Analysis and Programs for Assessment of Absorptive and Tilted Parallel Barriers

SIMON SLUTSKY AND HENRY L. BERTONI

An analysis and a computer program were prepared for use in connection with a FHWA test program. As part of this procedure, a model based on ray theory was developed for the prediction of highway traffic noise in the presence of tilted, absorptive barriers that are parallel to the roadway. The model was programmed for use on a personal computer or other DOS-compatible small computer. The program, called BarrierX, uses impedance of the barrier surface as input to compute the barrier reflection coefficients, which are therefore angle dependent. The program accounts for the modification of barrier reflection due to diffraction at discontinuities of the barrier surface impedance and at the discontinuity at the upper edges. Effects of atmospheric absorption, terrain absorption, and the pavement-wayside impedance discontinuity are taken into consideration. The highway and barriers are assumed to be straight and the wayside flat, but otherwise the program allows permit considerable flexibility. Preliminary computations made with the program are in agreement with other recent studies, which conclude that parallel reflective barriers can severely reduce the anticipated single barrier insertion loss and that absorptive wall treatment can be very beneficial. A result of considerable interest is that in roadway geometries of interest, relatively small angles of tilt can restore almost all of the single-barrier insertion loss.

This work was motivated by the need for a convenient method to predict the effect of tilt angle and absorptive treatment on the degradation of barrier insertion loss observed with parallel barriers. This degradation of barrier performance is a consequence of the reverberant reflection of vehicle-generated sound by the barrier surfaces.

The occurrence of such degradation is well documented in the literature. The recent work by Bowby et al. (1, 2) contains comprehensive summaries of papers reporting predictions and measurements of degradation (3, 4). Hajek's predictions note the possibility of parallel barrier degradation of as much as 12 dB, depending on the barrier-source-receiver geometry (4). Such high degradation possibilities were also noted by Pejaver and Shadley (5). Bowby et al. also called attention to Legillon's scale model measurements (6), in which the usefulness of tilting the barrier is noted and compared with absorptive treatment. The work of Bowby and Cohn (2, 7) reflects the need for a modification of the STAMINA program (8) to include parallel barrier effects in a systematic way instead of by manipulation to create virtual highways. Bowby and Cohn's computer program does not include the effect of barrier tilt; it is based on a geometric acoustics approach so that it does not consider the fields reflected by the barrier discontinuities; and for the purpose of degradation, treats excess attenuation due to soft ground at the wayside as a constant. They report good comparison with data available to them.

The intent of this project is to account for the effect of barrier tilt and the diffraction phenomena that occur in the fields reflected by the barrier because of discontinuities of the reflective properties of the barrier, as well as to incorporate available improvements in the treatment of ground interaction at the wayside. Consideration of diffraction at reflective discontinuities demanded a departure from the use of the usual angle-averaged reflection coefficients in favor of the normal impedance to define the barrier surface materials. The reflection coefficient computed from the impedance is then angle dependent.

FHWA interest in dividing the barrier facing into several reflective zones (up to three) and the existence of a strong discontinuity at the top of the barrier made it necessary to treat diffractive effects at reflective discontinuities. Although a specific solution to this problem was not found in the literature, an approximate approach (strictly valid for only one reflection) was worked out on the basis of the Fresnel-Kirchhoff diffraction formula (9, 10). This impedance-based treatment of reflection was incorporated into a computer program called BarrierX.

As a stepping stone to BarrierX, a simpler program called Barrier was created first. This early program, like the one mentioned previously (2), was based on simple (geometric acoustic) ray theory, used angle averaged reflection coefficients as input, and did not include the effect of reflective discontinuities.

The treatment of excess attenuation caused by wayside absorption has been the subject of many works in the literature (11-17). The field is still very active, and there is much concern over the relative merits of the local soil reaction model (11-15) versus the extended reaction model (16). The latter assumes that the soil sustains wave propagation both vertically and horizontally, whereas the former assumes only a local surface interaction with no lateral interaction. The papers by Chien and Soroka (14, 15) have been widely referenced and used. The convenient expressions developed for computing and coding in their model are the basis of the subroutine module used in the current programs. Some versions of the extended reaction model, such as that developed by Attenborough et al. ([16]; note also their corrections in that work to equations by Rasmussen (17, 18)), are not much more complicated to code. However, Rasmussen (17, 18) and Habault and
Corsain (19) have noted that for most soils and frequencies, there is not much difference in predictions made with the alternative models.

