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Predicting Pedestrian Crosswalk Volumes 

SCOTT E. DAVIS, L. ELLIS KING, AND H. DOUGLAS ROBERTSON 

The measurement of pedestrian volumes for use in determin­
ing signal warrants or calculating accident exposure has tradi­
tionally been accomplished by manual counting. Some efforts 
have been directed to the development of mechanical devices 
and analytical modeling. None of these developments have yet 
enjoyed widespread success and acceptance. In an effort to 
reduce the costs and resources to produce manual pedestrian 
counts, a sampling technique was developed using expansion 
models to predict hourly pedestrian volumes, thus reducing 
manpower requirements and data collection costs. The pro­
cedure was developed from data collected in Washington, D.C., 
that included over 18,000 5-min pedestrian count intervals. 
The resulting expansion models were validated with data not 
used to develop the models. The models and the procedures for 
applying them were deemed valid. There was strong intuitive 
evidence that this method may be applicable in other cities 
even though this aspect has not yet been tested. 

The measurement of pedestrian volumes is considerably more 
difficult than the measurement of vehicle volumes. When com­
pared to vehicles, pedestrians are less confined to marked 
traffic lanes; frequently tend to form groups; object to being 
controlled, observed, or measured; and display a great curiosity 
for unfamiliar objects and situations. In part, because of this 
variability and unpredictability of pedestrian movements, most 
pedestrian studies have used manual counts at specific sites for 
limited periods of 1 to 10 hr to obtain pedestrian volume data. 
Although this technique is labor intensive and expensive, past 
studies have not generally concerned themselves with develop­
ing more efficient data collection techniques. 

The purpose of this study was to develop an optimum pedes­
trian sampling scheme using small count intervals to predict 
hourly and multihourly pedestrian volumes. With such a tech­
nique developed, savings in time and resources would be ob­
tained to be applied with the two primary uses of these data: (a) 
evaluation of traffic signal warrants and (b) exposure data to be 
used in conjunction with accident or conflict data to produce 
accident rates or hazard indices. 

PEDESTRIAN VOLUME MEASURING 
TECHNIQUES 

Although manual counting is the most prevalent method of 
collecting pedestrian volume data, mechanical counting de­
vices and analytical models have been developed for measuring 
pedestrian volumes. Cameron (1-3) describes an automatic 
pedestrian counter that was developed and refined during 1971 
and 1972 in Seattle, Washington. The automatic pedestrian 
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counter was used to record pedestrian volumes for a downtown 
employee population, a downtown shopper population, and a 
mixed population of employees, shoppers, visitors, and resi­
dents. Cameron concluded that the automatic pedestrian 
counter could be used to provide a reliable, economic data base 
for planning and designing pedestrian movement systems. 

Mudaly (4, 5) describes a computer-based infrared pedes­
trian data acquisition system. The combined hardware-software 
instrumentation system enables pedestrian flow conditions at 
any point in a pedestrian traffic stream to be sampled, event by 
event, stored on magnetic cassette tape, and analyzed remotely 
by a digital computer. A photocell detector senses infrared 
reflections off the human body and clothing from a linear lamp. 
The effectiveness of the technique was evaluated by observa­
tion and by manually and automatically recording count com­
parisons. The error between observed number of pedestrians 
and automated count number was found to be approximately 5 
percent. 

Although automatic pedestrian counters have been de­
veloped, they have not been widely accepted and used. The 
mechanical counter developed and used in Seattle, Washington, 
has not been reported as being used outside that city and has 
not been used there on a regular basis. The computer-based 
infrared system first reported in 1979 and then again in 1980 
has not been found in the literature since that time. It appears 
that this is not an area of active interest or current research and 
development. 

Mathematical models for predicting pedestrian volumes 
have been developed, but they suffer from various deficiencies 
and limitations (6-9). Most models are site specific (i.e., they 
are limited to the area for which they have been developed and 
no record has been found of any attempt to generalize models 
from one city to another). The accuracy of the models depends 
on the amount and type of input data. Data collection costs 
increase rapidly as the amount and complexity of data increase. 
Finally, the reported models have not been tested over an 
extended period of time and temporal effects could have a 
significant influence on their accuracy. 

