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Structural Analysis and Response of 
Curved Prestressed Concrete 
Box Girder Bridges 

DEEPAK CHOUDHURY AND ALEX C. ScoRDELIS 

A numerical procedure for linear-elastl.c analysis and non
linear material analysis of curved prestressed concrete box 
girder bridges Is demonstrated througl) two examples. A 
curved nonprlsmatk thin-walled box beam element Is used to 
model the bridges. The cross section of the element Is a rec
tangular single-cell box with side cantilevers. Elght dJsplace
ment degrees of freedom, lncludlng transverse distortion and 
longltudlnal warping of the cross section, are considered at 
each of the three element nodes. Prestresslng, conslstlng of 
posttensloned bonded tendons In the longitudinal direction, fs 
considered. For nonlinear materJal analysis, the unlaxJal 
stress-strain curves of concrete, reinforcing steel, and pre
stressing steel are modeled. The shear and the transverse 
ftexural responses· of the box beam cro.ss section are modeled 
using trlllnear constitutive relationships based on cracking, 
yielding, and ultimate stages. The first example demonstrates 
the versatility of the numerical method in determining the 
linear-elastic distribution of forces in a three-span prestressed 
box girder bridge of curved plan geometry and variable cross 
section. Dead load, live load, and prestressing load cases are 
analyzed. In the second example, overload behavior and ulti
mate strength of a three-span curved prestressed concrete box 
girder bridge under 1.ncreaslng vehicular load are Investi
gated. The dlfferent response characteristics or the bridge 
induced by different transverse locations of the overload 
vehicle are presented. 

Prestressed concrete box girder bridges have gained impor
tance as economic and esthetic solutions for the overpasses, 
underpasses, separation structures, and viaducts found in to
day's highway system. These bridges are often continuous
span structures (Figure la). Transverse diaphragms are placed 
at the end and interior support sections, and additional di
aphragms are sometimes used between the supports. The typi
cal cross section of such a box girder bridge consists of a top 
slab and a bottom slab connected monolithically by vertical 
webs to form a cellular or boxlike structure (Figure lb). 
Design and esthetic considerations often call for longitudinal 
variations in the cross-sectional dimensions. In plan, the 
bridge can have a straight or curved geometry. Sometimes part 
of the bridge may be straight and part of it may be curved 
(Figure le). The complex spatial nature of a curved box girder 
bridge with a variable cross section (nonprismatic) makes it 
difficult to predict the structural response to a general loading 
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FIGURE 1 Curved nonprismatk box girder bridge. 

case accurately. The presence of prestressing further compli
cates the analysis. Even with the assumption of homogeneous 
linear-elastic material, the accurate analysis of such a structure 
remains a formidable challenge to the engineer. Highway 
bridges are being subjected to increasing vehicular loads and 
traffic densities. A better understanding of the overload be
havior of these bridges beyond the service load range is 
necessary. Also, in order to assess the degree of safety against 
failure, an accurate estimate of the ultimate load has to be 
made. A nonlinear analysis procedure incorporating the effects 
of nonhomogeneity of the material, concrete cracking, and 
nonlinearities in the stress-strain relationships of concrete rein
forcing steel and prestressing steel is thus required. The objec
tive of this paper is to demonstrate the capabilities of a numeri
cal procedure for linear-elastic analysis and nonlinear material 
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analysis of curved nonprismatic prestressed concrete box 
girder bridges. The overall response of the structure, rather 
than the local behavior, is studied 

METHOD OF ANALYSIS 

The method of analysis employed in the present study uses a 
finite-element formulation based on thin-walled beam theory 
(1, 2). The theoretical details, summarized briefly in this pa
per, have been presented elsewhere (3). 