Another important area of investigation is the identification of the soil parameters that describe the acoustic character of the soil. A relationship between the characteristic impedance of an isotropic porous medium and the flow resistance is discussed by Morse (20). Delaney and Bazley (21) carried out extensive measurements and concluded that the normal impedance at the soil surface, as well as the soil/air sound speed ratio, could be predicted well by the airflow resistance. Other models are considered in the literature (21). Habault and Corsain (19) describe a general procedure for identifying the soil impedance by using a least squares curve fit to measurements from several (five or six) points on the ground. Nevertheless, because the Delaney-Bazley model is generally considered effective, it is used in the present programs. A convenient table of flow resistance for various soil types can be found in the work of Embleton (24).

Without exception, all theories that consider reflection of spherical or cylindrical waves from an impedance surface predict eventual attenuation of the field at the rate of 6 dB per doubling of distance in excess of the free field falloff rate. The distance at which that asymptotic decay rate is achieved depends primarily on the soil impedance, the frequency, and the angle of incidence of the specular ray. At smaller distances the theories may predict values of excess attenuation per doubling that may be either larger than or smaller than 1.5 dB/dd. For example, Attenborough (23) used several impedance models to compute the excess attenuation from a line of vehicles consisting of a mix of automobiles and trucks with typical emission spectra. His calculations included a variety of soil types for distances up to 72.8 m. Depending on the soil type and receiver height, Attenborough found values of excess attenuation per double distance that were sometimes much less than 1.5 and sometimes exceeded 3.0. His conclusion was that current schemes for predicting the attenuation of highway noise should be modified to include real impedance effects.

Rasmussen (17, 25) reported measured values of excess attenuation between pairs of points alongside a roadway that were as high as 8 dB/dd at some frequencies (notably 500 Hz). He also found that the influence of the pavementside impedance discontinuity needed to be taken into account in some cases to get good agreement between measurements and predictions.

Atmospheric absorption is included in the current computer program by means of a table of attenuation in decibels per thousand feet versus humidity and frequency at a temperature of 68°F. This table is appended to the input template. Data are currently available for more general temperature conditions (26, 27) and can be incorporated into the program if desired. No account is taken here of wind gradients, turbulence, and so on.

Input parameters used to define the roadway, the barriers, and the wayside, as well as the vehicular traffic volumes, types, and sound characteristics, are listed later in the paper in the section on the program treatment. Outputs are printed to the screen and echoed to the printer if desired. They consist of eight unweighted octave band levels from 63 to 8000 Hz, eight A-weight octave band levels, and the overall A-weighted SPL. This set of outputs is printed for each receiver.

ACOUSTIC PATH FIELDS

In this section, the various ray paths by which the fields radiated by a source can reach a receiver are summarized. If no barrier is present, these paths consist of the direct ray from the source to the receiver and the ray reflected from the ground. The presence of a single barrier complicates these paths by diffraction over the top of the barrier, and the presence of two barriers gives rise to additional ray paths because of the multiple reflections between the barriers.

Diffraction by a Single Barrier

The ray paths for a single tilted barrier between the source and receiver are shown in Figure 1. Rays reaching the top of the barrier can come directly from the source S or by reflection from the pavement. Subsequently, the diffracted rays from the barrier edge E reach the receiver R either directly or after reflection from the wayside, so that the total number of ray paths is four.

Pavement Reflection

Reflection at the pavement may be treated by means of an image source at S', whose strength is that of the actual source multiplied by the pavement reflection coefficient Γ. For an elevated barrier edge, the ray SP is never near glancing incidence, so the plane wave reflection coefficient may be used. Thus

$$\Gamma (\theta) = \frac{Z \cos (\theta) - 1}{Z \cos (\theta) + 1}$$

where Z is the pavement impedance normalized to that of the standard atmosphere and θ is the angle of incidence as measured from the normal to the pavement.

Barrier Diffraction

In treating diffraction at the barrier edge, the FHWA (Kurtze-Anderson) model has been adopted to facilitate comparison with other approaches and because of the speed of the resulting algorithm. This model introduces an insertion loss given in decibels by

$$\Delta = 0 \quad N \leq -0.1916$$
\[\Delta = 5.0 + 20 \log [NN/\tan (NN)] \quad -0.1916 \leq N \leq 0.0 \]
\[\Delta = 5.0 + 20 \log [NN/\tan (NN)] \quad 0.0 \leq N \leq 5.03 \]
\[\Delta = 20.0 \quad 5.03 \leq N \quad \text{(2)} \]

where
\[NN = \sqrt{2 \pi |N|} \]
\[N = 2\delta/\lambda \quad \text{(3)} \]

Here, \(N \) is the Fresnel number, \(\delta \) is the path length difference (which can be negative for uninterrupted paths), and \(\lambda \) is the acoustic wavelength. \(\Delta \) is the insertion loss for the path due to diffraction.