Manual counting procedures using direct observation is the 
method most commonly used by cities to gather pedestrian 
volume data for routine use. Continuous counting procedures 
and sampling procedures are generally employed in this 
method. Pedestrian counts are generally conducted in accor­
dance with procedures that are widely recognized and accepted 
but which may vary from city to city. Several research studies 
have also used manual counting procedures. However, these 
pedestrian volume counts were usually included as part of a 
larger study and were not the main focus of the research. 
Several studies have used some form of sampling for pedes­
trian volume data collection. Manual pedestrian counting pro­
cedures currently in use are both costly and labor intensive. 
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METHODOLOGY 

Short-term vehicle counts of 5, 6, 10, or 15 min are routinely 
used to estimate hourly and daily vehicle volumes. In most 
cases the accuracy of the expanded counts is adequate for their 
intended use such as analysis of maximum flow rates, flow 
variations within peak hours, capacity limitations, and peak 
hour volume characteristics. One of the major uses for pedes­
trian volume data is to determine whether or not revised War­
rant 3, the minimum pedestrian volume warrant for the installa­
tion of traffic signals, as specified in the Manual on Uniform 
Traffic Control Devices (MUTCD) is satisfied. To make this 
determination, a knowledge of hourly pedestrian volumes for 
the highest volume hour (at least 190 pedestrians) or 4 hr (at 
least 100 pedestrians per hour) during the day is required In 
view of this requirement and considering the variable nature of 
pedestrian activities, pedestrian counts are usually made con­
tinuously for a 10- to 12-hr period This technique provides 
great accuracy, but is labor intensive and therefore expensive. 

The expansion model developed in this study uses a sam­
pling technique to predict hourly pedestrian volumes, thus 
reducing manpower requirements and data collection costs. For 
this method, a short-term count is taken within each hour (or 
multihour) of the study period and expanded, based on the 
length of the count period, to predict the total count for the 
hour(s). In this way hourly volume counts may be determined 
for the entire study period. The accuracy of the expanded 
counts is determined by the length of the count period and the 
position of the count period within the hour(s). For example, a 
5-min count may be selected for a given crossing site. It could 
be specified that this count be made for the first 5 min of each 
hour, the last 5 min of each hour, some 5-min period within the 
hour, or for a randomly chosen 5-min period within each hour. 
This study investigated sampling schemes with sampling peri­
ods of varying length, occurring at differing positions within 
the hour, in order to determine an optimum procedure. 

DATA COLLECTION 

The data for this study were the number of pedestrians ob­
served crossing at either an intersection or midblock crossing 
during 5-min intervals . Data were collected in Washington, 
D.C., during July 1986 at eight intersections and six mid-block 
locations. The principal criterion for site selection was land 
use, because this is usually the dominant factor in the genera­
tion of pedestrian trips. The sites by name, primary land use, 
and type of crossing are given in Table 1. A mixture of sig­
nalized and unsignalized locations was obtained. Care was 
taken to select locations with significant pedestrian volumes so 
that an adequate amount of data could be collected within the 
resources of the study. 

All pedestrian crossings were counted at each site during 
each 12-hr data collection period These 12-hr samples con­
sisted of continuous counts that were made at each site by one 
or two data collectors (depending on the level of pedestrian 
activity). The counts were made on weekdays for the 12-hr 
period from 7 a.m. to 7 p.m. Pedestrian volumes were recorded 
in each crosswalk at 5-min intervals. Three days of data were 
recorded at each site. 
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TABLE 1 SITES SELECfED 

Land Type of 
Site Use Crossing 

Connecticut Ave. at National Zoo, N. W. R M 
14th & E Sts., N.W. 0 I 
14th & U Sts., N.W. Rs I 
23rd & H Sts., N.W. s I 
Jefferson Dr. & 7th St., S.W. c I 
12th & Monroe Sts., N.E. Rs I 
15th St. & Constitution Ave., N.W. R I 
1st St & Independence Ave., S.E. c I 
Connecticut Ave. & DeSales St, N.W. 0 M 
Howard University on Georgia Ave., N.W. s M 
Connecticut Ave. & Woodley Road, N.W. Rs I 
17th St., N.W. between Constitution & 

Independence Aves. c M 
4200 block Massachusetts Ave., N.W. Rs M 
7th St south of D St., S.W. 0 M 

Norn: C = cultural/entertainment, I = intersection, M = midblock, 0 = 
office/retail, R =recreation/parks/zoo, Rs =residential (multifamily), and S 
= schools/Institutions. 

DATA ANALYSIS 

A data base of 18,432 5-min intervals of pedestrian counts was 
produced that in tum permitted a complete and thorough anal­
ysis of any combination of variables. For model development, 
10 sites were randomly selected from the 14-site data base. The 
remaining four sites were used to validate the models. Only the 
first data set (one 12-hr day of data per site approach) was used 
for both modeling and validation. Thus, 408 hr of observations 
were used in the expansion modeling and 120 hr in the 
validation. 

