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Generalized Loglinear Models of 
Truck Accident Rates 

F. F. 5ACCOMANNO AND C. BUYCO 

Several methods for calibrating statistical models of truck 
accident rates are considered. A loglfnear approach Is sug­
gested for assessing the effect of traffic environment on truck 
accident rates. A number of concerns assoclated with using a 
weighted least squares algorithm for estimating ~ parameters 
in the logllnear expression are noted, l.ncludlng the presence of 
reduced cell membership in the contingency tables of accidents 
and input variable lncompatlbllJtles between continuous ex­
posure and categorical accident measures. An alternative form 
of generalized linear Interactive model (GLIM) Is proposed for 
calibrating logUnear expressions of truck accident rates. 
GLIM uses maximum Ukellhood techniques for estlmatlng ~ 
parameters In logllnear expressions. As In the classical 
weighted least squares algorithm, this approach permits a 
stepwise statistical analysis of higher-order lnteractlons In the 
traffic envJronment as related to accident frequencies, while 
adjusting directly for continuous measures of exposure. The 
resuJts of a calibration of GLIM logllnear expressions are 
presented using 1983 truck accident and exposure data for 
Ontario as a basis. 

Truck accidents are caused by complex interactions of environ­
mental and operational factors that are present at a specific time 
and location on the road network. Higher-order interactions 
between mitigating factors in an accident situation can be 
identified through a calibration of statistical models of truck 
accident rates. These rates are usually expressed as the ratio of 
the number of accidents divided by the amount of travel for a 
comparable mix of mitigating factors. The amount of travel or 
exposure measure reflects the number of opportunities avail­
able for each accident to take place (I). 

Recent attempts to calibrate reliable statistical models of 
truck accident rates have been hampered by two basic con­
cerns: (a) incompatibility between continuous exposure infor­
mation and categorical accident data and (b) the absence, in 
most jurisdictions, of comprehensive information on truck ex­
posure. fucompatibilities in variable inputs restrict the meth­
odology for analyzing truck accident rates to procedures that 
can incorporate both categorical and continuous information 
directly into the analysis. The absence of suitable exposure 
information has restricted the classification of accident en­
virorunent to basic conditions for which travel information is 
available. Frequently, this has resulted in an analysis of factors 
that ignores second- and third-order interactions that affect 
truck accident rates. A number of recent studies on truck 
accidents illustrate the problems associated with lack of ex­
posure data and incompatibilities in factor inputs for truck 
accident rate models (2-4). 
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In this paper, some previous methods of analysis for truck 
accident rates are explored. The discussion is methodological 
in nature, with emphasis on the major limitations associated 
with each approach. Some important statistical concerns for the 
use of classical loglinear models in truck accident rate analysis 
are addressed. Alternatively, a generalized linear interactive 
model (GLIM) form of loglinear expression that incorporates 
both categorical accident involvement data and continuous 
exposure measures is suggested As does the classical loglinear 
model, this approach allows for a stepwise statistical analysis 
of higher-order interaction effects for truck accidents, while 
adjusting directly for the continuous exposure factor. 

ALTERNATIVE METHODS OF ANALYSIS 

In recent years, the issue of truck safety has been receiving 
considerable attention. However, both the methods of analysis 
and many of the conclusions from these studies have lacked 
consistency. A special report on twin trailer trucks (doubles) by 
TRB (5) reviewed the available literature on truck safety in the 
United States and reported that " ... several studies are ex­
tremely variable and conflicting." A recent presentation of 
results to an Organization for Economic Cooperation and De­
velopment meeting of member countries (6) and an earlier 
review by Freitas (7) arrived at similar conclusions. Much of 
the blame for a lack of consistency in studies of truck accidents 
has been attributed to limitations in the available data in 
various jurisdictions. 

The focus of the discussion in this section of the paper is on 
methodology rather than results in recognition that the results 
may not be transferable to all jurisdictions. A lack of consis­
tency in the choice of analysis procedure may have contributed 
as much to conflicting evidence on truck accident causation as 
problems with the data bases did. 

In this section, three different procedures for calibrating 
truck accident rate expressions are discussed. The purpose of 
these expressions is to give a mathematical representation of 
the relationship between factors that influence accidents and 
the resultant truck accident rates. Mitigating factor inputs for 
these expressions are obtained from a statistical screening of 
candidate variables by multivariate techniques, such as analysis 
of variance and factor analysis. 