Wayside Reflection: Homogeneous Ground

The problem of reflection of a point source by a plane surface has been investigated extensively since the beginning of this century. A long list of references and summary of results may be found in a review paper by Piercy et al. (28). Most of the discussion of this subject is concerned with the acoustic behavior of the ground, as well as with interpretation of the solutions. In particular, the question of local versus extended reaction of the ground has received much attention. K. B. Rasmussen discusses these matters in a useful series of papers and concludes that the local reaction model is quite similar to the extended model for typical values of surface impedance (17, 18).

The accepted model for including the effect of ground reflection, which is employed here, is to add the contributions of the direct path field reaching \(R \) from \(E \) in Figure 1 and the field that would reach the image receiver \(R' \) multiplied by the spherical wave reflection coefficient:

\[Q = \Gamma(\theta) + [1 - \Gamma(\theta)] \times E(P_e) \quad \text{(4)} \]

where \(\theta \) is the angle between the ray \(ER' \) and the normal to the ground, and \(\Gamma(\theta) \) is as given in Equation 1. The function \(E(P_e) \) is related to the complementary error function via

\[E(P_e) = 1 + i\sqrt{\pi} P_e \exp (-P_e^2) \text{erfc} (-iP_e) \quad \text{(5)} \]

and the argument is

\[P_e = \sqrt{\pi i \kappa r_2/2} \quad (1/Z + \cos \theta) \quad \text{(6)} \]

where \(r_2 \) is \(ER' \), the slant distance from the point of diffraction at the barrier edge to the image receiver. In this program the wayside and pavement may have different elevations but are assumed to be parallel to each other, so that even when \(S \) and \(R \) are not opposite to each other across the barrier, all rays between \(S \) and \(R \) lie in the same (vertical) plane.

Delaney and Bazley (21) have developed a widely used semi-empirical relationship for the effective normalized acoustic impedance, \(Z \), of porous soils that depends on the flow resistance, \(\alpha \), of the soil and the frequency, \(f \):

\[Z = 1 + 9.08 (f_0)^{-0.75} + i(11.9)(f_0)^{-0.73} \quad \text{(7)} \]
\[f_0 = 1,000 \quad f/\alpha \quad \text{(8)} \]

This expression was found to give good agreement for a large number of soils and porous media. It is used as the basis for the current formulation of ground impedance.

Wayside Reflection: Impedance Discontinuity

Although the computer program is designed to deal with the effect of barriers, in some cases the barrier is of finite extent or is not present, so that propagation paths from some sources do not involve barrier diffraction. In these cases an impedance discontinuity exists between the pavement and the wayside.

In general, the effective reflection coefficient for this case will vary between the values determined by the two surface impedances, depending on what fraction of the Fresnel zone about the ray between the source \(S \) and image receiver \(R' \) intersects one or the other surface (see Figure 2). The Fresnel ellipsoid can be defined as the surface generated by the locus of points \(F \) (Figure 3) for which the direct path \(SR' \) and the broken path \(SFR' \) differ by a half wavelength. In addition to changing the effective reflection coefficient, the discontinuity in surface impedance will act as a line source for scattered rays propagating radially in all directions. One of these rays will reach the receiver \(R \), contributing to the field there. Although various solutions to this problem exist, most take a long time to run on a microcomputer, especially at higher frequencies. In consequence, a semi-empirical expression developed by B. A. de Jong and described in detail by Rasmussen (17) has been used. The following expressions and discussion from de Jong's work are taken essentially verbatim from Rasmussen's description. This expression can be written as the normalized ratio of the combined field to the free field:

\[\frac{P}{P_f} = 1 + \frac{R_1}{R_2} \exp i k (R_2 - R_1) \left\{ \frac{Q_1}{Q_2} \right\} \]
\[+ (Q_2 - Q_1) \frac{\exp (i \pi/4)}{\sqrt{\pi}} \frac{R_1}{R_3} \]
\[\times \left[F_{341} + \left\{ \frac{+}{-} \right\} F_{342} \exp i k (R_2 - R_1) \right] \quad \text{(9)} \]

where
\[F_{341} = F \left(\frac{|k(R_{34} - R_1)|}{|k(R_{34} - R_2)|} \right) \quad \text{(10)} \]
\[F_{342} = F \left(\frac{|k(R_{34} - R_2)|}{|k(R_{34} - R_1)|} \right) \quad \text{(11)} \]
\[R_{34} = R_1 + R_2 \quad \text{(12)} \]
\[F(u) = \int_u^\infty \exp (i w^2) \, dw \quad \text{(13)} \]

\(F(u) \) is the Fresnel integral, and the \(Q \) are defined by Equation 4. \(Q_1 \) and +1 are used when the specularly reflected ray path intersects \(Z_1 \), and \(Q_2 \) and -1 are used when the ray intersects \(Z_2 \) (Figure 3). The equation is valid only when \(Z_1 \) represents the hard surface. The solution has the right form when \(Z_1 = Z_2 \) and when the specularly reflected ray strikes the discontinuity.
De Jong used the model in connection with model experiments and with outdoor measurements carried out with a loudspeaker source, with good agreement.

