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Estimation of Safety at Signalized

Intersections

EzrA HAUER, JERRY C.N. NG, AND JANE LOVELL

Models to estimate the safety of a signalized intersection on
the basis of information about its traffic flow and accident
history are provided. They are based on data from 145 inter-
sections in Metropolitan Toronto. Several insights were ob-
tained during the development of the models. First, logically
sound models require that the frequency of collisions be
related to the traffic flows to which the colliding vehicles
belong and not to the sum of the entering flows. Second, it is
therefore necessary to categorize collisions by the movement
of the vehicles before the collision and not by the initial impact
type, as is customary. Third, the relationship between collision
frequency and the related traffic flows is at times unexpected
in form. For each of the 15 accident patterns, an equation is
given to estimate the expected number of accidents and the
variance using the relevant traffic flows. When data about
past accidents are available, estimates based on traffic flow
are revised with a simple equation. Several practical questions
can now be answered. Given the traffic flow for a signalized
intersection, one can predict how many and what kinds of
accidents should be expected to occur on it; one can also show
the probability density function (pdf) of the estimate. Knowl-
edge of the pdf allows the determination of what an unusually
high number of accidents would be on such an intersection. If
the traffic flow of the intersection changes from year to year,
one can estimate what changes in safety should be attributed
to changes in flow. Also, one can correctly compare the safety
of several intersections that have different flow patterns. Most
important, one can estimate safety when both flows and acci-
dent history are given and, on this basis, judge whether an
intersection is unusually hazardous. This method of estimation
is recommended for accident warrants in the Manual on
Uniform Traffic Control Devices.

In this paper we give equations to estimate the safety of a
signalized intersection when the vehicular flows using it
are known. This kind of estimate describes the safety of
n “average” signalized intersection with given flows. How
the safety of such an average signalized intersection de-
pends on the details of the traffic flow may be regarded as
basic knowledge, the raw matenial on which engineering
design and decisions are or should be based. Ours is not
the first attempt to explore this question, and earlier work
will be reviewed first.
The ability to estimate intersection safety as a function
of traffic flows may be useful when one has to judge
whether the pattern of accidents and their number at some
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specific intersection are similar to what one might nor-
mally expect with such flows. Surely if one wishes to
identify what is unduly hazardous and to diagnose what
the reasons for such deviation might be, one has to have a
good idea about what is normal. To judge what is normal
and what is deviant, one has to know also what variability
is found in the population of similar intersections. This is
why an estimate of the variance of safety will also be
provided.

Another circumstance in which one has to know how
safety depends on traffic flows is when one has to judge
whether some intervention has affected safety and what
the extent of the effect is. In this case one has to separate
those changes in safety that are due to the intervention
from those that are due to the concurrent and inevitable
changes in traffic flow.

When for a specific intersection the number of accidents
is known (in addition to the traffic flow), this added
information must also be reflected in the estimate of safety
for this specific intersection. We will show how to combine
the safety estimate based on flows with accident data. In
our view, it is this combined estimate that should be the
basis of the accident warrants used in the Manual on
Uniform Traffic Control Devices.

We spoke of “safety” without stating what the word
means. “Safety” is the property of some specific entity, in
this case that of a signalized intersection. The “safety
property” of an intersection is defined as the number of
accidents and their adverse consequences expected to oc-
cur on it per unit of time. The term “expected” is equiva-
lent to the average in the long run if it were possible to
freeze all prevailing conditions that affect safety, such as
traffic, weather, driver characteristics, and so on. The
safety of some intersection will be denoted m. The mean
of the m’s in a population of intersections will be denoted
E{m} and their variance Var(m).