The sampling interval times investigated were 5, 10, 15, and 
30 min. All of these sampling intervals were analyzed for the 
first, middle, last, and random positions in the time frame being 
predicted. 

In reviewing the data distributions for use in the 1-hr 
prediction models , all variables showed positive skewness. 
(Normality of data is a requirement in regression.) The skew­
ness values associated with each interval and position variable 
are shown in Table 2. For a sample size greater than 250, the 
critical skewness value (Bl) at a 98 percent confidence level is 
0.13. The original data for all variables had skewness values 
greater than 3. 

To adjust these data in order to produce a normal distribu­
tion, the logarithms were calculated for all observations for all 
variables. Table 2 also shows the skewness values for the 
logarithmic transformation. All variables except for last 10-
min, first 15-min, and last 15-min events are less than the 
critical value of 0.13; thus, at the 98 percent confidence level, 
these variables constitute a nonnal dist.rihution. As for the three 
exceptions, they are slightly skewed to the negative side of the 
normal distribution. However, regression was performed on all 
variables while recognizing that these three exceptions were 
not normally distributed. 

From the regression analysis of 1-hr modeling, Table 3 was 
constructed to evaluate the count intervals and the position of 
the events within the interval. For all count intervals, the 
middle event produced the better model because it exhibited 
the highest coefficient of determination (R2) and the lowest 
standard error about the mean (SEY). Also, it was apparent that 
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TABLE 2 SKEWNESS VALUES FOR 1-HR MODEL VARIABLES 

Time Interval and Original Data Transformed Data 

Position Within Hr Sample Size Value Sample Size Value 

Total hr 408 3.80 408 --0.06 
First 5 min 402 4.07 358 0.02 
Middle 5 min 404 3.88 366 --0.02 
Last 5 min 404 3.81 374 --0.04 
Random 5 min 404 4.09 370 0.03 
First 10 min 408 4.00 394 --0.08 
Middle 10 min 404 3.78 396 --0.08 
Last 10 min 404 3.84 393 --0.19a 
Random 10 min 404 5.07 394 --0.07 
First 15 min 408 3.90 402 --0.16a 
Middle 15 min 404 3.86 399 0.02 
Last 15 min 404 3.68 400 --0.2la 
Random 15 min 404 3.45 401 --0.10 
First 30 min 408 4.01 408 --0.08 
Middle 30 min 404 3.88 404 --0.01 
Last 30 min 404 3.71 403 --0.04 
Random 30 min 404 3.86 403 --0.00 

NoTE: Not all samples will have 408 observations because of missing data 
or logarithms of observations with cowilS of zero. 
aExceeded critical skewness value of 0.13. 

as the count interval increased from 5 to 10 to 15 to 30 min, the 
prediction models became better. This was expected since the 
variation among count intervals decreased as the count interval 
increased. Therefore, based on the R2 and SEY values, the 
middle event count intervals were selected as the best predic­
tors of 1-hr counts. 

TABLE 3 COEFFlCIENTS OF DETERMlNATION AND 
STANDARD ERROR OF ESTIMATES FOR 1-HR 
MODELS 

Variables Correlated 
with Total Hr R2 SEY 

First 5 min 0.72 0.26 
Middle 5 min 0.77 0.22 
Last 5 min 0.75 0.24 
Random 5 min 0.73 0.25 
First 10 min 0.80 0.22 
Middle 10 min 0.86 0.18 
Last 10 min 0.82 0.20 
Random 10 min 0.70 0.27 
First 15 min 0.85 0.19 
Middle 15 min 0.91 0.15 
Last 15 min 0.88 0.17 
Random 15 min 0.90 0.15 
First 30 min 0.94 0.12 
Middle 30 min 0.96 0.09 
Last 30 min 0.94 0.12 
Random 30 min 0.95 0.11 

NoTE: All F- and I-statistics were significant at p = 0.0001. 

The expansion models developed for the middle event of the 
four count intervals follow: 

5 min: Vl = 19.91 /5°·7862 (1) 

where Vl is 1-hr prediction and /5 is the middle 5-min count. 

10 min: Vl = 9.82 1100.8465 (2) 

where / 10 is the middle 10-min count. 
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15 min: Vl = 5.75 1150.8996 (3) 

where / 15 is the middle 15-min count. 

30 min: V 1 = 2.37 1300.9625 (4) 

where /30 is the middle 30-min count. 