As noted above, there is some concern as to the justification of this approximation at large distances from the discontinuity. Experimental verification is not available for distances greater than 10 m. Until more confidence is established, the diffracted component will be set to zero when the discontinuity-to-receiver distance R_4 exceeds 100 ft (Figure 3).

COMBINED EFFECT OF PARALLEL BARRIERS

When two barriers are present, the ray fields reaching the barrier edge E closest to the receiver may undergo multiple reflections from the barriers and at most one reflection from the pavement. It has been found convenient to classify the rays according to the number of barrier reflections.

Single Reflection from a Barrier

The case of a single reflection is illustrated in Figure 4. If the ray is not reflected from the pavement, then the field reaching E can be constructed from an image source S', as indicated in Figure 4a, and the reflection coefficient of the barrier. To find the ray field reflected from the pavement, it is necessary to use S'' in Figure 4b, which is the image of S' in the pavement, and the pavement reflection coefficient given by Equation 1.

In addition to the reflected rays reaching E, a ray from S to E_2 will excite diffracted fields propagating back toward E, either directly or via a pavement reflection. Moreover, if the surface of the reflecting barrier has different impedance in different horizontal bands, then diffracted rays will be excited at the impedance discontinuities. These complications are worsened because the Fresnel zone about the ray from S' to E may include the edge E_2 or one of the impedance discontinuities (Figure 5). To overcome the difficulties introduced by these diffracted fields, an effective barrier reflection coefficient is used to account for the diffraction and accommodate barriers that have up to three horizontal bands with different surface impedance.

The effective reflection coefficient is obtained by using the physical acoustics approximation. The reflected field at the surface of the barrier is first written as the incident field multiplied by the local reflection coefficient. This field is then used in a Kirchhoff-Huygens integral to give the field at E. Division of this expression by the field for a perfect reflector gives the effective (pressure) reflection coefficient Γ_e. If the standard Fresnel approximations are made in the integral, the result is

$$\Gamma_e = \hat{\Gamma} + \frac{\exp \left(\frac{i \Pi/4}{\sqrt{\Pi}}\right) \text{sgn} (v_1 - v)}{\sqrt{\Pi}} (\Gamma_2 - \Gamma_1) x F(|v_1 - v|) + \text{sgn} (v_2 - v)(\Gamma_3 - \Gamma_2) x F(|v_2 - v|) - \Gamma_3 F(|v_3 - v|)$$

(14)

Here, Γ_1, Γ_2, and Γ_3 are the plane wave pressure reflection coefficients (Equation 1) of the lower, middle, and upper horizontal bands of the reflecting barrier. The term Γ is the reflection coefficient at the point of specular reflection at the barrier, and the functions $F(u)$ are defined by Equation 13. The quantities v and v_i ($i = 1, 2, 3$) are defined by
\[\psi = \hat{Z} \sqrt{\frac{k}{2}} \frac{(Dr + Ds)^2}{Drs \sqrt{Dr Ds Lrs}} \]
(15)

\[\nu = Z_{\hat{r}} \sqrt{\frac{k}{2}} \frac{(Dr + Ds)^2}{Drs \sqrt{Dr Ds Lrs}} \]
(16)

\(\hat{Z} \) is the height of the Fresnel point on the barrier, and \(Z_1, Z_2, \) and \(Z_3 \) are the heights of the discontinuities on the barrier. \(Dr, Ds, \) and \(Drs \) are the distances from the receiver to the reflecting barrier, from the source to the reflecting barrier, and from the receiver to the virtual source, respectively, as projected on the XZ plane (Figure 5). \(Lrs \) is the distance (in XYZ space) between the receiver and the virtual source. The half-width of the Fresnel ellipsoid at the barrier intersection is the reciprocal of the coefficient of \(Z \) in Equations 15 and 16, so that \((\nu - \psi) \) is the nondimensional distance between the specular ray crossing and the upper edge discontinuity.