Curved Nonprlsmatlc Box Beam Element 

Thin-walled box beam elements have been used by several 
investigators (4-6) for linear-elastic analysis of box girder 
bridges. These elements are capable of capturing the dominant 
structural actions, but at considerably reduced computational 
effort. The simplicity and reduced computational effort inher
ent in a beam-type element make it particularly suitable for 
nonlinear analysis, which requires much greater central pro
cessing unit time and storage space in the computer than 
linear-elastic analysis. Thus in the present study, certain as
pects of the formulations used by Bazant and El Nimeiri (4) 
and by Zhang and Lyons (5) are combined to develop a curved 
nonprismatic thin-walled box beam element that can be easily 
extended to nonlinear analysis. 
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The three-node element is shown in Figure 2. Its axis lies in 
the global X-Y plane and may be curved The cross section of 
the element perpendicular to its axis is a rectangular, single
cell, thin-walled box with side cantilevers. The dimensions of 
the box cross section, indicated in Figure 2b, can all vary 
along the length of the element. The geometry of the element 
is defined using an isoparametric mapping between the three 
nodes. The shape functions associated with the three nodes are 
second-order Lagrangian polynomials. 

At each element node, eight generalized displacement de
grees of freedom are considered. These are the usual six 
degrees of freedom associated with the rigid body translations 
and rotations of the cross section and, in addition, a longitu
dinal warping mode and a transverse distortional mode of the 
cross section (Figure 3). A generalized strain and its associated 
generalized stress are used to represent the strain energy con
tribution from transverse bending of the walls of the box cross 
section caused by the transverse distortional mode (Figure 3b). 
Also, the longitudinal normal strains and stresses and the shear 
strains and stresses acting in the plane of the cross section 
along the walls of the box are monitored. 
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The element property matrices are obtained numerically 
using two-point Gaussian quadrature along the element axis. 
This is found to eliminate the spurious shear stiffness usually 
associated with beam and shell formulations, including shear 
deformations. Spurious shear effects relative to the torsional, 
distortional, and warping degrees of freedom are also elimi
nated by this reduced order of integration. 

Prestresslng 

Prestressing, by means of posttensioned tendons in the longi
tudinal direction, is considered. The tendons are idealized as 
straight prestressing steel segments between the nodes of the 
box beam elements. Friction and anchorage slip losses are 
considered. For linear-elastic analysis of the structure under 
prestressing, the effect of prestress is represented by a set of 
equivalent loads applied at the nodes of the box beam ele
ments. For the analysis at transfer of prestress in a nonlinear 
analysis, the prestressing is similarly represented by a set of 
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equivalent nodal loads, and the structure is analyzed as if it 
were of ordinary reinforced concrete. The contribution of the 
prestressing steel to the overall structural stiffness is neglected 
because at this stage the steel is unbonded. For the subsequent 
application of external loads, the prestressing steel is assumed 
to be bonded to the concrete (i.e., grouted), and the pre
stressing steel stiffnesses are included in the overall structural 
stiffness. 

Nonlinear Analysis Procedure 

For nonlinear material analysis, the box beam elements are 
considered to be concrete elements reinforced with steel in the 
longitudinal and transverse directions. In order to model the 
response of the reinforced concrete box beam element under 
longitudinal normal strains and stresses, the element cross 
section is idealized as concrete and longitudinal steel filaments 
that are assumed to be in a state of uniaxial stress (Figure 4). 
The uniaxial stress-strain curve adopted for the concrete fila
ments is based on the widely used relationship in compression 
suggested by Hognestad (7), together with cracking in tension 
at the tensile strength. With additional assumptions for load 
reversal, a total of 11 possible material states are obtained 
(Figure Sa). For the longitudinal steel filaments, a bilinear 
stress-strain relationship with load reversal is used (Figure Sb). 
Four different material states are possible. In addition, the 
tension-stiffening effect between the concrete and the steel 
filaments is modeled with a "steel-referred" method. 

