in accuracy. In our case study, we found that using equal sampling rates (which has the advantage of simplicity and of flexibility in analysis) rarely increased necessary sample size by more than 5 percent optimum allocation.

TECHNIQUE 3: STRATIFIED CLUSTER SAMPLING WITH PROBABILITY PROPORTIONAL TO SIZE

Another sampling approach that recognizes differing cluster sizes is to sample clusters with the selection probability proportional to the number of trips in the cluster (4). The unbiased estimator of stratum \(h \) total boardings is
\[
Y_{APPs} = \frac{M_{ho}}{n_h} \sum_{i=1}^{n_h} \bar{y}_{hi} = M_{ho} \bar{y}_h
\]
(13)

where \(\bar{y}_h \) is the unweighted mean of the cluster trip-level means. One way of selecting run-pieces in proportion to this size is to select trips with equal probability and then take the run-piece to which the selected trips belong. The probability proportional to size (PPS) strategy is different from the ratio-cluster-size approach and requires a different expansion procedure (Equation 13 versus Equation 1). Compared to the ratio-to-cluster-size approach, PPS sampling will tend to sample more large clusters and fewer small clusters, often implying a greater sampling cost per cluster.

Using an analysis dataset of \(p_h \) clusters, the variance of the stratum total estimator is estimated to be
\[
v(Y_{APPs}) = \frac{M_{ho}^2}{n_h (p_h - 1)} \sum_{i=1}^{p_h} (\bar{y}_{hi} - \bar{y}_h)^2
\]
(14)

Its squared COV on a per cluster basis is
\[
u^2_{PPS} = \frac{\sum_{i=1}^{p_h} (\bar{y}_{hi} - \bar{y}_h)^2}{(p_h - 1) \bar{y}_h^2}
\]
(15)

The system total estimator is \(Y_{PPS} = \sum_h Y_{APPs} \). Its variance is again the sum of the stratum total variances:
\[
v(Y_{PPS}) = \sum_h V(Y_{APPs})
\]
(16)

The system total is
\[
v(Y_{oPPS}) = \frac{\sum u_{APPs}^2 M_{ho}^2 y_h^2/n_h^{1/2}}{\sum M_{ho}^2 y_h^2}
\]
(17)

Its precision is
\[
d = z \sqrt{v(Y_{oPPS})}
\]
(18)

If the sampling cost is proportional to the number of runs sampled, and all strata have the same cost per run, optimal allocation between strata calls for
\[
n_h \propto u_{APPs} M_{ho} \bar{y}_h
\]
(19)

If cost is proportional to number of trips, it is important to recognize that the expected number of trips per cluster sampled in stratum \(h \) is greater than \(M_h \) since bigger clusters are
sampled with greater probability. The expected size of a sampled cluster is $M_h^2 (1 + v_{nh}^2)$, where v_{nh} is the COV of cluster size in stratum h. Optimum allocation in this case yields

$$n_h \propto u_{HDPS} \bar{y}_h N_h \left(\frac{M_h}{1 + v_{Mh}^2} \right)^{1/2}$$ \hspace{1cm} (20)$$

Accuracy can be improved by stratifying the sample into homogeneous groups (meaning every trip in the group has nearly equal boardings). The identification of such groups depends to a large degree on the data available. For instance, lines can be stratified by type (local, express, crosstown, etc.) without any data, but these groups may not be very homogeneous. With past data on each line, lines could be stratified by average boardings per trip (e.g., into light, medium, and heavy lines). Further homogeneity can be achieved by stratifying trips according to the average boardings on their line/direction/time period (L/D/TP), if L/D/TP boarding estimates are available. Ideally, if previous estimates of boardings were available for every trip in the system, trips could be stratified directly by their previous estimate. With run-piece clusters, however, clusters may overlap several strata when stratifying by line (i.e., when runs are interlined), and clusters are certain to overlap strata if the finer levels of stratification are used. Technique 4 (ex post facto stratification) is designed to handle clusters that overlap strata.