Multiple Linear Regression 

Wright and Burnham (8) used multiple linear regression and 
factor analysis to study the effect of selected roadway features 
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on truck accident and severity rates. Initially, 15 roadway 
features were considered in the analysis. These features were 
subsequently grouped by factor analysis into four distinctive 
and uncolinear attributes: percent total mileage with two lanes, 
percent two-lane mileage with substandard horizontal curva­
ture, percent two-lane mileage with substandard vertical curva­
ture, and percent mileage with substandard pavement width. In 
Table 1 and below, the results of one of the best accident rate 
regression expressions using these four roadway attributes as 
independent variables are summarized: 

Y2 = 9.85X10 + 6.83X13 + 36.08X14 + 11.73X15 - 555 

where 

Yz = accident rate for truck, accidents/100 x 106 

vehicle-mi; 
X 10 = percent of total mileage with two lanes; 
X13 = percent of two-lane mileage with substandard 

horizontal curvature; · 
X14 = percent of two-lane mileage with substandard 

vertical curvature; and 
X15 = percent of two-lane mileage with substandard 

pavement width. 

F ratio = 3.03 
Standard error S(Y i) = 565 
Correlation coefficient (R) = 0.60 
RZ = 0.36 

TABLE 1 ACCIDENT RATE MODEL FOR TRACTOR­
SEMITRAILER TRUCKS: STATISTICAL DATA FOR 
REGRESSION COEFFICIENTS 

Level of significance 
Standard error 

Variable 

0.260 
8.51 

0.547 
10.43 

0.004 
11.27 

0.333 
11.86 

Wright and Burnham acknowledged that on the basis of an 
RZ value of 0.36, much of variation in the predicted truck 
accident rates for this expression remains unexplained. Further­
more, many of the calibrated coefficients were found to lack 
statistical significance. Only the variable X14 (percent of two­
lane mileage with substandard vertical curvature) is statistically 
significant at the 0.05 level. Furthermore, the intercept term 
(-555) in this expression is too large and negative. Intuitively, 
this is unacceptable because accident rates must be positive. 

The use of multiple linear regression for analyzing the 
causes of truck accidents may be inappropriate because the 
relationship itself does not always reflect linear behavior. Fur­
thermore, multiple linear regression cannot account for the 
non-negative nature of accident occurrence. 

Poisson Regression Models 

Jovanis and Chang (9) suggested applying Poisson regression 
to the analysis of truck accident data to overcome the non­
negativity shortcomings of linear regression. The basic as­
sumption of Poisson regression is that accident occurrence 
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follows a Poisson distribution, with assumed independence 
between accidents. The expected value of accident involve­
ment for a given time interval i is expressed as 

(1) 

where p is the vector of parameters to be estimated and xi is the 
vector of independent causal variables. The probability of k 
accidents in the time interval I is given by the Poisson 
expression 

(2) 

A likelihood expression for P can be obtained by maximizing 
Equation 2 with respect to p, such that 

L(P) = 11 (3) 
i-1 k-0 

where Dik is a dummy variable (1 if an accident occurred, 0 
otherwise). The logarithmic form of Equation 3 is referred to as 
the log likelihood value of the Poisson regression. This expres­
sion serves as a basis for estimating the regression coefficients 
and testing the degree of fit of each calibrated expression. 

In this study, accident and exposure data were collected for 
trucks on the Indiana Toll Road in 1978. Exposure was esti­
mated from the number of tolls collected at each exit booih. 
During the study period, 700 truck accidents were observed. 
The independent variables included daily VMT (vehicle miles 
traveled) for trucks and hours of snow and rain during the 
study. The dependent variable was expressed as the expected 
number of truck accidents per day. 

Because this study was based on a disaggregate analysis of 
individual shipments, the approach is limited to analysis of 
closed systems in which extensive monitoring of the traffic is 
possible. Exposure can thus be estimated for a specified period 
of time and a given set of mitigating accident factors, such as 
weather or traffic distribution. However, on most sections of 
the road network (e.g., roads that are not Interstates) this level 
of disaggregate information is not available. 

Logllnear Models and the Weighted Least 
Squares Algorithm 

Loglinear models are most appropriate for analyzing the effects 
of selected categorical variables on accident involvement. The 
strength of association between various categories is expressed 
by the calibrated p parameters, such that 

In Y; = p (X;) i = 1, 2, .. ., n 

where Y; is the expected cell frequency or accident counts for 
factor combinations i and X; is the covariate vector i. The fl 
parameters in Equation 4 measure the strength of association 
between the factors xi and indicate the magnitude of contribu­
tion to accident involvement associated with each factor com­
bination. The theoretical background of loglinear models is 
discussed in depth by Bishop et al. (JO). 