The trilinear constitutive relationship shown in Figure Sc is 
used to represent the shear response of the walls of the box 
section. The model incorporates the cracking, yielding, and 
ultimate stages. The postcracking behavior is based on the 4S
degree truss analogy. The possibility of load reversal is consid
ered, which gives a total of five different material states. 
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The constitutive relationship for transverse flexure is ob
tained from a flexural analysis of the box beam cross section as 
a transverse reinforced concrete frame of unit width in the 
longitudinal direction. The resulting response is modeled with 
a trilinear relationship similar to the one used for shear 
(Figure 5c). 

The uniaxial stress-strain relationship of the prestressing 
steel segments is modeled by using a multilinear idealization 
with load reversal (Figure 5d). 

Because of the nonlinearities in the constitutive relation
ships, the equilibrium equations of the structure are nonlinear. 
These nonlinear equilibrium equations are solved in incre
ments. Increments of either prescribed loads or displacements 
are applied, and for each increment unbalanced load iterations 
are performed until certain predefined convergence criteria are 
satisfied. With this nonlinear analysis procedure, the structural 
response can be traced throughout the elastic, inelastic, and 
ultimate load ranges. 

COMPUTER PROGRAMS 

The method of analysis has been incorporated into two com
puter programs: LAPBOX for linear-elastic analysis, and 
NAPBOX for nonlinear material analysis. The basic input for 
both programs consists of structure geometry and boundary 
conditions, material properties, prestressing data, structure 
loading, and locations for stress output. In addition, NAPBOX 
requires data on concrete and longitudinal steel filaments, 
transverse steel, and convergence tolerances. The various gen
eration schemes implemented in the programs allow accurate 
modeling of complex bridge geometries, loadings, and pre-
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stressing tendon profiles on the basis of a few simple input 
parameters. 

The computer programs LAPBOX and NAPBOX have 
been verified (3). Linear-elastic solutions from LAPBOX were 
compared with the folded-plate elasticity method (8), the 
finite-strip method (9), and the experimental results from a 
tapered box girder (10). NAPBOX results were compared with 
the computer program PCFRAME (JI) for the special case of 
planar loading. PCFRAME, which is capable of performing 
nonlinear analysis of planar prestressed concrete frames, has 
been extensively tested (JJ, 12). 

Detailed information on the theoretical basis, input and 
output, and a computer tape containing the source listings for 
LAPBOX and NAPBOX is available by writing to the second 
author. 

EXAMPLE 1: LINEAR-ELASTIC ANALYSIS 

Example 1 demonstrates the applicability of the proposed 
method and the capabilities of the computer program LAP
BOX in determining the linear-elastic distribution of forces in 
a complex prestressed concrete box girder bridge of curved 
plan geometry and variable cross section. 

Structure Details and Analytical Modeling 

A hypothetical three-span continuous prestressed concrete box 
girder bridge (Figure 6) is analyzed. In plan (Figure 6a), the 
bridge has a straight span of 140 ft between supports Sl and 
S2, and two circularly curved spans of 240 ft between supports 
S2 and S3 and 180 ft between supports S3 and S4. The radius 
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FIGURE 6 Example 1: three-span curved nonprismatlc prestressed concrete bridge. (a) Plan 
view, (b) cross section. 
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of the circularly curved spans is R = 500 ft to the centerline. 
For convenience, 11 coordinate .v is defined along the centerline 
with its origin at S 1 and directed toward S4. At each of the 
four supports of the bridge, vertical movement, twist, and 
transverse distortion of the cross section are prevented. 

The cross section of the bridge is shown in Figure 6b. The 
following equations define the variation of the cross-sectional 
dimensions a, f, b, and 1,, (all in feet) in terms of the s-<:oordi
nate. A modulus of elasticity of 608,256 kips/ft2 and a 
Poisson's ratio of 0.18 are assumed for the concrete. 