PREVIOUS WORK

Numerous relationships between accident frequencies and
traffic flows have been suggested over the years. A com-
prehensive survey of these relationships has been given by
Chapman (1) and Satterthwaite (2). The following sum-
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Thorpe (3), Smith (4), and Worsey (5) suggest that the
number of all accidents at an intersection is proportional
to the sum of flows that enter the intersection. The merit
of this approach is its simplicity. Its shortcoming is that it
is logically unsatisfactory and not a suitable basis for the
engineering analysis, which attempts to link cause and
effect. One expects, for example, that the number of rear-
end accidents at an intersection approach will strongly
depend on the flow on approach A and depend only weakly
on the flow on approaches B, C, and D. Similarly one
should expect that collisions between vehicles from
streams A and B moving at right angles to each other
might be related to the product of flows A and B. To use
the sum of flows A and B leads to the logical difficulty
that one will predict accident occurrence even when one
of the flows is zero; to use A + B + C + D just compounds
two logical difficulties. When a model rests mainly on
considerations of correlation and has obvious logical faults,
its prediction performance is usually poor. To illustrate,
suppose that apples and cherries are grown in the orchards
of Ontario. The bushels of fruit produced in Ontario are
strongly correlated with the acres of orchards in Ontario
and could be estimated on that basis. However, most
would agree that it would be better to estimate fruit
production by first estimating bushels of cherries on the
basis of the acres of cherry orchards and bushels of apples
on the basis of the acres planted with apple trees and only
then add the two numbers. Not only does one get more
detailed information (about apples and cherries, rather
than “fruit”) but one rightly expects the result to be more
reliable. This is the approach that we advocate.

Breunning and Bone (6), Surti (7), and Hakkert and
Mahalel (8) relate accidents to the products of the conflict-
ing flows. This is based on the speculation that were drivers
blind, the number of collisions could be expected to be
proportional to the product of vehicle flows. However, in
other empirical research (9, 10) it has been found that the
number of accidents is in fact not proportional to the
product of flows. Rather, accidents were found to be
related to the product of flows with each flow raised to a
power of less than 1. Tanner (/) suggested that the square
root of the product of flows would be sufficiently accurate
as a rule of thumb.

Support for the “product-of-flows-to-power” relation-
ship can be found in other circumstances as well. For
example, when the expected number of accidents at a
highway-rail grade crossing is calculated, train flow and
highway traffic flow usually enter into the product with an
exponent of 0.3 to 0.6 (/2-14). Similarly, when estimating
the expected number of “opposite direction” accidents on
two-lane rural roads, Zegeer et al. (/5) opt for the product-
of-flows-to-power model.

Our effort to relate accidents at signalized intersections
to traffic flow will be guided by the primacy of logical
requirements. First, we will attempt to relate accidents to
the traffic flows to which the colliding vehicles belong.
This means that accidents between vehicles proceeding in
the same direction have to be estimated separately from
accidents between, say, vehicles turning left and those

49

proceeding straight through the intersection. (This is anal-
ogous to the separation of apples and cherries.) Second,
we will examine the data to see what functional relation-
ship is indicated before we decide on the functional form.

It should be obvious that this kind of estimation requires
information about turning flows. This puts a strain on
practicality when only approach volumes are counted by
automatic counters. Even in this case, the suggested esti-
mation procedure can still be used except that turning
flows have to be estimated first. Methods for doing so are
easily available and commonly used [see, ¢.g., paper by
Hauer et al. (/6)].

THE DATA

To enhance the chances of success we have selected for
analysis a set of signalized intersections that are similar in
most respects except traffic flows and accident history.
Thus, the data are for 145 four-legged, fixed-time, signal-
ized intersections in Metropolitan Toronto that carry two-
way traffic on all approaches and have no turn restrictions.
Most are on straight, level sites with a speed limit of 60
km/hr (35 mph).

One-day vehicle counts were collected manually. Thus,
for each approach we have details of turning flow and
straight-through flow for the a.m. peak, p.m. peak, and
off-peak. All vehicle counts are for weekday conditions,
and the majority of counting was done during 1984.

