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Bridge Performance Prediction Model 
Using the Markov Chain 

YI JIANG, MITSURU SAITO, AND KUMARES c. SINHA 

As part of a study to develop a comprehensive bridge manage­
ment system for the Indiana Department of Highways 
(IDOH), a bridge performance prediction model using the 
Markov chain was developed. The model can be used to 
predict the percentages of bridges with different condition 
ratings as well as to develop performance curves of bridges. 
The Markov chain, a probability-based method, was used in 
the model to reflect the stochastic nature of bridge conditions. 
The study exhibited the power of the Markov chain approach 
in prediction or estimation of future bridge conditions. The 
procedure, although simple, was found to provide a high level 
of accuracy in predicting bridge conditions. 

A major objective of a bridge management system is to assist 
bridge managers in making consistent and cost-effective deci­
sions related to maintenance and rehabilitation of bridges. The 
decision making, either at the network level or at the project 
level, is based on current and future bridge conditions. There­
fore, it is essential for a bridge management system to be 
capable of accurately predicting future bridge conditions. 

A bridge performance model was developed for a bridge 
management system for the Indiana Department of Highways 
(IDOH). The model was developed using the Markov chain 
for predicting future bridge conditions. Predictions can be 
made for the condition rating of bridges and for the percentage 
of bridges at different condition ratings, both of which are 
important for a bridge management system. 

Knowing the percentage of bridges at different condition 
ratings at present, a bridge manager may wish to know the 
percentage distribution in the future. Also, knowing the pres­
ent condition rating of a bridge, he may want to predict the 
condition rating of the bridge in a given year. This model 
provides a tool for these predictions. To use the model, one 
simply has to input the present percentage distribution of 
bridge conditions or the present condition rating of a bridge. 

This paper presents a brief introduction to the concept and 
use of the Markov chain approach. The development of transi­
tion matrices is also discussed. Their applications to the 
development of a bridge performance model are explained 
through examples. 

DATA BASE 

The complete data base included about 5,700 state-owned 
bridges in Indiana. A sample data set was selected from 
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bridges on State Roads 1, 2, 3, 4, 14, 16, 46, and 57. To 
evaluate the effects of bridge type and climate on bridge 
performance, structures were divided into steel and concrete 
bridges, and bridges in northern and southern regions were 
studied separately. The sample data set consisted of 170 con­
crete bridges and 106 steel bridges. 

MARKOV CHAIN APPROACH 

The Markov chain as applied to bridge performance prediction 
is based on the concept of defining states in terms of bridge 
condition ratings and obtaining the probabilities of bridge 
condition transition from one state to another. These proba­
bilities are represented in a matrix form that is called the 
transition probability matrix, or simply transition matrix, of 
the Markov chain. If the present or the initial state of the 
bridges is known, the future condition can be predicted 
through multiplication of the initial-state vector and the transi­
tion probability matrix. 

Using the FHWA bridge-rating system, bridge inspectors 
employ a range from 0 to 9, with 9 being the maximum rating 
number for near-perfect condition (J). Ten bridge condition 
ratings are defined as 10 states, with each condition rating 
corresponding to one of these 10 states. For example, condi­
tion rating 9 is defined as State 1, rating 8 as State 2, and so on. 
Without repair or rehabilitation, the bridge condition rating 
decreases as the bridge age increases. Therefore, there is a 
probability that the condition will make a transition from one 
state, say i, to another state, j, during a given period of time, 
which is denoted Pi.}' Table 1 shows the correspondence of 
condition ratings, states, and transition probabilities. 

Let the transition probability matrix of the Markov chain be 
P, given by 

P1,1 P1.2 

P2,1 P2,2 

p = (1) 

Then the state vector for any time T, p(I), can be obtained 
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TABLE 1 CORRESPONDENCE OF CONDITION RATINGS, STATES, AND 'IRANSITION PROBABILITIES 