One way to avoid overlapping strata at a fine level of stratification is direct stratification of clusters, as opposed to stratification of lines or trips. For this purpose, every cluster (run-piece) must be assigned a value of expected boardings per trip, and then clusters can be stratified by this assigned value. If past data on boardings on each trip are available, these figures can be used to generate the value of expected boardings per trip by cluster. If past data do not contain a figure for every trip (e.g., because there are new trips in the schedule), L/D/TP averages derived from past data can be used as estimates for each trip, and these estimates can be aggregated to yield cluster total estimates.

TECHNIQUE 4: RATIO-TO-REVENUE CLUSTER SAMPLING

Based on the reasoning that the number of passengers carried in a trip is approximately proportional to the amount of cash revenue received, a ratio-to-revenue sampling strategy is attractive. Since system cash revenue is known in every transit system, all that must be estimated is the average cash revenue received per boarding passenger. (It is theoretically possible to use an auxiliary variable other than revenue if it is known at the system level, it is well correlated with boardings, and it can be measured at trip level.) The accuracy of this approach will depend, of course, on how uniform cash revenue per boarding is. One limitation of this approach is that revenue must be measurable, either with a registering farebox or by some other means, at trip level. Another limitation is that stratification can only be done to the extent that total revenue is known for the strata. In most transit systems, revenue is not totally by route, though it may be totaled by garage in some cases. Most often, however, revenue is counted in a central counting room, making stratification impossible. Stratification is not included in our presentation of this sampling approach, although an extension to stratified sampling is straightforward. The stratum subscript h is dropped in this section.

The ratio estimator of the number of boardings per cash revenue is

$$\hat{R} = \frac{\sum_{i=1}^{n} Y_{io}}{\sum_{i=1}^{n} S_{io}}$$ \hspace{1cm} (21)$$

where S_{io} and Y_{io} are the cluster i total revenue and boardings. Systemwide boardings can then be estimated as

$$Y_R = R S_o$$ \hspace{1cm} (22)$$

The squared COV of $R (v_R^2)$ and the squared COV on a per cluster basis (v_{RCL}^2) are estimated from an analysis dataset with p clusters as follows:

$$v_R^2 = \frac{1}{n} \left(v_{RCL}^2 + v_{2CL}^2 - 2r_{RCL} v_{RCL} v_{2CL} \right)$$ \hspace{1cm} (23)$$

where the subscript CL denotes a reference to cluster totals, and r_{RCL} is the correlation coefficient between cluster total boardings and revenue.

Y_R has the same COV as R, since they differ only by a multiplicative constant. Therefore the precision of the system estimate is

$$d = z v(Y_R) = \frac{z}{(n)}^{1/2} u_R$$ \hspace{1cm} (25)$$

and the necessary number of clusters to attain a precision level d is

$$n = \frac{u_R^2}{(d^2)^2}$$ \hspace{1cm} (26)$$

TECHNIQUE 5: CLUSTER SAMPLING WITH EX POST FACTO LINE/DIRECTION/TIME PERIOD STRATIFICATION

Suppose trips are to be stratified by line (as to whether the line to which they belong is a high, medium, or low boarding line) and that run-pieces, the natural sampling units, have extensive interlining. Or suppose, in an effort to increase within stratum homogeneity, trips are to be stratified by L/D/TP. In this case a run-piece will nearly always span two directions and often span two or more time periods. One way to deal with run-pieces that
overlap strata is to sample run-pieces without regard to strata (so that all run-pieces are sampled with equal probability) and then stratify the sample trips afterwards. In this context, a run-piec(e the sampling unit) is called a supercluster.

All of the trips in supercluster \(k \) that belong to stratum \(h \) constitute a stratum \(h \) cluster. A trip belongs to stratum \(h \) if the \(\text{L/DTP} \) to which it belongs is classified into stratum \(h \). Thus, there will be at most one stratum \(h \) cluster per supercluster, even if the supercluster contains trips of several lines. The time periods according to which trips are classified can be as long or short as desired; in the limit, the time period could be so short as to include a single trip, implying that trips are classified according to past measured boardings on this trip. While this level of detail is desirable in increasing homogeneity, it requires past data on every trip, and is impractical inasmuch as trip schedules change from year to year.

