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Transverse Load Distribution in a 536-ft 
Deck Arch Bridge 

DAVID R. ANDERSON, RICHARD M. JOHNSON, AND ROBERTO LEON 

An lnstrumentatlon and load-testing analysis of the 536-ft, 
two-span, open spandrel arch-rib Hennepln Avenue Bridge 
over the Mississippi River In Mlnneapolls, Mlnnesota, was 
conducted to measure the transverse load distribution among 
the six arches of the bridge and to determine whether the 
buckled webs of the arch ribs carry any load. When the 
structure was rated for Hennepin County in 1983, the load 
distribution and the ability of the buckled web plates to carry 
axial stress were questioned. Thus, an Instrumentation anal
ysis under static load was performed. The bridge was Instru
mented with 18 strain gauges and was loaded with three 27.S
ton tandem dump trucks positionj!d in nine different loading 
arrangements. Strain readings were averaged for each loading 
to determine the magnitude of load carried by each arch rib 
and then compared with a computer-modeled (linear) trans
verse distribution. It was found that the arch ribs carried not 
only axial stress, but also stress due to bending moments. It 
was concluded from the study that the floor beams and di· 
aphragms do not transfer loads from one side of the bridge to 
the other. The results of the web testing demonstrated that a 
nominal axial load was being carried by the web, and that, 
although buckled, It was working effectively through a ten
sion-field mechanism similar to that of a simple truss. 

The Hennepin Avenue Bridge (S.B. 90589) over the Mis
sissippi River in Minneapolis, Minnesota, is a historically 
significant, unique structure functioning as the second-longest 
solid arch-rib bridge span known to be in use today. Although 
this is the third bridge on this site, its earliest predecessor was 
the first recorded bridge across the Mississippi River. Con
structed directly north of the Falls of St. Anthony and situated 
between the Burlington-Northern Railroad fiats area and Nic
ollet Island, the steel arch bridge is now part of the St. 
Anthony Fnlls Historic District, birtbplnce of the City of Min
neapolis. The bridge continues to function as a major transpor
tation artery linking downtown Minneapolis with the northern 
and eastern metropolitan areas. 

Of historic and technical significance, the steel bridge was 
constructed in longitudinal halves, with two 258-ft spans and 
supports, a 56-ft roadway, and two 12-ft sidewalks. The north 
half of the bridge was constructed in 1888 of 3 three-hinged 
arch ribs. In an attempt to reduce deflections and vibration, the 
design of the south half of the bridge was revised from a three
hinged to a two-hinged arch. The combination of three- and 
two-hinged solid arch ribs is the most unusual structural fea
ture of the historic bridge. 
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Bergendoff, 6700 France Avenue South, Minneapolis, Minn. 55435. 
R. Leon, Department of Civil and Mineral Engineering, University of 
Minnesota, 500 Pillsbury Drive S.E., Minneapolis, Minn. 55155. 

An instrumentation and structural analysis of the Hennepin 
Avenue Bridge was undertaken in mid-1983 to determine its 
load-carrying capacity and the feasibility of rehabilitating the 
bridge. During the field inspection, many arch-rib web plates 
were found to be bowed or buckled out of their vertical plane. 
Therefore, the ability of the buckled web plates to carry 
compressive loads was questioned. During the structural anal
ysis, it became apparent that the methods (and effectiveness) 
of transferring live loads in the transverse direction between 
the arch ribs were ambiguous. As a means of establishing the 
transverse load distribution and determining the ability of the 
buckled web plates to carry compressive loads, the bridge was 
monitored with strain gauges under known loading conditions. 

What follows is an overview of the structural nomenclature 
of the Hennepin Avenue Bridge, a cursory summary of the 
instrumentation procedure, and a discussion of conclusions 
reached as a result of the study. The basis of this paper is a 
report prepared in June 1984 (J). 

BRIDGE DESCRIPTION 

Figures 1 and 2 show the structural components of the Hen
nepin Avenue Bridge in typical section views and the nomen
clature used throughout this paper to describe the components. 
A brief description of the individual components follows: 

1. Batten plates: These plates (splice plates) are composed 
of 3/s-in. steel and serve to keep the individual arch-rib panels 
in place. 