R=9 R=8 R=7 R=6 RzS R=4 R=3 R=:;I R=1 R~O 

5=1 5=2 5=3 5 .. 4 5=5 5=6 5=7 5 =8 5=9 5=10 

IR=9 5 c 1 Pl , 1 P1,2 P1,3 P1,4 P1,5 Pi,6 P1, 7 P1,8 Pi,9 P1 , 10 
I 
IR=S 5=2 P2,1 P2,2 P2,3 P2,4 P2,s P2,6 P2,7 P2,8 P2,9 P2, 10 
I 
IR .. 7 5.,3 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6 P3,7 P3,9 P3,9 P3, 10 
I 
IR•6 5=4 P4, 1 P4,2 P4,3 P4,4 P4,5 P4,6 P4,7 P4,9 P4,9 P4, 10 
I 
1Ra5 5 =5 P5 , 1 P5,2 .P5,3 P5,4 P5,5 Ps,E. P5,7 P5,e P5,9 P5 , 10 
I 
IR•4 S=6 P6, 1 P6,2 P6,3 P6,4 P6,5 P6,6 P6,7 P6,8 P6,9 P6, 10 
I I 
IR•3 S;7 P7, 1 P7,2 P7,3 P7,4 P7,5 P7,6 P7,7 P7,0 P7,9 P·7, 10 I 
I I 
IR=2 S=S I Ps, t Pe,2 P9,3 P9,4 Ps,s Pe,6 Pe,? Ps,s P9,9 Pa , 10 I 
I I 
I Rzl S=9 P9, 1 P9,2 P9,3 P9,4 P9,5 P9,6 P9,7 P9,9 P9,9 P9 , 10 I 
I I 
IR=O S=lO I P10,1 P10,2 p10,3 P10,4 P10,S P10,6 P10,7 P10,8 P10,9 P10.10; 

Note : R Condition Rating 

s "' State 

Pi,j = Transition Probability From State to State j 

by the multiplication of the initial-state vector p(O) and the 
transition probability matrix P: 

p(T) = p(O) * p * p ... * p = p(O) * pT (2) 

Thus, a Markov chain is completely spe.cified when its 
transition matrix P and the initial-state vector p(O) are 
known. Because the initial-state vector p(O) is usually known 
for a bridge management system, the main problem of the 
Markov chain approach in this study is to determine the 
transition probability matrix. 

TRANSITION PROBABILITY MATRIX 

Since 1978 all federally supported bridges have been 
inspected every 2 years. The inspection includes ratings of 
individual components such as deck, superstructure, and sub­
structure as well as of the overall bridge condition. Unless 
rehabilitation or repair is applied, bridge structures deteriorate 
gradually so that the bridge condition ratings either are 
unchanged or change to a lower number in the 2-year rating 
period. That is, a bridge condition rating should monotonically 
decrease as the bridge age increases. Therefore, the probability 
Pi,J is null for i > j, where i and j represent the states in the 
Markov chain. 

For the purpose of management, two kinds of predictions 
need to be performed: (a) the percentage of bridges with a 
particular condition rating at any given time and (b) the bridge 
conditions at different bridge ages. 

Percentage of Bridges with a Particular 
Condition Rating 

From the data base, the number of bridge-condition transitions 
from one state to another state was obtained. Let ni.J denote 
1he number of transitions from State i to State j within the time 
period; then the number of bridges in State i before the 
transition can be defined as 

n- = I: n- . 
I j l ,J 

(3) 

It can be proved (2) that the estimated transition probability is 

, n- . 
p . . = "..2d. 

IJ nj 

(4) 

Consequently, the transition matrix is determined and the 
prediction can be performed by using Equation 2. 

As an example, the transition matrix for deck conditions of 
concrete bridges in northern Indiana was obtained by this 
method. Because bridges are inspected every 2 years, a 2-year 
transition period was used; that is, Pu was the probability of 
transition from Slate i to State j in a 2-year period. The 
numerical results of ni, ni,J• and the corresponding transition 

'mairix are given in Tables 2 and 3. 

Bridge Conditions at Different Bridge Ages 

To develop a bridge performance curve, it is necessary to 
predict bridge conditions at different ages. The transition 
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TABLE 2 NUMBER OF STATE TRANSITIONS OF DECK CONDITION FOR CONCRETE BRIDGES 

I state 
I 

i=l 

i=6 

i=8 

i=9 

i=lO 

6 

0 20 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

5 0 

51 12 2 

114 36 9 

0 45 1:2 

0 0 18 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

6 0 0 

4 0 0 

0 3 0 

0 

18 2 

0 5 0 

0 0 

0 0 0 

0 0 0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

E 

"1=14 

n2 =91 

I n
3

=163
1 

n4•60 

n 5 =26 

n
6

•21 

n.)=5 

Note: Th• sample data were randomly chosen From the concrete 

bridge condition data From nothern Indiana . 