Expression 14 gives a continuous variation of the field as the specular point passes from one region of surface impedance to another. Because this expression includes both specularly reflected and diffracted fields, it can give values up to 17 percent higher, or as low as half of \(\Gamma_2 \). It is interesting that the reflection calculated by using \(\Gamma_2 \) with the pavement-reflected ray in Figure 4b accounts for the diffracted ray originating at \(E2 \) that reaches \(E \) after being reflected by the pavement. Although Equation 14 is derived and is strictly valid only for a single barrier reflection, it is used subsequently for each barrier reflection of multiply reflected rays.

When no barrier is present on the side of the road nearest the receiver, reflections from the opposite barrier can still contribute to the field at the receiver. In this case the image source and appropriate reflection coefficients can be used to compute the reflected field without further introduction of diffraction.

Multiple Barrier Reflection for Zero Tilt

In Figure 6a, the element of multiple reflection for the simplified geometry of zero tilt is introduced. The barriers are numbered from the left (\(B1, B2, \) etc.). \(B3, B5, \) and \(B7 \) are virtual images of \(B1, \) and \(B4 \) and \(B6 \) are virtual images of \(B2. \) The zones between the barriers are similarly numbered, so that zone 1 contains real sources and all the subsequent zones contain the virtual sources of increasingly higher order. Virtual ray paths between the diffracting edge \(E \) of barrier 1 and all of the virtual sources are possible for this geometric configuration (\(B1 \) of equal or shorter height than \(B2 \) and its images). However, when \(B1 \) is taller than \(B2, \) as in Figure 6b, the higher-order paths fail to intersect \(B2 \) or its images, the reflections that define the ray do not occur, and then the ray itself cannot exist.

Multiple Barrier Reflection with Tilt

The geometry of multiple reflection between parallel barriers is made more complicated by the presence of barrier tilt. Nevertheless, the construction of Figure 7 can completely rectify the apparently tangled real path (29). Because of the equality of angles of incidence and reflection for specular reflection, each ray segment and its virtual reflection are continued across each barrier as a straight line. Because this is true for virtual images of barriers as well as for the real barriers, the final virtual ray path can be displayed as a single straight line, independent of the number of reflections. Figure 8 shows an application of this construction to a more typical example of road geometry. It should be noted that if the ray crossing is above the top or below the bottom of the barrier, it cannot exist (as mentioned previously in the case of vertical barriers). Compatibility tests are therefore required for each ray contribution to locate the position of each assumed barrier crossing and to verify thereby the existence of the assumed reflections. It can be demonstrated that when either or both of the barriers are tilted, the compatibility test will always be violated after a finite number of barrier reflections (the number will depend on the height of the barriers, the width between barriers, and the tilt angles). This important result is the mechanism whereby the acoustically adverse effects of parallel barriers can be (almost) completely suppressed.
Multiple Barrier and Pavement Reflection

Another complication is introduced by reflection from the pavement. This effect is somewhat troublesome, as can be observed in Figure 9. This section of a prismatic cylinder shows the real pavement in Zone 1 and its images. The ray path between the virtual source in Zone 3 can reach the diffracting barrier edge \(E \) by a path that does not involve pavement reflection (as already considered above), or it can reflect from the pavement or one of its images, or it can do both. To locate the reflection point systematically, the image of the virtual source whereby the path can be rectified must be found. However, because three distinct reflective pavement surfaces exist for this case, three corresponding image locations must be tested for geometric compatibility. In Figure 9, ray \(SE \) satisfies the test. Not more than one pavement reflection is possible.

FIGURE 9 Tilted barriers with pavement reflection.

Finite Barrier Length Effects

None of the foregoing configurations takes account of the finite length of the barriers and their images. Figure 10 is a plan view of the base locations of the barrier pair, a single lane, and their images. Four principal cases can be identified:

- Case 1: Line of sight acoustic propagation between the source position and the receiver. This case is applicable only for sources in Zone 1.
- Case 2: Acoustic path with reflection off Barrier 2 but without encounter with Barrier 1. This case is applicable only for sources in Zone 2.
- Case 3: Acoustic path leading to diffraction at the top edge of Barrier 1 with subsequent paths to the receiver. The source can be real (Zone 1) or virtual (all other zones).
- Case 4: None of the above; the path is not viable.