The accident data are for 1982, 1983, and 1984. They
were derived from the computerized version of the police
accident report. A consistency check was performed with
the computerized data, but the hard copy of the form was
not consulted. To correspond to the available traffic count
information, we used only “daytime” accidents, that is,
those that occurred between 7:00 and 9:00 a.m. (the morn-
ing peak), those that occurred between 4:00 and 6:00 p.m.
(the evening peak), and those in the time interval between
10:00 a.m. and 3:00 p.m. (the off-peak). The hours 9:00
to 10:00 a.m. and 3:00 to 4:00 p.m. were excluded from
the analysis because this is when signal timing plans
change. Accident data were divided into collisions involv-
ing pedestrians, single-vehicle accidents, collisions between
two vehicles, and collisions involving more than two ve-
hicles. The frequency with which these four classes arise is
as follows:

Accident Type No.

Single vehicle 54
Two vehicles 2.084
Multivehicle 248
Vehicle-pedestrian 187
Total 2,573

For the purpose of this analysis, only collisions involving
two vehicles were examined. These accidents represent §1
percent of the total accidents.

In summary, the tollowing analysis concerns weekday,
daytime crashes of two vehicles at simple signalized inter-
sections.
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ANALYSIS OF ACCIDENTS BY PATTERN

To begin the statistical analysis from a logically satisfactory
foundation, we thought it best to relate accidents to the
flows to which the two colliding vehicles belong. The real
interactions are perhaps more complex. However, as a
point of departure and in view of the paucity of our data,
it appears sensible to begin with the obvious.

The 15 patterns in which two vehicles at a four-legged
intersection can collide are shown in Figure 1. Accidents
in each pattern are defined by the maneuvers of the two
vehicles before the collision (which are recorded on the
police accident report as “turning left,” “turning right,”
“going ahead,” etc.). Thus, for example, in Pattern 1 the
collision is between vehicles that are proceeding straight
through the intersection, the crash occurring before the
stop line; in Pattern 2 the same vehicles are involved but
the crash is within the intersection; in Pattern 13, one of
the vehicles is turning right.

We avoid using the more common categorization by
initial impact type (such as rear-end, angle, turning move-
ment, sideswipe, etc.) because of its ambiguity. It is indeed
illuminating to examine the cross-tabulation of accidents
classified by both criteria as is shown in Table 1.

Categorization by initial impact type is most common
in the practice of intersection safety analysis. To demon-
strate the imprecision of this type of analysis, Table 1
reveals that less than half of the angle collisions arise from
Pattern 4; Patterns 5 through 12 all involve a left-turning
vehicle, yet only 423 of 910 are classified as turning-
movement accidents according to the initial impact type;
most approaching initial impacts are not in Pattern 3 but
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FIGURE 1 Accident patterns by vehicle streams.
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in Paitern 6; and so on. We are led to the conclusion that
(as many practicing traffic engineers have known all along)
when accidents are categorized by initial impact type, their
cause-and-effect relationship with traffic flow is weakened.
To understand and analyze accidents at intersections, it is
better to use the “vehicle maneuver” entry from the police
accident report.

EXPLORATION: HOW ACCIDENTS DEPEND
ON THE CONTRIBUTORY TRAFFIC FLOWS

To illustrate how the form of the model equations was
chosen, consider the typical left-turn accident represented
by Pattern 6. For each intersection this pattern arises four
times. Therefore, the 145 intersections give 580 “sites,”
each with different values for the two “contributory” ve-
hicle flows. Table 2 gives the average number of accidents
per site in 3 years for five ranges of the left-turning flow
versus five ranges of the straight-through flow (in vehicles
per day). The cells give the average number of accidents
per site in 3 years and, in parentheses, the number of
Pattern 6 accidents and the number of sites with flows in
the range for that particular cell. The rightmost column
and the bottom row give the same information summed
over the corresponding row or column. The somewhat
irregular flow ranges were selected so that each row and
column would have approximately one-fifth of all acci-
dents.

In principle, one should seek a function form that fits
the cell entries. However, in this case, the cell entries in
Table 2 are based on too few accidents to allow for finesse.
Therefore, useful clues are derived from examining the
row and column totals. This is shown in Figure 2a and b.