a 
I 
b 

= 12 + s/100 
= 4 + 9s/l800 
= 6 + s{TO 
= 52/3 - s/15, 
=4 
= -5213 + s/15, 
= 110/9 - s/90 
= 3/5 + s/lOO 
= 67 /30 - s/150 
= -37/30 + s/150 
= 25/9 - 7s/1800 

for 0 < s < 560 ft 
for 0 < s < 560 ft 
for 0 < s < 140 ft 
for 140 ft < s < 200 ft 
for 200 ft < s < 320 ft 
for 320 ft < s < 380 ft 
for 380 ft < s < 560 ft 
for 0 < s < 140 ft 
for 140 ft < s < 260 ft 
for 260 ft < s < 380 ft 
for 380 ft < s < 560 ft 

The bridge is prestressed with 14 different tendons, 7 in 
each web (Figure 7). The jacking forces and the geometry data 
of each tendon are given in Table 1. Each tendon numbered 1 
through 6 has a vertical profile along its span consisting of one 
parabolic segment. Each of the other 8 tendons has two para
bolic segments coI111ected by a linear segment in the middle. 
All the tendons are stressed simultaneously from both ends. A 
wobble friction coefficient of 0.0002/ft, a curvature friction 
coefficient of 0.2/radian, and no anchorage slip are assumed. 

Three different load cases are considered They may be 
summarized as follows: 

Case 1: Dead load due to a unit weight density of 160 pcf. 
Case 2: Prestressing. 
Case 3: Uniform live load of 0.15 kip/ft2 over the full width 

of the the top deck and between s = 180 ft and 340 ft. 

z t 40 
~· 

40 40 
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TABLE 1 EXAMPLE 1: PRESTRESSING TENDON DATA 

TArKJNr. I nrATI(W()f I orATION OF LOCATION!Sl OF 
TENDON FORCE ENDA END B ZERO TENDON SLOPE 

NO. 
(kip) s (ft) z (ft) s(ft) z (ft) ' (ft) z (ft) 

I, 2 300 0 -2 ,470 120 -4.044 60 -6,357 

3, 4 700 420 -3 646 560 -2 410 490 -6 278 

5, 6 600 180 -2.473 340 -2.463 260 -3.500 

7, 8 2500 80 -3 343 200 -1.710 120; 160 --0 500 

9, 10 3000 320 -1.840 440 -3.283 360; 400 --0 500 

11, 12 1000 40 -2.911 240 -1 .7 IO 80; 200 --0,500 

13, 14 1250 280 -1.710 480 -4.089 320; 440 --0 ,500 

The bridge is analyzed by using 56 curved nonprismatic box 
beam elements, each 10 ft long. All load cases are represented 
by equivalent nodal loads generated automatically within the 
program LAPBOX. 

An additional analysis is performed for load case 3 with the 
computer program SAP IV (J 3) using 56 one-dimensional 
(straight) beam elements, each spanning 10 ft (measured along 
the actual axis of the bridge). Each element is prismatic, so the 
nonprismatic bridge can only be modeled approximately by 
using different cross-sectional properties for each element. 

Results 

Table 2 gives a summary of the support reactions obtained 
from LAPBOX for all load cases. In the last two columns, the 
total of all the vertical reactions is compared with the total 
applied load calculated by hand from the actual geometry and 
loading of the structure. The agreement is perfect, which is 
indicative of the high accuracy with which the box beam 
elements can be used to model the geometry and loading of a 
curved nonprismatic bridge. The support reactions obtained 
from the SAP IV analysis for load case 3 are also shown in 
Table 2. The agreement between the LAPBOX and the SAP 
IV results. is good, particularly for the vertical reactions. 