Several considerations support the use of loglinear models 
for truck accident analysis. First, variables that affect truck 
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accidents can be expressed categorically, for example, road 
type and vehicle type. Because truck accidents are discrete in 
nature, categories can be developed to allow maximum repre­
sentation of differences in accident response from the data 
base. Second, a loglinear approach allows the statistical signifi­
cance of partial and marginal association to be tested for a 
given combination of categorical factors. Third, the non-nega­
tivity characteristic of accident occurrence is handled through a 
maximization of a Poisson log likelihood expression, similar to 
Equation 3. 

Philipson et al. (11) used a loglinear approach to derive 
inferences concerning truck accident causation. Loglinear mod­
els were developed on the basis of truck accident involvement, 
without adjusting the results for exposure. Interactions among 
causal factors in these models were assumed to be unique to the 
accident data alone. The analysis is similar to comparing the 
absolute frequencies of accidents for various categories of 
contributing factors. 

Chira-Chavala and Cleveland (4) adopted a loglinear ap­
proach using large truck accident data from the United States 
for 1977 to study the effect of various causal factors on truck 
accident rates. Incompatibilities between continuous exposure 
measures and categorical accident causes were addressed by 
filling separate loglinear expressions to the accident involve­
ment and the exposure data. 

In their analysis, Chira-Chavala and Cleveland selected 
"best fit" loglinear expressions on the basis of the relationship 
of selected causal factors to accident involvement (frequency) 
alone. The same model configuration was then applied to the 
exposure data. These loglinear expressions for exposure re­
flected by design the same factors that were considered to affect 
accident involvement. Exposure, in this study, was expressed in 
truck vehicle-miles for each combination of mitigating factors. 

Chira-Chavala and Cleveland combined involvement and 
exposure loglinear expression to yield an accident rate log­
linear expression of the form 

(5) 

where miJ is the expected number of accidents, eiJ is the ex­
pected volume of truck travel, and 

W=U-V 
"J = u1 - l'J w;1 = u;1 - v;1 
where the Us and Vs are the parameter estimates of accident 
and exposure models, respectively. Equation 5 was applied to 
variables with known, compatible accident and exposure 
measures. 

Chira-Chavala and Cleveland noted that "exposure does not 
affect the goodness of fit or the selection of the 'best' accident 
rate model," hence the loglinear structure of the exposure 
expression can be based on the results of the loglinear analysis 
for accident involvement. Buyco and Saccomanno (12) have 
shown that the use of separate but structurally similar loglinear 
expressions for accident and exposure data does not provide 
stable estimates of accident rates. Exposure plays a significant 
and distinctive role in fitting accident rate models. Further­
more, by using the Chira-Chavala and Cleveland study as a 
basis, Buyco and Saccomanno demonstrated that the classical 
weighted least squares algorithm (WLSA) for calibrating log-
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linear models produces high residuals for cells that are charac­
terized by low cell memberships in the contingency table of 
causal factors (i.e., sampling zero cells). The WLSA approach 
generally requires large samples. As noted by Koch and Imrey 
(13), parameter estimates based on the WLSA approach are 
sensitive to small observed and expected cell counts. Given the 
nature of accident data, sampling zeros are problematic in most 
cases. 

In the next section, an alternative approach for calibrating 
loglinear models of truck accident rates is presented This 
approach uses maximum likelihood techniques for calibrating 
13 parameters and incorporates exposure directly into the log­
linear expression as an offset. 

GENERALIZED LOGLINEAR MODELS OF 
TRUCK ACCIDENT RATES FOR ONTARIO 

An approach using was developed by Baker and Nedler (14) of 
the British Royal Statistical Society to fit loglinear expressions 
to various factor relationships. In the GLIM approach, the 
dependent variables in a contingency table are considered to 
behave in a Poisson-like process with values ranging from 0 to 
infinity. The algorithm for calibrating loglinear models of acci­
dent rates permits the inclusion of exposure as a continuous 
covariate in the expression. 

In this section of the paper, the GLIM approach for calibrat­
ing loglinear models is presented. Loglinear expressions of 
truck accident rates are obtained, using Ontario truck accident 
data for 1983 as a basis. 

Theoretical Background 

The 13 parameters of loglinear models that use the GLIM 
approach are calibrated on the basis of maximum likelihood 
techniques. This differs from the traditional weighted least 
squares algorithm used in most loglinear statistical packages 
[e.g., BMDP (15)]. Maximum likelihood permits the inclusion 
of continuous covariates in the loglinear expression. 