As stated earlier, the larger the count interval for the middle 
event became, the better the volume prediction became. 
However, all models are presented in order to give the user the 
option of choosing the desired degree of accuracy. The user 
may need only a rough 1-hr estimation, thus using a middle 
5-min count is adequate. If a more accurate 1-hr estimation is 
desired, a middle 30-min count may be required. 

Models were also developed for 2-, 3-, and 4-hr volume 
counts using the same procedures discussed previously. Thus, 
only a brief description of each of these models will follow. 
Because the random sampling scheme produced the poorest 
results for the 1-hour modeling, this scheme was not used for 
the modeling of 2-, 3-, and 4-hr volumes. Also, the "middle 
event" was defined as the middle period of the time interval 
being modeled. 

Skewness values were determined for the observations of the 
first, middle, and last count interval variables. Again, all vari­
ables had positive skewed distributions, and the logarithm was 
taken to correct this skewness. A few variables still exhibited 
skewness; however, as before, regression was used on all sam­
pling schemes. 

Using R2 and SEY' the sampling scheme models were evalu­
ated to find the optimum counting event. The values of R2 and 
SEY for each set of multihour models are presented in Table 4. 
Reviewing this table showed the middle event of all counting 
intervals to produce the better models. Also, as the count 
interval increased, the expansion models' predictability im­
proved. Based on these results, the middle event produced the 
best predictor of multihour volumes, which corresponded to the 
findings with the 1-hr models. The equations for the three 
multihour expansion models based on the middle event follow: 

5 min: V2 = 43.04 J 5°·7686 (5) 

10 min: V2 = 20.89 110°·8226 (6) 

15 min: V2 = 14.65 1150.8241 (7) 

30 min: V2 = 6.14 1300.8918 (8) 

where V2 is the 2-hr volume prediction. 

5 min: V3 = 60.19 150.7851 (9) 

10 min: V3 = 32.15 1100.8184 (10) 

15 min: V3 = 17.381150.8842 (11) 

30 min: V3 = 9.44 1300.8901 (12) 

where V3 is the 3-hr volume prediction. 
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TABLE 4 COEFFICIENTS OF DETERMINATION AND 
STANDARD ERROR OF ESTIMATES FOR 2-, 3-, AND 
4-HR MODELS 

Variables Correlated 
with 2-, 3-, and 4-Hr 2-Hr 3-Hr 4-Hr 

Counts R2 SEY R2 SEY R2 SEY 

First 5 min 0.67 0.27 0.61 0.29 0.58 0.30 
Middle 5 min 0.74 0.24 0.75 0.23 0.85 0.17 
Last 5 min 0.70 0.25 0.68 0.26 0.51 0.31 
First 10 min 0.70 0.26 0.43 0.33 0.59 0.30 
Middle 10 min 0.84 0.19 0.81 0.20 0.86 0.17 
Last 10 min 0.78 0.22 0.75 0.23 0.67 0.27 
First 15 min 0.73 0.25 0.68 0.27 0.63 0.28 
Middle 15 min 0.86 0.18 0.85 0.18 0.91 0.14 
Last 15 min 0.80 0.22 0.78 0.23 0.72 0.26 
First 30 min 0.83 0.20 0.75 0.24 0.72 0.25 
Middle 30 min 0.92 0.14 0.90 0.15 0.90 0.15 
Last 30 min 0.86 0.18 0.84 0.20 0.76 0.23 

NoTE: All F- and I-statistics were significant at p = 0.0001. 

5 min: V4 = 62.43 150.8113 (13) 

10 min: V4 = 44.89 110°·7618 (14) 

15 min: V4 = 27.13 1150.8087 (15) 

30 min: V 4 = 15.57 130°·8134 (16) 

where V 4 is the 4-hr volume prediction. 

In summary, this analysis effort produced good expansion 
models based on the evaluation of the parameters R2 and SEY' 
Additionally, four observations were made: 

• The middle event for any counting interval of any hour or 
multihour expansion model was determined to be the best 
sampling scheme with respect to position. This phenomenon 
indicated that the posilion of a counl during any time period 
was important in order to produce an accurate expanded count. 

• As the counting interval increased, the volume prediction 
became more accurate. Because small count intervals have 
more variation from one interval to the next, the potential for 
extracting a nomepresentative count for the time period being 
predicted is high. Thus, a larger count interval will reduce this 
variation and produce a better representation of the time period. 