40 40 
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FIGURE 7 Example 1: three-span curved nonprismatic prestressed concrete bridge
longitudinal section along centerline. 
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TABLE 2 EXAMPLE 1: SUMMARY OF SUPPORT REACTIONS 

TOTAL TOTAL 
LOAD FORCE SUPPORT SUPPORT SUPPORT SUPPORT VER11CAL APPLIED 
CASE QUANTITY SI S2 SJ S4 REACTION LOAD 

(kip) (kip) 

Distonional 
Moment --0.2 782.4 2233.6 -125. 1 - -
M, (kip •fi) 

DEAD Vertical 
LOAD Force 237.8 1491.9 1853.2 493.8 4076,7 4076,7 

v, (kip) 

Torque -2.8 -867.9 -2026.8 1545.0 - -
M, (kip ·ft) 

Distonioual 
Moment --0. 1 260.1 572.3 14.6 - -
M, (kip ft) 

PRE- Vertical 
STRESS Force -30.8 26 .4 34 ,2 -29.8 0.0 0.0 

v, (kip) 

Torque ·1.6 -I !03 .6 -1954.8 -267,3 - -
M, (kip ft) 

Dis1ortional 
Moment --0.1 430.3 1035 3 8.0 - -
M, (kip ·fl) 

LIVE Vertical 
LOAD Force -116,2 4040 385.2 -90.5 582.5 582 5 (LAPBOX) v, (kip) 

Torque -1.6 -322.9 -2359.2 -860.3 - -
M, (kip·ft) 

Venical 

LIVE 
For~ -115.7 4-03.4 385.2 -90.4 582.5 582.5 

LOAD 
M, (kip) 

(SAP JV) 
Torque 0 -344.2 -2384.0 -848.0 - -
M, (kip· ft) 

The longitudinal vanallons of the vertical centerline dis
placements are shown in Figure 8. The plotted values for the 
live load case represent both the LAPBOX and the SAP IV 
analyses, which predicted practically the same vertical dis
placements. The transverse distributions of the vertical dis
placements at the middle of the interior span (s = 260 ft) are 

shown in Figure 9. The vertical displacements are larger at the 
outer web than at the inner web, with almost a linear variation 
across the bridge width, which indicates a twist of the cross 
section with little transverse distortion. 

Longitudinal variations of bending moments for dead load, 
prestressing, and live load are shown in Figures 10 through 12, 

0.6 
0.4230 

DEAD LOAD 
?'~'\ 

a 
0.4 "' PRES TRESSING 

f ~ "' LIVE LOAD 

0 . 3 

;I \ 
0 .2 

f \ 
.:::: 0 . 1 .; \\, f-z 
UJ 
::< 0.0 -··- -~-- .. .. UJ 
u 
<!'. 
...J 
0. -0., 
VJ 

\ Ci 
-0.2 

-0.3 
\ -04073 

-0.4 

-0.4127 
-0.5 

0 100 200 300 400 500 600 

J (ft) 

FIGURE 8 Example 1: longitudinal distributions of vertical centerline displacements. 



78 

respectively. It should be noted that the moments are with 
respect to the local y-axes of the cross sections (Figure 6h). 
When axial loads are present, which is the case with pre
stressing, the plotted moments will differ from the moments 
about the neutral axes of the cross sections. The locations of 
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the discontinuities in the prestressing moment diagram (Figure 
11) corresponct to the: te:ncton encts. The: live: loact mome:nts 
(Figure 12) obtained from the LAPBOX and the SAP IV 
analyses are found to agree closely. 

The close agreement between the LAPBOX and the SAP IV 
results for the live load case indicates that the longitudinal 
flexural behavior of the bridge was not affected significantly 
by transverse distortion and longitudinal warping of the cross 
sections. However, ordinary beam theory (SAP IV) cannot 
predict the transverse distribution of stresses and the trans
verse flexural moments (not reported), which can be obtained 
from thin-walled beam theory (LAPBOX). 
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EXAMPLE 2: NONLINEAR ANALYSIS 

Example 2 demonstrates how the proposed nonlinear analysis 
procedure can be used to trace the response of a curved 
prestressed concrete box girder bridge throughout the elastic, 
inelastic, and ultimate load ranges. Overload behavior and 
ultimate strength of the bridge under increasing vehicular load 
are investigated. The different response characteristics of the 
bridge, induced by different transverse locations of the over
load vehicle, are presented. 