Traffic Flow Integration

To sum the noise contributions of several streams of traffic, each with its own insertion losses due to various diffraction and absorption effect, a single source is considered, moving at constant speed along a representative path. That intensity can be expressed in the form

\[
I_n = \frac{Q H_n}{4 \pi r_n^2}
\]

(17)

where \(Q \) is the strength of the source, \(r_n \) is the unobstructed distance from source to receiver, and \(H_n \) is the correction factor, without which the expression would represent the free field intensity. Note that \(10 \log (H_n) \) is the insertion loss for the path. The source strength can be defined in terms of the free field intensity \(I_0 \) and the standard distance \(r_0 \) (50 ft):

\[
I_0 = \frac{Q}{4 \pi r_0^2}
\]

(18)

The total acoustic energy \(E \) accumulated at the receiver during a pass by is

\[
E = \sum_n I_n \Delta t_n = \frac{1}{S} \sum_n I_n \Delta Y_n
\]

(19)

where

\[S = \text{source speed}, \]
\[Y_n = \text{Y coordinate of source}, \]
\[\Delta n = \text{change in Y coordinate in time} \Delta t_n. \]

\(Y_n \) can be expressed in terms of the \(X \) coordinate of the source and the angle \(\theta_n \) between the \(X \) axis and the horizontal projection of the ray path (5), to obtain
\[E = \frac{I_0 r_0^2}{S X_{rs}} \sum H_n \Delta \theta_n \]

It should be noted that the \(\Delta \theta \) increments add up to 180 degrees for the case of the infinitely long source path or to any other smaller value for the source path of finite length. Next, the equivalent intensity \(I_{eq} \) is obtained by dividing the pass-by-energy \(E \) by the time between passes by \(1/V \), where \(V \) is the traffic volume in vehicles per hour:

\[I_{eq} = \frac{I_0 r_0^2 V}{S X_{rs}} \sum H_n \Delta \theta_n \] (21)

This expression must be generalized by incorporating the following extended definitions:

\[I_0 = I_0 (NV,NST,OCT), \]
\[V = VOL(NLAN,NV), \]
\[S = SPD(NLAN,NV) \times 5280, \]
\[NV = \text{vehicle type number (1 to NNV)}, \]
\[NST = \text{source type number (1 to NNST)}, \]
\[NLAN = \text{lane number (1 to NNLAN)}, \]
\[NZ = \text{zone number (1 to NNZ)}, \]
\[OCT = \text{octave band number (1 to 8), and} \]
\[NR = \text{receiver number (1 to NNR)}. \]

The source intensity is redefined in terms of the source strength:

\[I_0 (NV,NST,OCT) = 10^{[LS(NST,NV,OCT)-55)/10]} \times I_{REF} \] (22)

where \(LS \) is the free field octave band sound pressure level at 50 ft. (The 55-dB term is arbitrary and is used to ease number handling. It is restored at final output.) The equivalent intensity corresponding to all zones, lanes, vehicle types, source types, and stations is found by summing to obtain a result \(EDEQ(OCT,NR) \), which depends only on frequency and receiver number. Note that no correction term is included for statistical variation of the source strength \(LS \). The \(A \)-weighted equivalent intensity \(EDEQA(OCT,NR) \) is then obtained by using the \(AWT(OCT) \) corrections. \(EDEQ \) and \(EDEQA \) are printed out as the logarithms \(LEQ \) and \(LEQA \). Finally, the \(LEQA \) are summed over the octave bands and printed out as the logarithm to obtain the \(A \)-weighted \(I_{eq} \), \(LEQAWT(NR) \).

Program Input Parameters

The user can obtain an overview of the computer programs by examining the input parameters. The user has the option of specifying the following:

- **Receiver number (NNR \leq 20),**
- **Number of lanes (NNLAN \leq 10),**
- **Number of source types (NNST \leq 3/vehicle type),**
- **Number of vehicle types (NNV \leq 5),**
- **Number of reflection zones (NNZ \leq 6),**
- **Shoulder treatment (SHFLAG = 0 or 1; soft or hard),**
- **Lane dimensions (width of traffic lanes, median, shoulders, terrain strips, and \(Y \)-coordinates of pavement segment end points),**
- **Highway surface flow resistances (terrain, shoulders, median, and pavement),**
- **Barrier endpoints \(X_1, Y_1 \) to \(X_4, Y_4 \) (note that \(X_1 = X_2, X_3 = X_4 \),**
- **Barrier tilt angles (in degrees) and barrier panel widths (by barrier, panel),**
- **Barrier impedance or reflection coefficient (by barrier, panel, octave),**
- **Vehicle volume (per hour by lane and vehicle type),**
- **Vehicle speed (in mph, by lane and vehicle type),**
- **Source height (by vehicle type and source type),**
- **Source strength (free field at 50 ft, by vehicle type, source type, and octave band),**
- **Receiver parameters (coordinates \(X, Y, Z \), ground elevation \(Z_g \), and local ground flow resistance \(SIGG \), for each receiver),** and
- **Atmospheric absorption (in dB/1,000 ft, each octave).**

ILLUSTRATIVE NUMERICAL RESULTS

It is interesting to examine the numerical behavior that is the result of the current work. Two kinds of behavior are examined below. The first is the influence of the ground interaction on numerical results without barrier complications, and the second is the behavior with barrier effects.