A quantitative covariate whose 13 parameter is known be­
forehand is referred to as an offset (16). In accident analysis, it 
is assumed that accident frequency is directly related to ex­
posure, such that the 13 parameter for exposure is assumed to be 
1.0. This assumption must be checked in testing the signifi­
cance of alternative expressions. The offset, which is declared 
in calibration, is subtracted initially from the linear predictor, 
and the result is regressed on the remaining categorical vari­
ates. The dependent variable in these expressions is accident 
rate, which is expressed as the number of incidents per unit of 
exposure. 

Model calibration of accident rates using the GLIM pro­
cedure involves fitting two separate loglinear expressions. 

Model A 

This model uses exposure as an offset for accident frequency, 
such that 

LOGNOACC - k * LOGEXP = 1 + R +A+ ... 
+RAM (6) 

where R, A, ... , RAM are various combinations of factor 
inputs in the loglinear expression. 

The logarithm of truck travel exposure (LOGEXP) is treated 
as an offset and subtracted initially from the logarithm of the 
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nurnber of accidents (LOGNOACC) before fitting the expres­
sion. The resultant dependent variable is regressed on the 
remaining covariates, representing factor interactions in the 
accident causation model. The use of exposure as an offset in 
the accident rate loglinear expression (Equation 6) assumes that 
the k tenn is equal to 1.0. 

Model B 

In this model, exposure is treated as a covariate for an accident 
frequency expression, such that 

LOGNOACC = 1 + R +A + ... + RAM 

+ b * LOGEXP (7) 

Modification of Equation 7 in terms of accident rate on the left­
hand side yields an expression of the form 

LOGNOACC - LOGEXP = 1 + R +A + ... + RAM 

+ (b -1) * LOGEXP (8) 

Equation 7 is used to check the validity of the assumption that k 
in Equation 6 is equal to 1.0 (or alternatively, that b is not 
significant). The accident frequency expression, Model B, 
serves to test the acceptability of the accident rate loglinear 
expression, Model A. 

The "best fit" model is selected on the basis of the ratio of 
the iikelihoods of the fitted model to the full or saturated model. 
It is possible to test the significance of specific interaction 
effects by adding or deleting individual terms from the fitted 
expression with a stepwise procedure. A complete derivation of 
the GLil\11 approach for loglinear calibration and testing is 
included in works by Koch and Imrey (J 3), McCullagh and 
Nedler (16), and Bishop et al. (JO). 

Application of GLIM to Ontario 
Truck Accident Data 

The Ontario truck accident data base was modified to exclude 
observations made in the northern sector of the province and at 
intersections and ramps, as well as those for which load status 
is unknown. The modified data base consists of 1,955 large 
truck accidents for 1983. Multivariate techniques, such as 
n-level analysis of variance, were applied to the truck accident 
data to produce a contingency table of categorical factors 
affecting truck accident involvement (Table 2). The approach 
serves as an initial screening of candidate factors for calibrating 
loglinear expressions of truck accident causation. The con­
tingency table of categorical factors in Table 2 consists of 960 
cells, of which 132 are considered to be structurally empty (no 
observed exposure). 

Truck travel over the entire road network was estimated from 
provincial link-specific truck counts, adjusted by weighing sta­
tion estimates from the 1983 Commercial Vehicle Survey 
(CVS) (17) for Ontario. Weighing stations at specific locations 
of the road network were classified according to road and land 
development characteristics on the basis of Ontario road inven­
tory data. The proportion of trucks of a given type at each 
weighing station group was estimated directly from the CVS 
counts. These proportions were applied to total truck flows on 
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TABLE 2 VARIABLES AND CATEGORIES IN THE 
CONTINGENCY TABLE FOR TRUCK ACCIDENT RATE 
MODEL 

Variable Symbol Category Description 

Road type R 1 Freeway 
2 Nonfrecway 

Traffic pattern p 1 Commuter 
2 Noncommuter 

Traffic volume A 1 Low 
2 High 

Truck type T 1 Truck 
2 Truck and trailer 
3 Tractor 
4 Tractor and lrailer 
5 Tractor and two trailers 

Load status L 1 Empty 
2 Loaded 

Model year M 1 Post-1977 
2 Pre-1977 

Hour of day N 1 1800-600 
2 600-1800 

Driver age D 1 <25 years old 
2 25-54 years old 
3 >54 years old 

similar classes of roads to yield VMTs for trucks of different 
configurations on these roads. Total truck flows on the Ontario 
highway network were obtained directly from provincial vol­
ume data. The application of CVS truck proportionalities to 
total flows assurnes that the truck characteristics that are ob­
served at each weighing station group are representative of the 
distribution of trucks on all other similar roads. This approach 
is discussed in detail by Buyco and Saccomanno (18). 