Some additional notation must be introduced:

\[n = \text{number of superclusters sampled,} \]
\[s_h = \text{fraction of superclusters in the population containing a stratum } h \text{ trip,} \]
\[f_{hl} = \text{fraction of superclusters in the population containing both a stratum } h \text{ trip and a stratum } H \text{ trip,} \]
\[n_{hl} = \text{number of selected superclusters that contain clusters in both strata } h \text{ and } H, \]
\[p_{hl} = \text{number of superclusters in the analysis dataset with clusters in both strata } h \text{ and } H, \]
\[s_{hl} = \text{covariance between boardings in a stratum } h \text{ cluster and boardings in a stratum } H \text{ cluster when both clusters lie in the same supercluster.} \]

The estimator of boardings per trip within stratum \(h \) is \(\bar{y}_h \) as given by Equation 1. (The index \(i \) continues to refer to clusters, not superclusters.) The estimate of system boardings is

\[Y_{EX} = \sum_h s_h M_{ho} \]

(27)

Between superclusters, sample selection is random; however, within superclusters, cluster selection is not random, and therefore the variance of the system total must include covariance terms for clusters lying in the same supercluster. The following derivation omits terms that are \(O(n^2) \) and higher. Since \(Y_{EX} = \sum_h M_{ho} \bar{y}_h \),

\[E[V(Y_{EX})] = E[\frac{1}{n} \sum h^2 \frac{1}{2} M_{ho}^2 V(\bar{y}_h)] \]

\[+ 2E \left[\sum h^2 \frac{1}{2} M_{ho} M_{Ho} \text{ Cov}(\bar{y}_h, \bar{y}_H) \right] \]

\[= E[V_1] + E[V_2] \]

(28)

Here, \(V_1 \) is the intracluster variance and \(V_2 \) is the intercluster (but intrasupercluster) contribution to variance.

The intercluster variance \(V_1 \) is calculated as in the ratio-to-cluster-size approach (Equations 3-5). Expressing the variance of the stratum \(h \) mean in terms of the per cluster \(\text{COV} \) yields

\[V(\bar{y}_h) = \frac{\mu_h^2}{n_h} \]

(29)

Before the sample is selected, \(n_h \) is unknown. Using the first order approximation \(E(1/n_h) = 1/E(n_h) \), it can be determined that

\[E[V_1] = \frac{1}{n} \sum h^2 M_{ho}^2 \frac{\mu_h^2}{n_h} \]

(30)

With respect to \(V_2 \), the between cluster contribution to variance,

\[\text{Cov}(\bar{y}_h, \bar{y}_H) = \frac{1}{m_{ho}} \sum \text{Cov} \left(\sum \bar{y}_{hio}, \sum \bar{y}_{Hio} \right) \]

(31)

Using the identity \(\text{Cov}(\sum A_i, \sum B_j) = \sum_i \sum_j \text{Cov}(A_i, B_j) \), it can be determined that

\[\text{Cov}(\bar{y}_h, \bar{y}_H) = \frac{1}{m_{ho}} \sum \sum \text{Cov}(y_{hio}, y_{Hio}) \]

(32)

The second equality follows here because

\[\text{Cov}(y_{hio}, y_{Hio}) = \begin{cases} s_{hl} & \text{if cluster } i \text{ and cluster } i' \text{ lie in the same supercluster} \\ 0 & \text{otherwise} \end{cases} \]

(33)

since superclusters are chosen independently. Using the index \(k \) to refer to a supercluster, and dropping the indices \(i \) and \(i' \) (since a supercluster cannot contain more than one cluster in a given stratum), the covariance term is estimated as

\[\text{Cov}(y_{hio}, y_{Hio}) = s_{hl} \frac{\sum_{k=1}^{p_{hl}} (y_{kho} - M_{ho} \bar{y}_h)(y_{kHio} - M_{Ho} \bar{y}_H)}{p_{hl} - 1} \]

(34)

The corresponding correlation coefficient is

\[r_{hl} = \frac{s_{hl}}{u_h \bar{y}_h M_{ho} u_H \bar{y}_H M_{Ho}} \]

(35)

Now \(V_2 \) can be expressed as follows:

\[V_2 = 2 \sum h^2 \sum \frac{n_{hl}}{m_{ho}} \frac{u_h \bar{y}_h M_{ho} M_{Ho} r_{hl}}{u_H \bar{y}_H M_{Ho} M_{Ho}} \]