2. Diaphragms: The diaphragms are located at each panel 
throughout the bridge between the arch ribs. 

3. Sway bracing: The sway bracing (diagonals) runs diago
nally between the top and bottom of adjacent spandrel col
umns. These are circular rods with turnbuckles for length 
adjustment. Because of their slenderness, they transmit only 
tension forces. 

4. Wind bracing: The wind bracing consists of round bars, 
again with turnbuckles. This bracing is located in the same 
plane as the top and bottom flanges of the arch ribs and forms 
an X within each panel. Similar to the sway bracing, these 
members transmit only tension forces. 

5. Web plntes: These plntes nre riveted between the flnngc 
angles to form the web of the arch rib. 

6. Floorbeams: These members carry the stringer loads to 
the spandrel columns. The floorbeams are hinged at the center 
of the bridge as a direct consequence of the original staged 
construction, and thus provide no moment transfer at that 
point. 
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FIGURE 1 Typical section. 
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FIGURE 2 Typical arch section. 

Figures 2 and 3 show a typical arch section and a plan and 
elevation view of the bridge, respectively. It should be noted 
that the arch ribs are not continuous members but a series of 42 
panels constructed segmentally. This design feature limits the 
arch's ability to function as a beam (i.e., to carry bending 
stresses). 

INSTRUMENTATION GOALS 

The mechanism by which loads are transferred in the trans
verse direction and the effectiveness thereof were initially 
questioned after the following observations were made: 
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• Section properties of each arch are dissimilar by original 
design; 

• Three of the arches are two-hinged, and three are three
hinged; 

• Conventional analysis demonstrated that exterior arch 
ribs carried more load than design specifications would allow; 

• A two-dimensional analysis could not accurately model 
all structural members, given the complicated three-dimen
sional aspects of the bridge; and 

• Tension-only members, loose members, and the rigidity 
of connections are conditions that vary throughout the bridge. 
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FIGURE 3 Bridge plan and elevation. 

As previously mentioned, it was thought that the web plates 
would carry little, if any, compressive loads because of their 
buckled condition. It was speculated that the flange plates 
would accept additional loads and would therefore be stressed 
at a higher level than would otherwise be expected. 

PURPOSE OF TESTING 

The purpose of the testing was to monitor the bridge under a 
known loading condition. This would provide a correlation 
between the loads applied to the bridge and the corresponding 
strains (and hence stresses) in each of the arch ribs. This 
information would allow the prediction of the loads accepted 
by each of the arch ribs under a given loading condition and 
the documentation of the transverse distribution of loads. In 
addition, the web plates were monitored to determine whether 
they were contributing to the arch-rib section in a normal 
manner and accepting some of the compressive loads. 

TESTING PROCEDURES 

The Department of Civil and Mineral Engineering at the 
University of Minnesota was retained to provide the instru
mentation for the load test. A total of 18 strain gauges were 
installed in a line near the east abutment, 18 in. from reference 
point 40 on panel 40 (see Figure 3). Twelve of the gauges were 
installed on the flanges of the main plate girders, with all the 

bottom flanges instrumented on the inside face and the top 
flanges on the outside face. The top flange gauge in Arch 4 
was placed on the inside face because of the unevenness of the 
outside face. Three gauges were installed on two web faces at 
angles of approximately -45, 0, and +45 degrees to the hori
zontal (strain gauge rosette) in areas where the web was 
buckled. An external dummy gauge was also used to compen
sate for the temperature variation throughout the duration of 
the loading. 

Three dump trucks, each with a gross weight of 27.5 tons, 
were used to produce nine different test load patterns. Some of 
the load patterns were mirror images. This was to see whether 
the load distribution from one longitudinal half of the bridge to 
the other was symmetric about the middle. The strain gauges 
were read twice during each load position and were then 
rezeroed before the beginning of the next loading. 

TEST FINDINGS 

The data obtained during the testing were recorded and inter
preted as follows: 

1. The live load distribution between the arch ribs could be 
approximated from the data provided. Careful analyses of the 
magnitude of forces and moments were made to ensure that 
these quantities were reasonable. It should be noted that given 
the buckled condition of many of the webs, the usual assump
tion of a linear strain distribution is questionable. The readings 
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obtained from the midweb horizontal gauges suggested a dis
tribution very different from that expected by a straight line 
distribution between the top and bottom flange gauges. It was 
therefore concluded that calculations using linear-elastic the
ory and the measured strains would not be expected to corre
late well with the results of a linear-elastic analysis of the 
structure using the entire section properties. 