Figure 11 represents the excess attenuation (the field at the receiver in decibels minus the field that would exist there if the sound propagation were purely spherical, with no reflections, ground interaction or atmospheric attenuation, with sign changed) at various distances from a point source. The strong ground effects are readily apparent and are characteristic of published results. Strong attenuation at grazing incidence can be seen. For example, at 500 Hz the excess attenuation per doubling of distance (dB/dd) varies from 4.4 in the interval 125–250 ft to 6.3 at 800–1600 ft. Note that these figures correspond to total values of 10.4 and 12.4 dB/dd when they are combined with
spherical spreading. The attenuation at 4 and 8 kHz (not plotted because the resulting figure would be confusing) is found to increase monotonically with distance, primarily because of atmospheric attenuation.

Figure 12 shows the situation for a line source and a receiver, both at elevation of 5 ft, with hard pavement and soft wayside. By comparison with Figure 11, it can be seen that the oscillations are damped by the effect of the line source averaging mechanism, but otherwise the curves have the same form. The excess attenuation per doubling of distance at 125 and 250 ft, and 6.4 dB/dd between 800 and 1,600 ft, in marked contrast with the usual assumption of 1.5 dB/dd for soft ground in the FHWA and STAMINA models.

The next group of calculations is for the purpose of comparing the A-weighted SPL at a receiver caused by a line source in the presence of a single barrier with that due to several different coupled vertical barrier configurations. Figure 13 is for a 150-ft-wide roadway between 15-ft-wide barriers with a line source in the middle. The source heights range from 0.25 to 16 ft above the pavement. Although the tire spectrum that was used is applicable only at 0.25 ft, it was used for all elevations to simplify comparison. The receiver is located over hard terrain at a distance of 150 ft from the barrier base.

The solid curves were generated with program BarrierX (i.e., with Equation 14) for perfectly reflective barriers. The three curves in this group show the cumulative degradation effect of one, two, and five successive barrier reflections (corresponding to the effect of the five image roads) as compared to the case of the single barrier that has no barrier reflection paths. The degradation jumps most markedly as a result of the first barrier reflection, with reduced effect for subsequent reflections. The degradation from elevated sources is small. This is a result of the approach of the specular ray barrier crossing to the barrier edge, the approach of \(v_3 \rightarrow v \) to zero in Equation 14, and the consequent decrease of \(\Gamma_3 \) to half of \(\Gamma_3 \), with the corresponding reduction of the reflected intensity to \(1/4 \) of what it would be from an infinite wall. Because multiply reflected rays from elevated sources are repeatedly attenuated in this way, they contribute less significantly. This attenuation mechanism also comes into play for some (but not all) of the multiple reflections from less elevated sources as the Fresnel half-width becomes large. This follows from Equation 15 or 16.

The dotted curves were generated by using Barrier for the same geometry and are based on geometric ray optics with local reflection coefficients (equal to unity for perfect reflection) at the specular reflection point. These curves change slowly with source elevation until the barrier height is exceeded, at which point the degradation drops abruptly. It will be noted that the neglect of (reflective) diffraction causes an overly pessimistic prediction of barrier performance.

Figure 14 presents a comparison of several barrier treatments with the single (no reflection) barrier case. The dotted curve labeled “1 - No Treatment” corresponds to the multiple (five) reflection result in Figure 13. The curve labeled “2 - Tilt 1” displays a benefit of about 1 dB for sources below 5 ft elevation and a loss for elevated sources. A tilt angle of 3 degrees (Curve 3) displays improvement over the whole range of source heights, and a tilt angle of 5 degrees (Curve 4) displays (almost) total recovery for sources under 8 ft. Treatment of all panels with commercial fiberglass facing, with normalized impedance as presented in Table 1, resulted in Curve 5, “Absorption (All Panels),” which is everywhere within 1 dB of the single-barrier (zero-degradation) case.

One of the possible barrier treatments for investigation was that of absorptive treatment of a horizontal strip of the wall instead of the whole surface. Accordingly, in Figure 15 a comparison is made of the baseline (Curve 1, “No Treatment”) and Curve 4, “Absorption (All),” both identical with those in...
Figure 14, with cases of partial barrier coverage. Curve 2, "Absorption (Top)," shows improvement over the "No Treatment" case for for elevated source positions, while Curve 3, "Absorption (Bottom)," shows improvement for lower sources. This behavior is physically reasonable but may be inadequate as a practical matter.