Structure Detalls and Analytical Modeling 

The three-span, curved, continuous, prestressed concrete box 
girder bridge considered in this example is shown in Figure 
13. Its span arrangement is symmetric, with spans of 160, 200, 
and 160 ft. The axis of the bridge is circularly cuived in plan 
with a radius of R = 496.5 ft to the centerline. Full restraint 
against vertical translation, twist, and transverse distortion of 
the cross section at the four supports is assumed. 

For the sake of simplicity, the cross section (Figure 13b) is 
assumoo lo be constant from one end of the structure Lo the 
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FIGURE 10 Example 1: longitudinal distribution or bending moment M
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due to dead load. 
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FIGURE 11 Example 1: longitudinal distribution of bending moment My due to prestressing. 
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FIGURE 12 Example 1: longitudinal distribution of bending moment MY due to live load. 

o.i1er, although design considerations often call for thickening 
of the bottom flange or the webs, or both, in regions near the 
supports. The total top deck width of 34 ft is typical of a two
lane highway bridge. 

The prestressing in the bridge consists of two tendons in the 
longitudinal direction, one in each web. The prestress is 
achieved by posttensioning from both ends simultaneously, 
after which the prestressing steel is grouted and hence bonded 

to the concrete. The tendon profile along the curved webs is 
the same in each web, and is shown in Figure 13c. 

The following conditions are assumed: concrete compres
sive strength of 4,000 psi, mild steel yield strength of 60 ksi, 
prestressing steel ultimate strength of 270 ksi, wobble friction 
coefficient of 0.0002/ft, curvature friction coefficient of 0.25/ 
radian, anchorage slip at each jacking end of 0.25 in., and unit 
weight of composite structure of 155 pcf. 
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(c) PRESTRESSING TENDON PROFILE 

FIGURE 13 Example 2: three-span curved prestressed 
concrete bridge. 

Structural design of the box girder is based on State of 
California standard criteria (14). The prestressing steel re
quirements are calculated by considering HS20 lane loading in 
each of the two lanes, impact factors on the basis of span 
lengths, and an allowable tensile stress of 6 <fc ')112 psi in 
concrete after all prestressing losses have occurred. A total of 
172 seven-wire strands with 0.5-in. diameter (86 strands per 
web), which gives a total prestressing steel area of 26.32 in.2, 
is provided. The required jacking force is 2,660 kips per web. 
Ultimate strength under factored loads is checked. In the load 
factor design, an additional overload vehicle, designated a P13 
truck (Figure 14), is considered. 

Longitudinal mild steel reinforcement corresponding to 0.3 
percent of the concrete area is provided in each wall of the box 
cross section. This steel is not required because of strength 
considerations, but is provided for construction purposes. The 

transverse reinforcement consists of two legs of No. 5 stirrups 
at 4-in. longitudinal spacing in each web and two legs of No. 5 
stirrups at 10-in. longitudinal spacing in each slab. 

The response of the bridge structure is studied under in
creasing levels of vehicular overload. The overload vehicle, 
the P13 truck (Figure 14), is typical of the heaviest vehicles 
found on California's highways. In order to take advantage 
of the symmetry of the structure, the P13 truck loading in 
Figure 14b is approximated with the symmetric loading in 
Figure 14d This symmetric truck loading is positioned in the 
middle of the center span of the bridge (Figure 15a), and lhi.: 

structural load vector due to its weight is increased in incre
ments until ultimate failure occurs. For convenience in presen
tation of results, P is used to denote the factor of truck load 
applied. Thus P = 1 represents the overload due to one truck 
(Figure 15a). 
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Three different load cases are considered: 

Case 1: Truck load positioned over bridge centerline (Fig
ure 15b). 

Case 2: Truck load positioned over outer web (Figure 15c). 
Case 3: Truck load positioned over inner web (Fig

ure 15d). 

Because of the symmetry of the structure and the loadings, 
only half the length of the bridge is analyzed. Forty curved box 
beam elements of varying lengths are used. The cross section 
is discretized into 52 concrete and 26 longitudinal steel 
filaments. 