2. The plates making up the arch ribs carried not only 
compressive stress, but also stress from bending moments. The 
trends through the test clearly showed that the compression 
produced by the dead loads on the bottom flange was relieved 
by the live loads. The results indicated that the arches were not 
acting as simple compression members. 

3. The webs, although buckled, seemed to be working 
effectively through a tension-field mechanism. Thus, the webs 
were able to transfer forces by forming diagonal bands in 
tension, which resulted in a structural action similar to that of a 
truss. If this model is correct, the flanges are likely to be 
carrying higher stresses than the elastic theory would predict, 
whereas the webs are carrying lower stresses. This was sup
ported by the experimental observations, which indicated that 
although very little or no force was present in the horizontal 
direction at the mid-depth of the web, the gauges at 45 degrees 
to this direction showed significant levels of stress. 

4. The floor beams, diagonals, and diaphragms did not 
seem to transfer significant forces from one side of the bridge 
to the other; when the loads were placed on only one side of 
the bridge, very little load was transferred to the outside arch 
at the other side. 

5. Investigation and analysis of the lack of rigidity of the 
panel point connections between the members making up the 
arches, although these connections do have a finite rotational 
stiffness, resulted in slightly lower moments and higher axial 
loads, but not by more than 10 to 15 percent. The main 
difference in these analyses came from the deflections, which 
began to increase rapidly as the rotational stiffness was dimin
ished. As the stiffness was reduced to about 1,000,000 kips/ 
radian, the centerline deflection of the arch with a truck (55-
kip) load at joint 3 increased to about 5.5 in. 

Inclement weather and technical problems were experi
enced during the instrumentation of the Hennepin Avenue 
Bridge. Ambient temperatures during the test dates in Decem
ber 1983 averaged +20°F, which created problems with the 
attachment of strain gauges. Falling debris from the steel 
grating that served as the bridge deck made working condi
tions hazardous. The strain gauge placed on the bottom flange 
~f Arch 2 failed just before the testing, preventing a complete 
mdependent measurement of the load distribution on one of 
the arch ribs. Financial considerations limited the level of 
instrumentation effort, and lack of equipment prevented dy
namic load testing. 

The recorded strain values were smaller than desirable to 
achieve precise analysis. The presence of utilities on the 
bridge also resulted in significant electrical noise. However, 
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the values obtained were determined to be valid for the pur
poses of the test. Additional test load weight on the bridge 
would have provided larger strain values, but also presented 
the danger of permanent structural damage. 

SUMMARY 

The unique two-hinge and three-hinge arch design of this 100-
year-old bridge made the determination of live load distribu
tion an obvious issue. The limited bending capacity of the 
critical arch members because of their "segmental design," 
the badly deteriorated batten plates, the known decreases in 
structure dead load and increases in live load, and the buckled 
web plates all made the issue of load distribution a critical one. 
For a meaningful evaluation of the bridge, a determination of 
the load distribution was required. 

The instrumentation of the bridge was successful in provid
ing data for making better decisions about the key issues of 
transverse distribution and buckled web behavior. 

The successful testing also played a major role in the rating 
of the bridge. It was determined that the entire section of the 
arch was not contributing to the section properties, thereby 
increasing stresses in the flanges of the arches. The interior 
two-hinged arch closest to the three-hinged arches was found 
to be carrying more than its share, making this arch critical 
over the more lightly designed exterior arches. The instrumen
tation revealed that the compression in the lower arch flange 
was being completely relieved and subjected to tension. This 
last finding revealed that the seriously deteriorated batten 
plates were controlling the rating. Immediate repairs to the 
batten plates were required to ensure safety of the bridge. 

Finally, the test findings were very helpful in developing 
alternatives for possible rehabilitation of the bridge. They 
confirmed that any alternative would have to address improve
ments in relative load distribution to the arches. Alternatives 
studied included regrouping of the two- and three-hinged 
arches so that all the same designs would be placed in the 
same spans, introducing a center longitudinal joint separating 
the arch designs, and developing a stiffer deck to assist in load 
distribution. 
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