(36)
To get $E[V_2]$, the first order approximation is made

$$E\left[\frac{n_{hl}}{m_{ho} m_{Ho}}\right] = \frac{E[n_{hl}]}{E[m_{ho}] E[m_{Ho}]} = \frac{n \sum_{hl} f_{hl}}{n^2 g_h s_H M_h M_H}$$

Combining the V_1 and V_2, the variance of the ex post facto estimator is

$$E[V(Y_{EX})] = \frac{1}{n} \left\{ \frac{1}{g_h} \sum M_{ho}^2 u_h^2 \gamma_h^2 + 2 \frac{1}{g_h} \sum M_{ho} M_H u_h \gamma_H \gamma_h f_{hl} \right\}$$

The per-supercluster squared COV σ_{EX}^2 (which is stratum independent) is given by

$$\sigma_{EX}^2 = \frac{n E[V(Y_{EX})]}{Y_{EX}^2}$$

and can be calculated directly from an analysis dataset. The precision obtained from a sample of n superclusters (run-pieces) is therefore

$$d = \frac{z \sigma_{EX}}{(n)^{1/2}}$$

and the number of superclusters that must be sampled to obtain a precision d is

$$n = \left(\frac{z \sigma_{EX}}{d}\right)^2$$

SCRTD CASE STUDY

SCRTD has for many years had a regular program of system-wide estimation of unlinked passenger trips. Fare checks are conducted on a sample of about 200 half-runs each quarter, observing the fare type for each boarding passenger. The estimation procedure used was ratio-to-cluster-size with lines stratified into four groups: express, and three groups of local lines. A dataset of most recent ride checks on each line, as measured by past ride checks, was high, medium, or low. These analyses were then repeated using eight strata, by simply bisecting the four strata. Ratio-to-cluster-size sampling was also analyzed with direct stratification of run-pieces. In this case, expected boardings were calculated for each run-piece in the population (by summing expected boardings on each trip in the run-piece, which was in tum set equal to the mean boardings for trips in the corresponding line, direction, and 1-hr time period from past data) and run-pieces were stratified into eight strata according to expected boardings per trip without regard to line type. A ninth stratum had to be created for clusters for which there were no past ride check data for calculating expected boardings.

The ratio-to-revenue approach was also analyzed, without stratification. This approach presented a difficulty in that SCRTD fareboxes do not register receipts. Cash revenue must therefore be estimated from the number of people boarding in each fare category and is subject to error from miscounting people and from underpayment and overpayment. A project report (5) documents how this problem was analyzed. Essentially, it was found that calculated revenue differed less from measured revenue than the normal sampling error expected for measured revenue, so that calculated revenue could be treated as virtually identical to measured revenue.

Finally, stratified sampling with ex post facto L/D/TP stratification was examined. Five time periods were used. No distinction was made between express and local lines. Analyses were done using both four and eight strata. Optimum allocation was used with a goal of minimizing clusters.

The results of ratio-to-cluster-size and PPS sampling with four and eight strata are found in Tables 1 and 2. Accuracy improves significantly by going to eight strata. The methods produce similar results. To achieve a ±10 percent precision with eight strata, and constraining each stratum’s sample to contain at least four clusters, the ratio-to-cluster-size approach requires 58 clusters, while the PPS approach requires 64 clusters. However, since the PPS method oversamples the larger clusters, the number of trips to be sampled by the PPS method is far more—408 versus 252 for ratio-to-cluster-size sampling.
TABLE 1 RESULTS: RATIO-TO-CLUSTER-SIZE APPROACH