Table 3 summarizes the hierarchical steps used in fitting a 
loglinear expression to the contingency table of factors affect­
ing truck accident involvement. By using Model A (Equation 
6) as a basis, terms can be added and deleted in a stepwise 
analysis of individual factor interactions. The results can also 
be compared with the corresponding loglinear expression for 
accident frequency with the exposure term as a covariate 
(Model B, Equation 7). As indicated in Table 3, the "best fit" 
expression is obtained for step 3a, where the third-order term 
RAM is added. This expression indicates that the addition of the 
term RAM is statistically significant at the 5 percent level. The 
model itself is not statistically different from the saturated 
expression. The format using exposure as a covariate (Model 
B) indicates that term b for step 3a is not significant. From this 
analysis, the "best fit" truck accident rate expression using 
exposure as an offset is 

log AR = 1 + R + P +A + T + L + M + N + D 

+ RA + RP + PA + RT + PT+ PL + TL 

+RM +AM+ TM +RN +PN +AN+ TN 

+ LN + MN + TD +RAM (9) 

where AR is the expected accident rate in truck involvements 
per thousand truck-km and R, P, .... RAM are the~ param­
eters used in estimating log AR. 
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TABLE 3 STEPWISE MODEL SELECTION 

Model A 

Cril Model B 
No. of Terms Scale x2 Con-

Dev. Di ff. Diff. (5% clu- Scale T 
Model 2nd 3rd Total (S.C.) (S.C.) DOF DOF LOS) sion Dev. DOF LOG EXP Test 

1. R+P+A+T +L+M+N+D 0 0 9 1,144.4 815 882.5 s. 
2. (R+P+A+T +L+M+N+D) 

· (R+P+A+T+L+M+N+D) 28 0 37 663.2 757 821.8 N. 
(add 2nd level int) 481.2 58 76.8 s. 

3. Model 2-D-int-M.(A+P+L) 
-A.(R+T+L)-RL+T.D+D 15 0 24 686.5 779 844.8 N. 654.12 778 0.758 s. 
[de! D-int.,M.(P,A.L), 
A.(R,T,L),R.L] -23.3 -22 33.9 N. 

4. Model 3-T.D 14 0 23 713.9 787 853.1 N. 
(de! T.D) -27.4 - 8 15.5 s. 

la. Model 3+R.A+A.M 17 0 26 681.3 777 842.7 N. 551.57 776 -0.003 N. 
(add R.A, A.M) 5.2 2 6.0 N. 

2a. Model la.-R.A 16 0 25 681.5 778 843.7 N. 651.57 777 0.765 s. 
(del R.A) - 0.2 - 1 3.8 N. 

3a. Model la.+R.A.M (add R.A.M)a 17 27 669.1 776 841.6 N. 541.21 775 -0.022 N. 
12.2 3.8 s. 

4a. Model la.+P•T•L 18 28 642.1 775 840.6 N. 620.63 774 0.796 s. 
(add P•T•L) 39.2 2 6.0 s. 

Sa. Model la.+R.P.A 17 27 675.0 776 841.6 N. 537.75 775 -0.060 N. 
(add R.P.A) 6.3 3.8 s. 

6a. Model la+P•T•L+R.P.A 17 3 29 622.6 772 837.5 N. 517.91 771 -0.003 N. 
+R.A.M 
(add P•T•L,R.A.M,R.P.A) 58.7 5 9.5 s. 

NoTES: Total nwnber of terms includes main effects. Refer to Table 2 for variable symbols. DOF = degrees of freedom. 
aModel 3a is selected as the "best" model. 

Standardized residuals for Equation 9 were inspected graph­
ically for different values of exposure. Large residual values 
(greater than 5.0) were obtained for eight cells, as summarized 
in Table 4. These cells reflect very high observed accident rates, 
with low exposure values and an observable number of 
accidents. 

A dispersion factor of the form 

o2 = X2/(N - p) (10) 

[where x2 is the standardized Pearson chi square value and 
(N - p) gives the degrees of freedom] was used to reflect 
variability in the data. The deletion of the eight cells with high 
standardized residuals resulted in a reduced dispersion value 
for Model A from 2.44 to 1.01. This indicates that the eight 

cells account for much of the dispersion in the loglinear acci­
dent rate expression (Equation 9). The ~ parameters for this 
expression, however, remained stable (Table 5). Furthermore, 
doubling exposure for the eight high-residual cells did not alter 
the ~ parameters for this model to any appreciable extent. 

Wormation on the first category associated with main and 
higher-order interaction effects in the model is excluded from 
the results in Table 5. These categories are intrinsically aliased; 
that is, their estimates are set to zero. Estimates of all other 
nonaliased categories for a given level of interaction are rela­
tive to these aliased categories (14). 