Results 

Figures 16 through 18 show the vertical web displacements at 
the middle of the center span under increasing truck loads for 
load cases 1, 2, and 3, respectively. It is evident from the load
displacement curves that the structure responds quite dif
ferently depending on the transverse position of the truck load 

Load case 1 (Figure 16), with the truck load over the 
centerline, yielded the highest ultimate load of P = 5.6. Failure 
occurred because of the yielding of concrete filaments in 
compression at the bottom flange over the interior supports. 
The small differences between the vertical displacements at 
the two webs indicate that the overall response of the bridge 
was governed by its longitudinal flexural behavior. 

FIGURE 15 Example 2: position of truck load for 
different load cases. 

In Figure 17, the differences between the vertical displace
ments at the two webs are seen to be quite significant for load 
case 2, in which the truck load is positioned over the outer 
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FIGURE 16 Example 2: load versus vertical web displacements at middle of center span 
(load case 1). 
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FIGURE 17 Example 2: load versus vertical web displacements at middle of center span 
(load case 2). 

web. The differential web displacements, which increase with 
increasing load levels, are primarily due to the twist of the 
cross section and were caused by rapid deterioration in the 
torsional stiffness of the bridge. The ultimate load of the 
bridge was reduced to P = 5.2. Failure occurred when the 

shear stress reached its ultimate value at the outer web of the 
sections just to the inside of the interior supports. 

An ultimate load of only P = 4.0 was obtained for load 
case 3 (Figure 18), with the truck load positioned over .the 
inner web. This loading produced rapid deterioration in the 
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FIGURE 18 Example 2: load versus vertical web displacements at middle of center span 
(load case 3). 

transverse flexural rigidity of the bridge. The transverse distor
tion of the cross section at the middle of the center span 
increased rapidly, and this is reflected in the increasingly large 
differences between the vertical displacements at the two 
webs. Failure was due to the ultimate transverse distortion of 
the cross section at the middle of the center span, which is 
governed by the plastic hinge rotation capacities at the four 
corners of the box section. 
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The cross-section twists at the middle of the center span are 
shown in Figure 19 for all three load cases. The rapid deterio
ration in the torsional stiffness of the bridge for load case 2 is 
evident. Of the three load cases considered, load case 2 repre
sents the most severe torsional loading. The outer web loading 
tends to twist the cross section in the same direction as the 
dead load and prestressing, and hence produces the largest 
cross-section twists. Load case 1 produces a less severe 

1--R 
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TWIST B, ( 1o · ' ·radi an ) 

FIGURE 19 Example 2: load versus cross-section twist at middle of center span (load 
cases 1-3). 
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torsional response of the bridge. Because of the curvature of 
the bridge axis, the centerline loading does tend to twist the 
cross section, but its effect is not as pronounced as that of load 
case 2. Load case 3 represents the least severe torsional load
ing. The inner web loading tends to decrease the cross-section 
twist due to dead load and prestressing. The net result is that 
the cross-section twist remains almost constant with increasing 
truck load levels. 

The transverse distortions of the cross section at the middle 
of the center span are shown in Figure 20 for the three load 
cases. Load case 3 is now found to produce the most severe 
response. The inner web loading tends to distort the cross 
section in the same direction as the dead load and prestressing. 
The combined effect is to cause rapid deterioration in the 
transverse flexural rigidity of the cross section. Initial cracking 
due to transverse flexure was observed at the middle of the 
center span at the very first load step of P = 1.0. This was 
followed by transverse flexural yielding at the same location at 
P = 2.5. Beyond P = 2.5, the transverse distortions increased 
rapidly as the transverse flexural yielding spread longitu
dinally. At the ultimate load of P = 4.0, the yielding spread to 
about 82.5 ft from the middle of the center span. The trans
verse distortions for load cases 1 and 2 are seen in Figure 20 to 
be much smaller than those for load case 3. No serious deterio
ration in the transverse flexural rigidity was observed for either 
of these load cases. 