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Threshold</th>
<th>Clusters</th>
<th>Mean Cluster Size</th>
<th>Clusters in Dataset</th>
<th>Mean Boardings</th>
<th>COV</th>
<th>Clusters to Reach 10 Percent</th>
<th>Adjusted (min. 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample with Four Strata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>1,874</td>
<td>4.0</td>
<td>49</td>
<td>111.8</td>
<td>0.32</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>1,178</td>
<td>4.7</td>
<td>53</td>
<td>68.0</td>
<td>0.45</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>252</td>
<td>6.0</td>
<td>44</td>
<td>29.8</td>
<td>0.70</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>Express</td>
<td>1,160</td>
<td>2.4</td>
<td>48</td>
<td>48.4</td>
<td>0.94</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Total number of clusters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Expected number of trips</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>317</td>
<td>317</td>
</tr>
<tr>
<td>Sampling with Eight Strata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>154</td>
<td>6.1</td>
<td>23</td>
<td>23.98</td>
<td>0.713</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>228</td>
<td>5.2</td>
<td>22</td>
<td>42.82</td>
<td>0.252</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>498</td>
<td>5.4</td>
<td>23</td>
<td>62.05</td>
<td>0.484</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>75</td>
<td>940</td>
<td>4.3</td>
<td>33</td>
<td>88.93</td>
<td>0.327</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>754</td>
<td>4.1</td>
<td>19</td>
<td>111.00</td>
<td>0.242</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>115</td>
<td>690</td>
<td>4.1</td>
<td>18</td>
<td>127.95</td>
<td>0.359</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>Express</td>
<td>244</td>
<td>2.7</td>
<td>18</td>
<td>28.47</td>
<td>0.582</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>Express</td>
<td>688</td>
<td>2.9</td>
<td>27</td>
<td>46.85</td>
<td>0.405</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Total number of clusters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>58</td>
</tr>
<tr>
<td>Expected number of trips</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>228</td>
<td>252</td>
</tr>
</tbody>
</table>

TABLE 2 RESULTS: SELECTION PROBABILITY PROPORTIONAL TO CLUSTER-SIZE APPROACH

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Threshold</th>
<th>Clusters</th>
<th>Mean Cluster Size</th>
<th>Clusters in Dataset</th>
<th>Mean Boardings</th>
<th>COV</th>
<th>Clusters to Reach 10 Percent</th>
<th>Adjusted (min. 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample with Four Strata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>1,874</td>
<td>4.9</td>
<td>49</td>
<td>118.2</td>
<td>0.121</td>
<td>36</td>
<td>34</td>
</tr>
<tr>
<td>2</td>
<td>50</td>
<td>1,178</td>
<td>5.9</td>
<td>53</td>
<td>72.8</td>
<td>0.175</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>252</td>
<td>9.1</td>
<td>44</td>
<td>33.1</td>
<td>0.177</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>Express</td>
<td>1,160</td>
<td>3.4</td>
<td>48</td>
<td>42.8</td>
<td>0.288</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Total number of clusters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>Expected number of trips</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>341</td>
<td>341</td>
</tr>
<tr>
<td>Sampling with Eight Strata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>154</td>
<td>10.7</td>
<td>23</td>
<td>29.1</td>
<td>0.224</td>
<td>1.0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>228</td>
<td>7.3</td>
<td>22</td>
<td>41.9</td>
<td>0.072</td>
<td>2.0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>498</td>
<td>8.0</td>
<td>23</td>
<td>71.3</td>
<td>0.176</td>
<td>9.0</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>75</td>
<td>940</td>
<td>6.1</td>
<td>33</td>
<td>90.9</td>
<td>0.072</td>
<td>11.0</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>754</td>
<td>6.0</td>
<td>19</td>
<td>108.3</td>
<td>0.147</td>
<td>14.0</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>115</td>
<td>690</td>
<td>6.1</td>
<td>18</td>
<td>134.7</td>
<td>0.146</td>
<td>17.0</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>Express</td>
<td>244</td>
<td>4.7</td>
<td>18</td>
<td>30.3</td>
<td>0.348</td>
<td>1.0</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>Express</td>
<td>688</td>
<td>4.7</td>
<td>27</td>
<td>51.7</td>
<td>0.196</td>
<td>5.0</td>
<td>5</td>
</tr>
<tr>
<td>Total number of clusters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td>64</td>
</tr>
<tr>
<td>Expected number of trips</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>382</td>
<td>408</td>
</tr>
</tbody>
</table>
The results of directly stratifying run-pieces are found in Table 3. Only 38 clusters or 154 trips are needed to achieve ±10 percent precision. The improved accuracy follows from using a stratification scheme that indirectly accounts for direction and time period as well as line, and thus reduces the within stratum variability.