• As the sampling period increased (from 1 to 2 to 3 to 4 hr), 
the prediction became less accurate based on the four sample 
count intervals (5, 10, 15, and 30 min) used in this study. This 
result was due to the variation that exists with small sample 
intervals. 

• The different volume distributions of the 10 sites used in 
this analysis did not affect the outcome of the position of the 
counting interval. This observation was based on the high 
values of R2 for the middle event. Thus, these expansion 
models were reliable in predicting volumes regardless of the 
volume distribution patterns. 

VALIDATION 

As stated earlier, four sites were excluded from the modeling 
effort for use in validating the models developed. These sites 
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produced 120 observations for the 1-hr models, 60 observations 
for the 2-hr models, 40 observations for the 3-hr models, and 
30 observations for the 4-hr models. All four counting intervals 
were studied for each model. 

The purpose of the validation study was to investigate the 
accuracy of the models using data that were not included in the 
development of the models. Even though these four sites were 
from the same city from which the models were developed, 
Lheir volume disLribuLiun pallerns weie all diffe1ent. As was 
observed in t.'1e development of the models, the middle count-
ing interval produced the best models regardless of the volume 
distributions. The 14 sites produced six 12-hr distribution pat-
terns. These patterns are shown in Figure 1. Therefore, the 
hourly or multihourly observations contained in these four sites 
are intuitively representative of any observation that could have 
been taken from any site in any city. 
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FIGURE 1 12-hr distribution patterns. 

The average percent differences between predicted and ac­
tual counts were calculated for each count interval expansion 
model and are presented in Table 5. The table clearly shows 
that the percent error (average percent difference) decreased as 
the count interval increased. As found earlier, the models also 
became more accurate as the count interval increased. 

TABLE 5 PERCENT ERROR BASED ON THE FOUR 
VALIDATION SITES FOR 1-, 2-, 3-, AND 4-HR 
EXPANSION MODELS 

Predicted Count Interval (min) 

Volume (hr) 5 10 15 30 

1 31.2 27.1 18.9 11.9 
2 34.5 28.7 23.6 20.6 
3 33.2 31.0 28.0 23.6 
4 33.6 28.4 27.4 23.5 

NoTE: All percentages are in ± values. 

In terms of accuracy of the models developed, the following 
example compares the percent error (Table 5) to the SEY of the 
1-hr model for a 5-min count of 10 pedestrians. By use of the 
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1-hr, 5-min model (Equation 1), the hour volume predicted was 
122 pedestrians. The SEY for this equation (0.22) produced a 
volume range of 202 to 73 pedestrians. For the percent error 
factor (31.2 percent), the volume range was 160 to 84 pedes­
trians. Therefore, based on the validation data set, predictions 
made by the model were within the parameters set forth by the 
regression modeling analysis. 

APPLICATION OF PEDESTRIAN COUNTING 
PROCEDURE 

The application procedure contains four steps. Each step is 
described and its implementation is illustrated with an example. 

Step 1: Select Type of Application 

To evaluate signal warrants, there must be hourly counts by 
crosswalk. However, because the pedestrian volume warrant is 
based on the number of pedestrians crossing the highest vol­
ume crosswalk exceeding a stated minimum for each of 4 hr or 
1 peak hr in a given day, it is only necessary to determine which 
crosswalk has the highest volume and count that one. There­
fore, the user must make a sample count during each of at least 
4 hr or 1 hr on a given day. 

For exposure data applications, a daily total pedestrian vol­
ume count for the crossing or entire intersection is usually 
required Therefore, samples may be taken every hour, every 2 
hr, every 3 hr, or every 4 hr depending on the level of accuracy 
desired. 

Step 2: Select Count Interval 

The sample count interval (5, 10, 15, or 30 min) is established 
by the user's selected application, desired level of accuracy, 
and the use of the percent error (prediction range factors) 
developed in the previous section. For the signal warrant ap­
plication, only 1-hr predictions are used. For exposure data, 
1-hr or multihour predictions may be used. 

The values in Table 5 are percentages that indicate the 
expected degree of accuracy of an expanded sample crosswalk 
count. For example, a 5-min sample count of an hourly volume 
is less accurate than a 30-min count because the percent errors 
are 631.2 percent and ±11.9 percent, respectively. 

Step 3: Collect Data 

Through careful scheduling, greater economies in time and 
resources may be achieved Not only will time be saved at a 
specific site by sampling, but also that time saved may be used 
to sample additional sites. As discussed in the previous section, 
the selected count interval (5, 10, 15, or 30 min) must be 
positioned in the middle of the period to be sampled (i.e., 1 hr, 
2 hr, 3 hr, or 4 hr). For example, a 10-min sample for the period 
8 to 9 a.m. would be from 8:25 to 8:35 a.m. 