The ~ parameters in the loglinear expression, which are 
summarized in Table 5, reflect the degree of association for 
different levels of interaction among the categorical factors that 

TABLE 4 CELLS WITH LARGE STANDARDIZED RESIDUALS 

Observed 
Cells 

No. of Exposure Accident Rate Expected No. Standardized 
R p A T L N M D Accidents (101 truck-km) (106 truck-km-1) of Accidents Residuals 

1 1 5 2 2 2 2 162.0 12.35 0.050 8.707 
2 1 1 2 2 1 2 1 101.7 9.83 0.003 17.091 
2 1 1 4 1 1 2 10 2,219.7 4.51 2.205 5.249 
2 1 2 1 1 1 2 3 50.2 59.76 0.031 16.773 
2 1 2 4 2 2 3 139.0 21.58 0.299 4.942 
2 2 1 1 2 2 2 6 1,707.5 3.51 0.968 5.114 
2 2 1 2 2 1 1 1 145.6 6.87 0.028 5.805 
2 2 1 3 1 2 1 2 6.1 163.93 0.002 20.869 

NoTE: Refer to Table 2 for parameter symbols and categories. 



TABLES COMPARISONS OF PARAMETER ESTIMATES 

Lambda 
Values, Difference Model 3 Difference 

Model 1 Model 2 Between (8 cells Between 
Parameter (no data (8 cells Models 1 exposure Models 1 
Symbol Level adjusted) excluded) and 2 doubled) and 3 

Mean -7.0390 -7.1720 0.1330 -7.0500 0.0110 
R 2 -0.2130 -0.4501 0.2371 -0.2516 0.0386 
p 2 0.6735 0.7910 -0.1175 0.6839 -0.0104 
A 2 0.3838 0.4504 -0.0666 0.3941 -0.0103 
T 2 -2.4860 -3.0300 0.5440 -2.5010 0.0150 
T 3 -0.9406 -0.6271 -0.3135 -0.9378 -0.0028 
T 4 -0.1221 -0.1281 0.0060 -0.1338 0.0117 
T 5 -1.4350 -1.3970 -0.0380 -1.4390 0.0040 
L 2 -1.2110 -1.1470 -0.0640 -1.2020 -0.0090 
M 2 0.1495 0.0667 0.0828 0.1401 0.0094 
N 2 0.6900 0.8437 -0.1537 0.7127 -0.0227 
D 2 -0.8897 - 0.9212 0.0315 -0.8933 0.0036 
D 3 -0.9849 -0.9849 0.0000 -0.9849 0.0000 
RP 22 -0.4081 -0.3459 -0.0622 -0.3891 -0.0190 
RA 22 0.3783 0.3776 0.0007 0.3910 -0.0127 
PA 22 -0.5136 -0.5622 0.0486 -0.5186 0.0050 
RT 22 1.0890 0.7175 0.3715 1.0860 0.0030 
RT 23 0.7122 0.4034 0.3088 0.7268 -0.0146 
RT 24 0.6179 0.6613 -0.0434 0.6190 -0.0011 
RT 25 1.1830 1.3440 -0.1610 1.1990 -0.0160 
PT 22 0.1360 0.1799 -0.0439 0.1417 -0.0057 
PT 23 0.3350 -0.0100 0.3450 0.3357 -0.0007 
PT 24 -0.2899 -0.2453 -0.0446 -0.2769 -0.0130 
PT 25 -0.6251 -0.5150 -0.1101 -0.6119 -0.0132 
PL 22 0.4044 0.3261 0.0783 0.3915 0.0129 
TL 22 0.4993 0.3006 0.1987 0.5028 -0.0035 
TL 32 0.0000 0.0000 0.0000 0.0000 0.0000 
TL 42 0.2734 0.2978 -0.0244 0.2806 -0.0072 
TL 52 2.6410 2.5690 0.0720 2.6380 0.0030 
RM 22 1.0580 1.1140 -0.0560 1.0600 -0.0020 
AM 22 0.6930 0.7374 -0.0444 0.6935 -0.0005 
TM 22 -0.1569 0.0270 -0.1839 -0.1488 -0.0081 
TM 32 0.1504 0.2964 -0.1460 0.1575 -0.0071 
TM 42 -0.9007 -0.8752 -0.0255 -0.8933 -0.0074 
TM 52 -1.2790 -1.4730 0.1940 -1.2770 -0.0020 
RN 22 -0.4838 -0.2939 -0.1899 -0.4594 -0.0244 
PN 22 -0.7740 -0.8637 0.0897 -0.7880 0.0140 
AN 22 0.3604 0.3308 0.0296 0.3502 0.0102 
TN 22 0.2150 0.7420 -0.5270 0.2152 -0.0002 
TN 32 0.0041 -0.2711 0.2752 -0.0105 0.0146 
TN 42 -0.4285 -0.4915 0.0630 -0.4299 0.0014 
TN 52 -1.5730 -1.6030 0.0300 -1.5770 0.0040 
LN 22 0.4029 0.3557 0.0472 0.3933 0.0096 
MN 22 0.3176 0.3410 -0.0234 0.3219 -0.0043 
TD 22 -0.0553 0.2006 -0.2559 -0.0450 -0.0103 
TD 23 -0.3286 -0.0433 -0.2853 -0.3218 -0.0068 
TD 32 0.4436 0.4011 0.0425 0.4471 -0.0035 
TD 33 0.3637 0.3637 0.0000 0.3637 0.0000 
TD 42 0.7311 0.7536 -0.0225 0.7329 -0.0018 
TD 43 0.1083 0.1083 0.0000 0.1083 0.0000 
TD 52 0.9828 0.9810 0.0018 0.9856 -0.0028 
TD 53 -0.1468 -0.1468 0.0000 -0.1468 0.0000 
RAM 222 -0.9901 -1.0800 0.0899 -0.9991 0.0090 