The ratio-to-revenue approach requires 59 clusters to achieve a ±10 percent precision, about the same as revenue-to-cluster-size with eight strata. This implies that the boardings on a trip can be guessed equally well by either knowing cash revenue on the trip or knowing which of the eight strata it belongs to. This rather disappointing performance of the ratio-to-revenue approach is apparently due to the variability between routes in the incidence of pass use (which constitutes 50 percent of all boardings) and of reduced fares, making cash revenue a weak indicator of total boardings.

Ex post facto stratification stratum characteristics are given in Table 4 and the interstratum correlations in Table 5. The results of using ex post facto stratification with four strata are presented in Table 6. Of particular interest is the level of between-cluster, within-supercluster correlation. The correlations between adjacent strata are quite strong while those between nonadjacent strata are nearly zero. The overall between-cluster effect is small but significant; it is 12 percent as large as the within-cluster variance. (Interestingly, the between-cluster effect in the November dataset was slightly negative, reducing the overall COV.) The number of run-pieces needed to reach the ±10 percent precision, based on February results, is 74. With eight strata, the between-cluster effect is larger, increasing to 63 percent of the within-cluster effect, and the needed sample size increases to 97.

Table 3: Results: Direct Stratification of Clusters

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Threshold</th>
<th>Clusters</th>
<th>Mean Cluster Size</th>
<th>Clusters in Dataset</th>
<th>Mean Boardings</th>
<th>COV</th>
<th>Clusters to Reach 10 Percent</th>
<th>Adjusted (min. 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Unknown</td>
<td>134</td>
<td>3.1</td>
<td>14</td>
<td>28.3</td>
<td>1.664</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>639</td>
<td>4.2</td>
<td>52</td>
<td>30.0</td>
<td>0.506</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>429</td>
<td>4.6</td>
<td>35</td>
<td>44.6</td>
<td>0.352</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>55</td>
<td>544</td>
<td>4.4</td>
<td>21</td>
<td>69.4</td>
<td>0.253</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>70</td>
<td>644</td>
<td>4.4</td>
<td>25</td>
<td>76.3</td>
<td>0.247</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>85</td>
<td>556</td>
<td>4.3</td>
<td>16</td>
<td>117.3</td>
<td>0.190</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>391</td>
<td>4.2</td>
<td>11</td>
<td>107.1</td>
<td>0.197</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>110</td>
<td>608</td>
<td>3.8</td>
<td>9</td>
<td>128.6</td>
<td>0.313</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>130</td>
<td>397</td>
<td>3.5</td>
<td>10</td>
<td>142.3</td>
<td>0.281</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Total number of clusters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expected number of trips</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>139</td>
<td>154</td>
</tr>
</tbody>
</table>

Table 4: Ex Post Facto Stratification: Stratum Characteristics

<table>
<thead>
<tr>
<th>Stratum</th>
<th>Threshold</th>
<th>Trips</th>
<th>Percent Supercusters Touching</th>
<th>Sample</th>
<th>Trips/Cluster</th>
<th>Boardings/</th>
<th>Cluster COV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1,712</td>
<td>18</td>
<td>3.2</td>
<td>39.3</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>2,781</td>
<td>31</td>
<td>2.4</td>
<td>54.6</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>50</td>
<td>4,345</td>
<td>49</td>
<td>2.4</td>
<td>90.8</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>8,170</td>
<td>62</td>
<td>2.4</td>
<td>104.9</td>
<td>0.43</td>
<td></td>
</tr>
</tbody>
</table>

An overall comparison of the sample size requirements of the different sampling approaches is given in Table 7. The recommended approach, direct stratification, requires only 38 half-runs, an 81 percent savings as compared with the 200 half-runs that were being sampled by SCRTD before this study was done.

Comparison of Cluster Sampling and Simple Random Sampling

One way of comparing simple random sampling with cluster sampling is the quantity known as Kish's deff (for design effect), given by

$$\text{deff} = \frac{\text{sample size under cluster sampling}}{\text{sample size under simple random sampling}}$$

Note that the numerator is the number of elements (i.e., trips, sampled) rather than the number of clusters sampled.