TABLE 3 TRANSITION PROBABILITY MATRIX OF CONCRETE DECK CONDITION IN NORTHERN 
INDIANA 

I state 
I 

i=l 

i=3 

i=5 

i=9 

i=9 

1=10 

0 . 071 

0.000 

0.000 

0 . 000 

0 . 000 

0.000 

0.000 

0 . 000 

0 . 000 

0.000 

0 . 429 0 . 357 0 . 143 

0.220 0.560 0.132 

0 . 000 0 , 699 0.211 

0 . 000 0 , 000 0 . 750 

0.000 0 . 000 0.000 

0.000 0.000 0.000 

0 . 000 0 . 000 0.000 

0.000 0 . 000 0 . 000 

0 . 000 0 . 000 0 . 000 

0.000 0.000 0.000 

matrix used in this case is different from that in percentage 
prediction, which gives the proportion of bridges with a par­
ticular condition rating in a given year. Bridges with different 
ages may have the same condition ratings. However, a perfor­
mance curve provides a direct relationship between bridge 
condition and bridge age. 

The transition matrix presented in Table 3 cannot be used to 
develop bridge performance curves, because this matrix is 
independent of bridge age; in other words, it is not homoge­
neous with respect to bridge age. However, a Markov chain 
requires the homogeneity of a transition matrix (2) . Therefore, 
to avoid overestimating or underestimating the bridge condi­
tion, a different approach, called a zoning technique, was used 
to obtain the transition matrix. This approach had been used by 

0.000 

0.022 

0.055 

0 . 200 

0.692 

0.000 

0.000 

0 . 000 

0.000 

0.000 

0.000 0.000 o .ooo 

0.066 0.000 0 . 000 

0 . 025 0.000 0.000 

0.000 0 , 050 0 . 000 

0 . 269 0 . 039 0.000 

0 . 957 0.095 0.040 

0 . 000 1.000 0 . 000 

0 . 000 0.000 1 . 000 

0.000 0.000 0 . 000 

0.000 0.000 0 . 000 

0.000 

0.000 

0.000 

0 . 000 

0.000 

0.000 

0 . 000 

0 . 000 

0.000 

0.000 

p. 10 I 
1, I 

I o.ooo, 
I o.ooo, 

0 . 000
1 

0 . 000 

0 , 000 

0 . 000 

0 . 000 

0 . 000 

o.ooo, 
I o.ooo, 
I 

Butt et al. for the development of pavement performance 
curves in a previous study (3). 

Unlike in percentage prediction, a 1-year transition period 
was used in developing the perfonnance curve. That is , Pij 

was the transition probability from State i to Statej in a 1-year 
period. Bridge age was divided into groups, and within each 
age group the Markov chain was assumed to be homogeneous. 
Groups consisting of 6 years were used, and each group had its 
own transition matrix, which was different from those of the 
remaining groups. 

To make the initial computations simple, an assumption was 
made that the bridge condition rating would not drop by more 
than one state in a single year. Thus, the bridge condition 
would either stay in its current state or make the transition to 
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the next lower state in 1 year. The transition matrix therefore 
has the following form: 

P(l) q(l) 0 0 0 0 0 

0 p(2) q(2) 0 0 0 0 

0 0 p(3) q(3) 0 0 0 
p 0 0 0 p(4) q(4) 0 0 (5) 

0 0 0 0 p(S) q(S) 0 

0 0 0 0 0 p(6) q(6) 

0 0 0 0 0 0 1 

where q(i) = 1 - p(i). 
It should be noted that the lowest recorded rating number in 

the data base was 3, indicating that bridges are usually 
repaired or replaced at a rating not less than 3. Consequently, 
the corresponding State 7 has the transition probability 
p(7) = 1. 

To estimate the transition matrix probabilities, for each age 
group the following nonlinear programming objective function 
was formulated: 

min f I S(I) - E(t,P) I 
1=1 

subject to 0 ~ p(i) ~ l, i = 1, 2, ... , 6 

where 
N 
p 

S(I) 
E(l,P) 

= 
= 
= 
= 

6, the number of years in one age group; 
[p(l), p(2), ... , p(6)], a vector of length 6; 
average of condition ratings at time I; and 
estimated value of condition rating by 
Markov chain at time I. 