Norn: Refer to Table 2 for parameter symbols. See Equation 9 for accident rate model. 
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TABLE6 TRUCK ACCIDENT RATES FOR AN ONTARIO CORRIDOR 

Observed 
Truck 

Road Characteristicsa Accident 
Estimated Accident Rates for Truck Configurations 
(no./lif' ll'Uck-km) 

Rate 
Highway Link Dist. (no./lif' Truck+ Tractor+ Tractor+ 

truck-km)b Number Number R p A (km) AADT Truck Trailer Tractor 1 Trailer 2 Trailers 

6 1 2 2 0.8 26,300 0.490 0.234 1.369 1.431 2.961 
2 2 2 2.2 25,000 1.7 0.490 0.234 1.369 1.431 2.961 

5 3 2 1 1 2.8 9,900 1.4 0.159 0.076 0.446 0.466 0.964 
4 2 1 1 0.9 10,000 0.159 0.076 0.446 0.466 0.964 
5 2 1 1 2.0 9,800 0.159 0.076 0.446 0.466 0.964 
6 2 1 1 0.5 9,800 0.159 0.076 0.446 0.466 0.964 
7 2 1 1 3.5 9,800 2.4 0.159 0.076 0.446 0.466 0.964 
8 2 1 1 6.1 9,800 0.3 0.159 0.076 0.446 0.466 0.964 
9 2 1 2.1 9,500 6.8 0.159 0.076 0.446 0.466 0.964 

10 2 1 7.4 10,000 1.0 0.159 0.076 0.446 0.466 0.964 
11 2 1 2.9 9,500 2.6 0.159 0.076 0.446 0.466 0.964 
12 2 1 0.6 9,500 0.159 0.076 0.446 0.466 0.964 

403 13 1 1 2 4.9 31,200 0.7 0.674 0.108 0.923 1.061 1.247 
14 1 1 2 1.6 29,500 1.1 0.674 0.108 0.923 1.061 1.247 
15 1 1 2 4.6 43,700 0.2 0.674 0.108 0.923 1.061 1.247 
16 1 1 2 2.1 47,000 0.7 0.674 0.108 0.923 1.061 1.247 
17 1 1 2 2.8 35,300 0.3 0.674 0.108 0.923 1.061 1.247 
18 1 1 2 2.9 38,800 0.4 0.674 0.108 0.923 1.061 1.247 

401 19 l l 2 2.2 124,200 1.4 0.674 0.108 0.923 1.061 1.247 
20 1 l 2 3.8 158,600 1.2 0.674 0.108 0.923 1.061 1.247 
21 1 1 2 1.8 81,700 1.8 0.674 0.108 0.923 1.061 1.247 

Total 58.5 

aRefer to Table 2 for parameter symbols and categories. Accident rates are estimated using Equation 9 and Table 5 with load status = loaded (2), model 
year = post-77 (1), hour of day = 600-1800 (2), and driver age= 25-54 (2). 

bobserved truck accident rates taken from 1983 Traffic Volumes-Provincial Highways, Ministry of Transportation and Communications, Ontario. 
cTractor is considered as empty in this model. See Figure 1 for the highway corridor. 

influence truck accident rates. Truck accident rates for various 
combinations of influencing factors can be obtained by using 
these p parameters directly in the loglinear expression that 
includes these factors (Equation 9). 