Cochran (4) shows that deff will be greater or less than unity to the degree that between-cluster variance, as opposed to
Because many of the clusters in the dataset consisted of only routes in spring 1984. For these purposes, a cluster was defined as a group of trips on the same line in the same driver run. Because many of the clusters in the dataset consisted of only two or three trips, and because the intent was to determine the

Within-cluster variance, contributes to overall variance. If the majority of the variance is within clusters, cluster sampling can require fewer data than simple random sampling. Cochran also shows how deft can be related to the intracluster correlation.

To get an indication of the value of deft for a system level estimate of boardings, the necessary sample size to achieve 0.10 precision with stratified simple random sampling of trips was calculated—stratifying by line into four strata (three strata of local lines, one of express) and using optimal allocation among strata—and compared with the number of trips required by cluster sampling using the ratio-to-cluster-size approach with the same stratification scheme. The results, displayed in Table 9, show that cluster sampling requires 2.2 times as many trips as simple random sampling. However, because sampling trips by run-piece is about three to four times less costly than random sampling of trips (because return trips are allowed and no time is wasted traveling between trips and waiting for trips), cluster sampling is estimated to cost only one-half to two-thirds as much as simple random sampling.

Kish’s deft was also calculated for each of the four strata separately. The results, displayed in Table 8, show that cluster sampling produces little if any savings in the strata of low volume lines and express lines, where the per cluster COV is about the same as the per trip COV (implying that it is just as good to sample a trip as it is to sample a cluster of trips).

Under a separate UMTA Service and Methods Demonstration also performed by Multisystems, Inc., cluster sampling was compared with simple random sampling for estimating line-specific and L/D/TP-specific averages. The data were ride checks done intensively by run-piece on selected Pittsburgh routes in spring 1984. For these purposes, a cluster was defined as a group of trips on the same line in the same driver run. Because many of the clusters in the dataset consisted of only two or three trips, and because the intent was to determine the

<table>
<thead>
<tr>
<th>TABLE 6</th>
<th>RESULTS OF EX POST FACTO STRATIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratum</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0.7475</td>
</tr>
<tr>
<td>2</td>
<td>0.7312</td>
</tr>
<tr>
<td>3</td>
<td>0.7445</td>
</tr>
</tbody>
</table>

Note: Relative Covariance = $V_y/V_x = 0.1210$. Per cluster COV = 0.41. Sample size to reach 10 percent precision = 74.

<table>
<thead>
<tr>
<th>TABLE 7</th>
<th>COMPARISON OF CLUSTER SAMPLING APPROACHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach</td>
<td>Number of Strata</td>
</tr>
<tr>
<td>Ratio-to-cluster-size, line stratification</td>
<td>4</td>
</tr>
<tr>
<td>Ratio-to-cluster-size, cluster stratification</td>
<td>8</td>
</tr>
<tr>
<td>PPS with line stratification</td>
<td>8</td>
</tr>
<tr>
<td>Ratio-to-revenue</td>
<td>8</td>
</tr>
<tr>
<td>Ex post facto stratification by L/D/TP</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 8</th>
<th>COMPARISON OF CLUSTER AND SIMPLE RANDOM SAMPLING, SCRTD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratum</td>
<td>Cluster Sampling</td>
</tr>
<tr>
<td>Clusters Needed</td>
<td>Trips Needed</td>
</tr>
<tr>
<td>Requirements to Achieve 10 Percent Precision for Each Stratum</td>
<td></td>
</tr>
<tr>
<td>Express</td>
<td>390</td>
</tr>
<tr>
<td>Local</td>
<td>80</td>
</tr>
<tr>
<td>Low</td>
<td>216</td>
</tr>
<tr>
<td>Medium</td>
<td>89</td>
</tr>
<tr>
<td>High</td>
<td>45</td>
</tr>
<tr>
<td>Requirements to Achieve 10 Percent Precision at the System Level</td>
<td></td>
</tr>
<tr>
<td>Express</td>
<td>17</td>
</tr>
<tr>
<td>Local</td>
<td>4</td>
</tr>
<tr>
<td>Low</td>
<td>23</td>
</tr>
<tr>
<td>Medium</td>
<td>45</td>
</tr>
<tr>
<td>High</td>
<td>36</td>
</tr>
<tr>
<td>Total</td>
<td>317</td>
</tr>
</tbody>
</table>

effect of sampling in larger clusters, only clusters of four or more trips were admitted. There were 18 routes with at least eight such clusters (mean = 40 clusters per route). The mean cluster size was 5.0, as four- and five-trip clusters accounted for 75 percent of all the clusters with at least four trips. This average seems to indicate either a practice of sampling run-pieces of 3 to 4 hours or that runs are interlined and therefore each run produces two or more smaller clusters.