(6) 

The objective function was to minimize the absolute dis­
tance between the actual bridge condition rating at a certain 
age and the predicted bridge condition for the corresponding 
age generated by the Markov chain with the probabilities 
obtained by the nonlinear programming. The solution to this 
function was obtained by the gradient projection method (4). 

To find the trend of a performance curve, a polynomial 
regression procedure (5) was performed first. The results of 
the regression were taken as the average condition ratings to 
solve the nonlinear programming. This method is explained in 
the following section through an example. 

The maximum rating of bridge condition is 9, and it repre­
sents a near-perfect condition of a bridge component. It is 
almost always true that a new bridge has condition rating 9 for 
its deck, superstructure, and substructure. In other words, a 
bridge at age 0 has condition rating 9 for its components with 
unit probability. Thus, the initial-state vector p(O) for the deck, 
superstructure, or substructure of a new bridge is always (1, 0, 
0, ... , 0), where the numbers are the probabilities of having 
condition ratings 9, 8, 7, ... , and 0, respectively, at age 0. That 
is, the initial vector of the first group for developing the bridge 
performance curve is known. Group 2 takes the last-state 
vector of Group 1 as its starting-state vector. In general, Group 
n takes the last-state vector of Group n - 1 as its starling-state 
vector. The rest of the work to obtain the overall bridge 
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performance curve or performance curve for bridge compo­
nents is nothing but to conduct the following matrix 
multiplications: 

p(l) = p(O) * p 

p(2) = p(O) * P2 

p(i) = p(O) * pi (7) 

where p(I) represents the condition-state vector at age i. 

APPLICATIONS 

Once the transition matrix has been obtained, the prediction of 
the future condition by the Markov chain becomes a matter of 
simple multiplication of matrices. As stated earlier, this study 
used the Markov chain technique for two kinds of predictions: 
the percentage of bridges with a particular condition rating at 
any given time and the performance curve of bridges. The two 
applications are discussed in the following paragraphs. 

Example of Percentage Prediction 

The percentage of bridges with particular condition ratings in 
the base period can be readily obtained from the record of 
bridge condition ratings. For example, the fraction of concrete 
bridges with different deck condition ratings in northern Indi­
ana in 1978 can be used as the initial-state vector: 

p(O) = (0.096, 0.559, 0.272, 0.059, 0.Dl5, 0.000, 0.000, 

0.000, 0.000, 0.000) 

That is, in 1978 there were 9.6, 55.9, ... , and 0.0 percent of 
concrete bridges with deck condition ratings of 9, 8, ... , and 0, 
respectively. 

Suppose that the expected percentages in 1984 are required, 
that is, the percentages after three rating periods, because 
bridge conditions are evaluated every 2 years. Using the tran­
sition probability matrix given in Table 3, the problem is only 
to get the three-step probability vector p(3) with the initial­
state vector p(O) and the transition probability matrix P. From 
Equation 2, 

p(3) = p(O) * p3 = (0.000, 0.009, 0.350, 0.323, 0.157, 

0.110, 0.045, 0.006, 0.000, 0.000) 

Figures 1 and 2 show the comparison of the actual and the 
predicted values for deck condition of concrete bridges in 
northern Indiana and steel bridges in southern Indiana, respec­
tively, recorded in 1984. 

The chi-squared goodness-of-fit test (6) was used to mea­
sure the closeness of the predicted and the recorded values . 
The computed chi-square is given by 
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FIGURE 1 Actual versus predicted percentage of concrete bridges in northern Indiana in 1984 by deck 
condition rating. 

29 

TABLE 4 CHI-SQUARED GOODNESS-OF-FIT TEST OF 
PERCENTAGE PREDICTION OF DECK CONDITION 
RATING: CONCRETE BRIDGES, NORTIIERN INDIANA 

k (R · - £ .)2 x,2: L I I 

i=l Ei 
(8) 

Rating I Rl Ei 

9 0 . 07. 0. 07. 

8 1 • 17. 0.9% 

7 36. 37. 35,17. 

6 33. or. 32. 37. 

5 11. 07. 15. 67. 