As noted, the results described are for a roadway with 150 ft between barriers. In Figure 16, it can be observed that degradation for a narrow road with 60 ft between barriers becomes more severe. Curve 2 is the "No Treatment" case, which compares unfavorably with the corresponding Curve 1 for the 150-ft roadway. A tilt of 5 degrees shows much less improvement than was obtained on the wider roadway and seems rather to have the same general behavior as the 1-degree tilt in Figure 14. A much larger tilt angle would be needed to recover effective barrier performance. Curve 4 is for a vertical wall on the side of the road nearer the receiver and a tilt of 20 degrees for the opposite wall. Full recovery can be observed except for extremely elevated sources, where the loss is less than 1 dB. Finally, a full absorptive treatment (Curve 5) is seen to restore practically full barrier performance.

Comparisons made with some of the Ullrich scale model insertion loss data reproduced by Bowiby et al. (J, Figure 3) for a depressed highway were not satisfactory for insertion loss but were good for degradation. The occurrence of Ullrich's barrier degradation of -8 dB when the single barrier is replaced by the double wall is consistent with Curve 2 of Figure 16. The smaller width (52.5 ft) of the Ullrich model would result in slightly higher degradation than that for the 60-ft road shown in Figure 16. Curve 4 of Figure 16 (20-degree tilt) indicates almost no loss, whereas the scale model (25-degree tilt) shows 1–2-dB losses. Failure to get good agreement for insertion loss may be due to lack of detailed data on acoustic treatment of the (important) edge shoulder region of the depressed highway model.

Comparison with the scale model octave band insertion loss degradation measured by Hutchins (J, Table 7) shows that BarrierX loss predictions are generally higher by -2–4 dB, but no clear trend is noticeable in the comparisons. Further study of these cases and of any other available experimental data would be desirable.

TABLE 1 NORMALIZED IMPEDANCE OF COMMERCIAL FIBERGLASS FACING

<table>
<thead>
<tr>
<th>Frequency</th>
<th>62.5</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>2000</th>
<th>4000</th>
<th>8000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real</td>
<td>3.51*</td>
<td>3.51</td>
<td>2.01</td>
<td>2.53</td>
<td>2.50</td>
<td>2.77</td>
<td>4.24</td>
<td>4.24*</td>
</tr>
<tr>
<td>Imag.</td>
<td>-4.85*</td>
<td>-4.85</td>
<td>-3.09</td>
<td>-0.69</td>
<td>-0.32</td>
<td>0.63</td>
<td>1.45</td>
<td>1.45*</td>
</tr>
<tr>
<td>Alpha</td>
<td>0.24</td>
<td>0.33</td>
<td>0.43</td>
<td>0.78</td>
<td>0.83</td>
<td>0.76</td>
<td>0.51</td>
<td>0.30</td>
</tr>
</tbody>
</table>

*Estimated values.

Note: Highway Barrier Test Material 3-in. 733, faced with 1.5 mi poly, hard backing.

FIGURE 16 Effect of road width.

CONCLUSIONS AND RECOMMENDATIONS

A program has been constructed that can estimate the barrier insertion loss of parallel barriers that are tilted, or coated with acoustically absorbing materials, or both. The program takes into account some of the limitations of ray theory that are relevant when the acoustic wavelength is not small compared to the barrier height or to the width of the absorptive panels.

This physical acoustics treatment is strictly valid only for the first barrier reflection and is only a reasonable approximation thereafter.

Predictions for degradation due to multiple reflections made with the physical acoustics program (BarrierX) are not as pessimistic as those made with the geometric acoustics program (Barrier). This decrease in degradation appears to be reasonable if the decreased effective reflectivity of a barrier when the Fresnel half-width becomes small compared to the distance from the specular reflection point to the barrier edge is considered.

Barrier tilt was found to be effective as a method of counteracting the degradation due to multiple reflection. Tilt
angles as small as 3 degrees were found to be effective for wide roadways (150 ft between barriers), and larger values (10 to 15 degrees) are needed for narrow roadways (60 ft between barriers).

Computations made to compare predictions from available scale model experiments reported in the literature show common trends. More experimental data are needed for validation of the program and for testing of confidence.

The program running time is 20 sec on a 6-MHz personal computer (PC) for the baseline case of one receiver, one zone, one lane, one vehicle type, and one source type. Total running time is then roughly proportional to the number of receivers, zones, and so on. Execution on a PC is convenient for exploring trends, but exercise of the program with repeated complex traffic configurations would probably be more convenient on a faster machine.

REFERENCES