The prestressing steel segment stresses at two critical loca
tions, one near the middle of the center span and the other near 
the interior support, are shown in Figure 21 for load cases 1 
and 2 and in Figure 22 for load case 3. For each location, the 
prestressing stresses in both webs are shown. The differences 
between the initial stresses in the two webs are very small 
because the higher wobble friction losses in the outer web 
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more or less balance out the higher curvature friction losses in 
the inner web. 

The load levels at which initial cracking of concrete fila
ments was observed at the middle of the center span and at the 
interior support are summarized in Table 3. These cracking 
loads can be identified in Figures 21 and 22 as the points at 
which large increases in the tendon stresses occur. 

The differences between the tendon stresses in the two 
webs, evident in Figures 21 and 22, provide further insight into 
the behavior of the bridge under the three different loading 
conditions. A higher tendon stress in one or the other web 
indicates that a greater proportion of the load is carried by that 
web. Figure 21a shows that for load case 1, a greater propor
tion of the load is carried by the inner web near the middle of 
the center span. Near the interior support, the outer web carries 
a greater proportion of the load. However, the small dif
ferences between the tendon stresses in the two webs at both 
locations also indicate that the centerline truck loading is 
distributed fairly uniformly across the width of the bridge. In 
Figure 2lb, practically equal proportions of the outer web 
loading are found to be carried by the two webs near the 
middle of the center span. Near the interior support, the outer 
web carries a considerably greater proportion of the load. 
Figure 22 shows that for load case 3, increasingly greater 
proportions of the inner web loading are carried by the inner 
web with increasing load levels. At both critical locations, the 
differences between the tendon stresses in the two webs in
crease rapidly after the initiation of concrete filament cracking. 
Near the middle of the center span, the outer web tendon 
stresses in fact start to decrease near the ultimate, whereas the 
inner web tendon stresses continue to increase rapidly. The increas
ing deterioration in the ability of the box section to distribute 
the eccentrically applied inner web loading transversely is due 
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FIGURE 20 Example 2: load versus transverse distortion or cross section at middle or 
center span (load cases 1-3). 
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(b) LOAD CASE 2 

FIGURE 21 Example 2: load versus prestresslng steel segment 
stresses at critical locations (load cases 1 and 2). 

II 

Iii 

NEAR MIDDLE OF 
CENTER SPAN 

- NEAR INTERIOR SUPPORT 

--OUTER WEB 

ISlil 111111 170 180 191il 200 Zllil ZZ0 231il Z<flll 26111 

STRESS (ksi) 

FIGURE 22 Example 2: load versus prestresslng steel segment 
stresses at critical locations (load case 3). 



86 

TABLE 3 SUMMARY OF CRACKING 
LOADS 

LUAU INI I IAL t 'KACKIN(J INITIAL CRACKING 
CASE AT MIDDLE OF AT 

CENTER SPAN INTERIOR SUPPORT 

CENTERLIN E P • I 5 p • J.4 
LOAD 

OUTER WEB p '"'2 0 I' • J.O 
LOAD 

INNER WEB p • I .) p • J.~ 

LOAD 

to the rapid deterioration in the trllllllvcrsc flexural rigidity of 
the bridge. 

CONCLUSIONS 

The capabilities and usefulness of the proposed analytical 
method for curved prestressed concrete box girder bridges 
have been amply demonstrated. The nonlinear analysis pro
cedure is shown to be capable of capturing the dominant 
structural behavior in the elastic, inelastic, and ultimate load 
ranges. Internal strains and stresses in concrete, reinforcing 
steel, and prestressing steel can be determined at all loading 
stages. Useful information on overload behavior and ultimate 
strength can be obtained from such a detailed analysis. De
pending on the structure and the loading, warping, distortional, 
and torsional effects can influence structural behavior signifi
cantly. They not only affect the internal force distribution 
within the box structure, but also may govern the failure mode 
and the ultimate load. 
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