The significance of the loglinear expression and the corre­
sponding p parameters is illustrated by estimating the accident 
rates for two types of trucks (single and double trailer config­
urations) on a given highway link. The highway link is as­
sumed to have the following characteristics: 

• Road type: freeway; 
• Traffic pattern: commuter; 
• Traffic volume: high (i.e., AADT greater than 20,000 

vehicles). 

Other vehicle and driver characteristics are assumed to be as 
follows: 

• Vehicle model/year: after 1977; 
• Time period of shipment: 600-1800; 
• Age of driver: between 25 and 54 years; 
• Load status: fully loaded. 

Application of the appropriate p parameters for these charac­
teristics in Equation 9 yields the corresponding accident rate 
for a single trailer combination vehicle, such that 

log AR (11242122) = -7.039 + 0.3838 - 0.1221 - 1.2110 
+ 0.6900 - 0.8897 + 0.2734 + 0.3604 
- 0.4285 + 0.4029 + 0.7311 

= - 6.8487 
AR (11242122) =exp -7.6351 = 0.001061/103 truck-km 

= 1.061 truck involvements/106 truck-km 

If all other factors are held constant, the corresponding accident 
rate for a tractor-two trailer combination is estimated as 

AR (11252122) =exp -6.6868 = 0.001247/103 truck-km 
= 1.247 truck involvements/106 truck-km 

The ratio for the two truck types for the same set of road, 
vehicle, and driver characteristics is estimated as 

RatioR=l = 1.061/1.247 = 0.85 

This ratio indicates that for the assumed set of conditions, 
loaded single trailer units experience lower accident rates, in 
general, than double trailer units. For roads that are not free­
ways, the ratio of accident rates between singles and doubles 
becomes even more pronounced, such that 

RatioR=Z = 1.43/2.96 = 0.48 

Table 6 summarizes the accident rates for different truck 
configurations as estimated on a typical highway corridor in 
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Ontario (Figure 1). These values indicate that accident rates for 
large trucks are sensitive to road and vehicle characteristics. In 
general, doubles reflect the highest accident rates (per kilome­
ter) for all truck types, especially on high-volume roads that are 
not freeways. Single trailer units experience the lowest accident 
rates on low-volume highways that are not freeways. On high­
volume freeways the lowest accident rates are associated with 
single unit trucks and truck-trailer combinations. These rates 
are based on the assumption that the vehicle is fully loaded and 
being driven in a commuter-type traffic pattern by a 25-54-
year-old driver during the 600 to 1800 time period. Changes in 
these assumed conditions result in a different distribution of 
accident rates by truck type for the same highway corridor. 

LAKE 
ONTARIO 

FIGURE 1 Reference map of an Ontario (Canada) 
highway corridor. 

CONCLUSIONS AND 
RECOMMENDATIONS 

Loglinear models of truck accidents explore higher-order inter­
actions in the causal variables. The importance of these higher­
order relationships in truck accident causation has been under­
scored in this analysis of Ontario truck accident data. Cal­
ibrated loglinear parameters in the truck accident rate model 
allow an assessment of the importance of individual factors in 
accident causation for a mix of mitigating factors. 

The incompatibility between categorical accident data and 
continuous measures of exposure is a major problem for cal­
ibrating loglinear models of truck accident rates. The use of 
separate but structurally similar loglinear expressions for acci­
dent frequency and exposure does not result in stable estimates 
of accident rates. Exposure plays a significant and distinctive 
role in fitting accident rate models. 
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Loglinear calibration frequently makes use of a weighted 
least squares algorithm for estimating model parameters. For a 
contingency table of mitigating factors, the weighted least 
squares algorithm is highly sensitive to small cell counts. This 
approach for calibrating loglinear models is especially prob­
lematic for assessing factors that affect truck accident rates. 
This situation occurs because small cell counts, mostly sam­
pling zeros, are not unexpected in truck accident data. A log­
linear expression of truck accident rates should reflect catego­
ries in the contingency table for which truck travel or exposure 
is observable even in the absence of any accident involvement. 

A generalized linear model for loglinear calibration (GLIM) 
is recommended on the basis of an analysis of truck accident 
and exposure statistics for Ontario. The 13 parameters for the 
truck accident rate expressions are calibrated by maximum 
likelihood techniques, which permit the inclusion of a contin­
uous exposure variable as an offset in the loglinear expression. 
The algorithm can also accommodate cells in the contingency 
table with observed exposure but zero accident counts. A 
stepwise statistical analysis of higher-order interactions is also 
possible. The algorithm can accommodate cells in the con­
tingency table with an observable level of exposure despite an 
absence of accident involvement. 
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