The results for line-specific estimates are summarized in Table 9. Two ratios, boardings/maximum load and passenger-

<table>
<thead>
<tr>
<th>TABLE 9</th>
<th>DESIGN EFFECT DUE TO SAMPLING BY RUN FOR ROUTE LEVEL STATISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistic</td>
<td>Mean deft</td>
</tr>
<tr>
<td>Ratio: boardings/maximum load</td>
<td>1.24</td>
</tr>
<tr>
<td>Ratio: pass-mi/maximum load</td>
<td>1.10</td>
</tr>
<tr>
<td>Mean boardings</td>
<td>1.32</td>
</tr>
</tbody>
</table>

Note: Mean cluster size = 5.0 (min = 4, max = 16, COV = 0.26). Mean number of clusters per route = 39.8 (min = 10, max = 97). Number of routes = 18. |

ρ = intracluster correlation.

<table>
<thead>
<tr>
<th>TABLE 10</th>
<th>ESTIMATED DESIGN EFFECT FOR SAMPLING BY RUN-PIECE FOR ROUTE LEVEL STATISTICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Number of One-Way Trips per Run-Piece</td>
<td>Ratio of Boardings/Max Load</td>
</tr>
<tr>
<td>3</td>
<td>1.15</td>
</tr>
<tr>
<td>5</td>
<td>1.30</td>
</tr>
<tr>
<td>10</td>
<td>1.60</td>
</tr>
<tr>
<td>15</td>
<td>2.00</td>
</tr>
</tbody>
</table>
miles/maximum load, were examined, along with one mean, boardings. The average design effect is moderate, calling for sample size increases of 10 to 32 percent. However, the variation is quite wide, especially for mean boardings, where def! varies from 0.12 for one route to 3.20 for another. The range for the ratios is smaller, with the highest def! calculated to be 1.84.

The results were extended to cover situations of different average cluster size. The average design effect was calculated using the measures of intraclass correlation (rho) and COV of cluster size calculated from the Pittsburgh data. The resulting figures were then inflated a little to make them somewhat conservative, considering the large amount of variation between routes. The resulting recommended design effects are given in Table 10. As the results indicate, the design effect becomes quite large as cluster size increases. Since sampling run-pieces of around five trips captures most of the cost savings of sampling by run, sampling by half-run appears to be more efficient than sampling by entire run.

The impact of cluster sampling in estimating means and ratios at the line/direction/time period level was also investigated. Since runs do not usually contain more than a few trips in a given direction in a given time period, clusters are very small. In the Pittsburgh data, there were 69 L/D/TPs with at least eight clusters; average cluster size was 2.3. The results for the ratio of boardings to maximum load are presented in Table 11.

The overall average def! was 1.0, indicating a neutral effect of sampling by run. As expected, a larger design effect was observed in the all-day weekend periods (average def! = 1.19 for Saturday, 1.10 for Sunday), which have larger clusters. The greatest def! for a single L/D/TP was 1.75. A further test showed no difference between the average def! for better patronized L/D/TPs (mean peak load greater than 25) and less well patronized L/D/TPs. Because of the small cluster sizes and neutral design effect found for the L/D/TP-level boardings per maximum load ratio, no further investigation for L/D/TP-level statistics was done.

Based on these results, it seems safe to say that cluster sampling for L/D/TP level statistics can be considered to be just as good as simple random sampling for weekday time periods. For all-day weekend periods, sample size should be increased by 20 percent. This additional burden is still small, however, in comparison with the inefficiencies of simple random sampling by trip.

ACKNOWLEDGMENT
The research reported here was funded in part by UMTA.

REFERENCES

Publication of this paper sponsored by Committee on Public Transportation Marketing and Fare Policy.