4 13. 1% 11. 0% 

3 
I 

4. 4': 4. 57, 

I 1 • 17. 0. 61. 2 

1 I 0. O?: n. or. 

E 1 no. nr, 100. n:i: 
I 

(Ri-Ei) 
2 

o. o 

4.0xlO 
-6 

1. 4x 10 
-4 

4.9xl0 
-5 

2.2xl0 
-3 

4.Sx!O 
-4 

!. Ox 1 o -6 

2.5x10 
-5 

o.n 

(Ri-Ei) 
2 

Ei 

--
4.4xl0 

-4 

4. Ix 10 
-4 

!. 5x 10 
-5 

l.4xl0 
-2 

4.4x!O 
-3 

2.2x!O -5 

4.2xl0 
-3 

--

2 
-0.024 x 

- where 
k = number of observations, 

Ri = recorded value of the ith observation, 
Ei = expected value of the ith observations, and 

x,2 has a chi-squared distribution with k - 1 degrees of 
freedom. 

The results are shown in Tables 4 and 5. As can be seen 
from Figures 1 and 2 and the statistical test results, the pre­
dicted values are very close to the recorded values. 

Example of Performance Curve for 
Bridge Component 

The deck performance curve of a concrete bridge in northern 
Indiana is used as another example. As mentioned in the last 
section, the initial-state vector of the first group for the deck, 
superstructure, or substructure of a new bridge is always (1, 0, 
0, ... , 0) . Therefore, the major problem is to obtain the transi­
tion matrix for bridge decks. 

A polynomial nonlinear regression model was assumed as 
follows: 
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TABLE 5 CHI-SQUARED GOODNESS-OF-FIT TEST OF 
PERCENTAGE PREDICTION OF DECK CONDITION 
RATING: STEEL BRIDGES, SOUTHERN INDIANA 

S(t) = A + Bt + Ct2 + Dt3 

where 

(9) 

- -

Rating Ri Ei (Ri-Ei) 
2 

9 0. 01. 0. 17. 1. Ox I 0 
-6 

R 0 . 01. 1. 41, 2.0x!O -4 

7 26. 7'r. 
-4 

l 
2 .5. z:r. 2.2xl0 

6 41J. nr. -~ 3q. 37. 4. 9x 10 

s 16. 61, 1 7 • 31. 3.6xl0 -s 

4 6.71. 9. 7': 9.0x!O 
-4 

3 10. 01. 7. 01. 9.0x!O 
-4 

2 0. 01. o.o:t o.o 

I 0. 01. 0. 01. o.o 

i: I 00. 01. 100.0% 

CHI ~ [x 2 
> 0 .038] ) 0.99 5 

-
(R1-E 1) 

2 

E l 

!.Ox!O 
-3 

-2 
I. 4x I 0 I 

-4 R.Qx!O 

1. 2x 10 
-4 

2. lx 10 
-4 

9.3xl0 -3 

1. 2x 10 
-2 

--

--

2 
•0.038 x 

= bridge age or number of years since last 
major reconstruction, 

S(t) = bridge deck condition rating, and 
A-D = coefficients to be determined. 

Using the SAS (7) statistical package, the coefficients were 
obtained on the basis of the sample data, as shown below: 

S(t) = 9.0 - 0.30266t + 0.00895(2 - 0.00009t3 (10) 

The values of S(t) obtained from Equation 10 were used to 
solve the nonlinear progranuning function in Equation 6. This 
solution provided transition probabilities corresponding to 
Equation 5 for different bridge age groups. Table 6 shows the 
'transition probabilities for the nine age groups. For example, 
p(l) = 0.69 in Group 1, which means that 69 percent of the 
bridges in Group 1 (aged 6 years or less) that are in State 1 
(condition rating 9) at present would remain in State 1 and that 
the remaining 31 percent of the bridges would deteriorate lo 
State 2 (condition rating 8) in a 1-year period. 
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An example set of computations is given in the following. 
Using Equation 5 and information from Table 6, the transition 
matrix for Group 1 was obtained: 

0.69 0.31 0 0 0 0 0 

0 0.77 0.23 0 0 0 0 

0 0 0.92 0.08 0 0 0 
p 0 0 0 0.91 0.09 0 0 (11) 