In order to schedule a data collector to cover more than one 
site, the period from which the sample is drawn is simply 
redefined for each site. For example, given three sites within 
10-min travel time of one another, a 10-min count interval is 
selected, sampling 1-hr periods. The schedule for the first hour 
might be as follows: 
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Site Period (a.m.) Sample Count (a .m.) 

1 7:40-8:40 8:05-8:15 
2 8:00-9:00 8:25-8:35 
3 8:20-9:20 8:45-8:55 

If for some reason the hourly volume counts for one site are 
to be compared with the hourly volume counts at other sites, 
the periods and sample count times must be the same and more 
than one data collector would be required. 

Step 4: Compute Estimated Volumes 

Select from Equations 1-16 the expansion model that corre­
sponds to the period (1, 2, 3, or 4 hr) and count interval (5, 10, 
15, or 30 min). For example, the model for a 3-hr period and a 
15-min count interval would be: 

V3 = 17.38 1150.8842 

Substitute the sample count, /, in the model selected and 
perform the calculation to obtain the expanded period count. 
For example, a sample count of 20 would predict an expanded 
3-hr volume of 246. 

V3 = 17.38 (20)0.8842 = 246 

Note that the predicted volumes correspond to the period se­
lected in accordance with the application selected in Step 1 
(i.e., the 1-br models produce 1-hr volumes, the 2-hr models 
produce 2-hr volumes, and so on). 

CONCLUSIONS AND RECOMMENDATIONS 

The modeling effort resulted in good pedestrian volume predic­
tion models based on R2 and SEY. ln all cases, the middle 
interval position event produced the best model regardless of 
the size of the count interval. However, it was apparent that the 
larger the count interval, the better the volume prediction. 

Additional findings were as follows. As the multihour vol­
ume period increased, the multihour prediction became less 
accurate. This was a result of the increase in variation of the 
counting intervals as the 1-hr volumes increased to 4-hr vol­
umes. Also, the models for the middle counting intervals were 
not affected by the different volume distributions that existed 
for the hour or multihour volume counts. This was evident by 
the constant result of the middle event being the best predictor 
of pedestrian volumes. 

A validation study was conducted using the middle count 
models. The purpose of this study was to determine the predic­
tion error of the expansion models. Findings of this validation 
reflected the earlier findings in the modeling effort. As the 
count interval increased, the percent error decreased; thus, the 
better the volume prediction. Also, as the prediclion of bourly 
volumes increased to multihour volumes, the percent error 
became larger and was reflected in the modeling effort by the 
decrease of R2 and increase of SEY. 

Regardless of the findings of the modeling approach, one 
question will arise for studies constrained by using daLa in only 
one city: Are these models valid in other cities 1hat have 
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different characteristics? The answer, at present, is unknown. 
However, the hourly models were derived with approximately 
400 hourly observations and validated with 120 observations. 
This means that there were possibly 400 different 1-hr volume 
distributions in the modeling derivations and 120 different 
distributions in the modeling validations. Thus, the potential of 
encompassing many of the typical 1-hr distributions is good. 

As for the multihour models, the sample sizes were less than 
for the 1-hr models. Confidence in the reliability and validity of 
these models was not as great as it was in the 1-hr models. 
Therefore, additional research would improve these multihour 
models. 

Additional research on these models could take two ap­
proaches. To test the validity of the models developed in this 
study, data should be collected at several site.s for several cities 
throughout the country. These data then would be input into 
these models. The validity would be tested by comparing the 
percent errors calculated in this study with the percent errors 
calculated for the additional data. If these percent errors are 
found to be statistically the same, then the models developed 
here would be valid. 

The second approach would test the models' reliability. In 
testing model reliability, models would have to be developed 
for various cities and then compared with the models of this 
study. The models developed in this study would be reliable for 
use in other cities if the models developed for other cities had 
the following characteristics: positively skewed data (corrected 
by logarithmic transformation), optimum counting intervals 
occurring at the middle event, and regression equations and 
parameters similar to those of this study. 

In conclusion, promise has been shown for the use of expan­
sion models in predicting pedestrian volumes. As presented in 
the application section of this report, the ease and cost reduc­
tion in the use of these models is clear. With the additional 
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research conducted in other cities, these models could prove to 
be beneficial in the prediction of pedestrian volumes for use in 
signal warrants and exposure data applications. 
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