0 0 0 0 0.90 0.10 0 

0 0 0 0 0 0.79 0.21 

0 0 0 0 0 0 

The initial-state vector of Group 1 was p(O) = (1, 0, 0, .. ., 0). 
Therefore, the state vector of Group 1 for year t can be 
obtained by Equation 7. For example, the state vectors for year 
0 through year 6 are given below: 

p(O) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) 

p(l) = p(O) * p 

= (0.69, 0.31, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00) 

p(2) = p(O) * p2 

= (0.48, 0.45, 0.07' 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00) 

p(3) = p(O) * p3 

= (0.33, 0.49, 0.17, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00) 

p(4) = p(O) * p4 

= (0.23, 0.48, 0.27, 0.02, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00) 

p(5) = p(O) * p5 

= (0.16, 0.44, 0.36, 0.04, 0.00, 0.00, 0.00, 0.00, 0.00, 

0.00) 

p(6) = p(O) * p6 

= (0.11, 0.39, 0.43, 0.06, 0.Dl, 0.00, 0.00, 0.00, 0.00, 

0.00) 

31 

TABLE 6 TRANSITION PROBABILITIES FOR DIFFERENT 
BRIDGE AGE GROUPS 

p ( 1) p ( 2) p(J) p(4) p(5) p(6) 

Group 1 0.69 0. 77 0. 92 o.q1 0.90 0.79 

Group 2 0.42 O.A6 0.116 0,69 0.72 0. 56 

Group 3 0.65 o,q1 o,q1 0.97 0,Q7 0.76 

Group 4 0. 10 0.07 0.% o,q5 0. 911 0.93 

Group 5 (). 10 0. 10 0.94 0.98 0.99 0 .11 

Group 6 0. 10 0. 10 0.99 0.98 0.95 0.99 

Group 7 0. 10 0. 10 0.83 0.99 0.97 0.99 

Group II o. 10 0. 10 0. 57 0.92 0.95 0. 99 

Group 9 0. 10 0. 10 0. 10 0.55 O.H 0.411 

I 

Then p(6) obtained above for Group 1 was taken as the 
initialostate vector of Group 2, and the corresponding transi­
tion matrix of Group 2 was used to continue the procedure. 

By this procedure, the bridge condition at any time t can be 
predicted in terms of initial-state vector p(O) and transition 
matrix P. Figure 3 shows the deck performance curve of 
concrete bridges in northern Indiana obtained by this method. 
Performance curves can be developed similarly for other 
bridge components. 

The trend of the predicted performance curve matched the 
actual bridge condition data well. The results indicated that 
bridge deck ratings dropped quickly at the beginning of a 
bridge's life, then became more stable as the bridge age 
increased, and dropped quickly again after the deck condition 
rating reached 5 or less. It should be noted that bridge condi­
tion ratings are subjective judgments of bridge inspectors and 
thus the trend may reflect inherent human bias. For example, 
bridge inspectors are generally reluctant to rate a condition 
"perfect" after the initial year and they also tend to consider 
the condition as rapidly deteriorating after the rating has 
reached 5. 

A chi-squared goodness-of-fit test(6) was performed, and 
the results indicated that the difference between the predicted 
performance and the least-squares polynomial performance 
was not significant at a = 0.05, as shown below: 

60 
x2 = I. 

i=O 

(R1 - £ ,.)2 = 0.072 
Ei 

Chifu (x2 ;:::: 0.072) > 0.995 > a = 0.05 
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FIGURE 3 Performance curve of concrete-bridge deck condition in northern 
Indiana. 

CONCLUSIONS 

An accurate estimate of the future condition of bridges is 
essential for an effective bridge management system. The 
Markov chain is a powerful and conyenient tool for estimating 
future bridge performance. The results obtained by a Markov 
chain model are particularly useful if dynamic programming is 
used for optimization' in a bridge management system, because 
the transition probabilities are the basic parameters to deter­
mine before one can solve a dynamic program (8). Further­
more, performance curves give bridge managers a quantitative 
view of bridge conditions that is useful in selecting rehabilita­
tion strategies. 

A Markov chain is completely specified when its transition 
matrix P and the initial-state vector p(O) are known. Usually, 
the initial condition is known in a bridge management system. 
So the main task in using the Markov chain is to develop the 
transition probability matrix. In the present study, the effects 
of bridge age on bridge condition were emphasized. The 
effects of other factors on bridge performance, such as truck 
traffic and climate, are currently under study. The more factors 
a model considers, the closer it is to the reality of the problem. 
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