There is a clear suggestion in Figure 2a that within the
range of the data, accidents are proportional to the through
traffic. Therefore, denoting the through flow in Pattern 6
F,, we wish to select a model form such that the expected
number of Pattern 6 accidents (E{m}) is proportional to
F,. The increase of accidents with the left-turning flow (1)
appears to be nonlinear. The kind of increase indicated in
Figure 2b can be captured by a function such as F%, where
b, is a coefficient smaller than 1. Therefore, for Pattern 6
accidents, a simple functional relationship that can closely
match what we observe in Figure 2a and b is

E{ms} = by X F, X F (1)

No cause-and-effect arguments were used in selecting
this functional form; the guiding principle was the wish to
ensure a satisfactory fit with parsimony of parameters and
without violation of the obvious logical requirements. We
also explored alternative functional forms, which all in-
creased the number of parameters. In no case did this
seem worthwhile in terms of the improved fit to the data.

A similar exploration of how Pattern 1 and Pattern 2
accidents depend on traffic flow led to the expected con-
clusion: in this case, a straight-line fit seems satisfactory.

The examination of Pattern 4 proved more interesting.
Because of the symmetry in the situation (see Figure 1) we
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TABLE 1

CROSS-TABULATIONS OF ACCIDENTS BY
VEHICLE MANEUVER PATTERN AND INITIAL IMPACT TYPE
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NUMBER INITIAL IMPACT TYPE
PATTERN OF
ACCIDENTS RE An Tn Ss Ap Other
1 538 429 45 5 52 1 6
2 197 109 30 1 52 o] 5
3 12 o} 4 0 3 5 0
4 258 1 237 0 6 11 3
5 47 10 13 18 5 1 0
6 729 o] 329 355 6 32 7
7 42 5 22 14 0 0] 1
8 32 ] 17 9 1 5 o]
9 29 15 0 10 3 0 1
10 2 0 0 2 0 0 0
11 7 1 3 3 ¢} 0 0
12 22 [0} 7 12 2 0 1
13 73 20 14 29 5 0 5
14 80 5 33 34 8 0 0
15 16 8 3 2 3 0 0
Total 2084 603 727 494 146 55 29
Initial Impact Type : RE : Rear-End
An : Angle
Tn : Turhing Movement
Ss : Sideswipe
Ap : Approaching

TABLE 2 CROSS-TABULATIONS OF ACCIDENTS BY VEHICLE FLOWS FOR PATTERN 6

STRAIGHT- LEFT-TURNING FLOW (veh./day)
THROUGH FLOW ROW

(veh./day) 0-521 522-821 822-1033 1034-1408 1409-4038 TOTAL

0-3525 0.49 0.60 0.63 1.57 0.56 0.64
( 51/104) ( 35/ 58) ( 20/ 21) ( 33/ 21) ( 9/ 1l6) (148/231)

3526-4825 0.61 1.00 1.91 1.24 1.75 1.16
( 27/ 44) ( 25/ 25) ( 44/ 23) ( 21/ 17) ( 28/ 1le6) (145/125)

4826~5941 1.27 1.22 1.44 1.36 2.79 1.63
( 19/ 15) ( 33/ 27) ( 23/ 16) ( 15/ 11) ( 53/ 19) (143/ 88)

5942~7771 1.31 1.40 3.10 2.20 1.40 1.78
( 17/ 13) ( 35/ 25) ( 21/ 8) ( 36/ 8) ( 36/ 11) (145/ 53)

7772-12091 1.67 2.75 2.63 4.50 3.27 2.73
( 30/ 18) ( 22/ 8) ( 21/ 8) ( 36/ 8) ( 36/ 11) (145/ 53)

COLUMN 0.74 1.05 1.56 1.93 1.91 1.26
TOTAL (144/194)  (150/143) (1397 89) (149/ 77) (1477 77) (729/580)

have chosen to distinguish the two flows by calling the
larger flow F, and the smaller F,. In Figure 3a and b we
show the observed relationships between the average num-
ber of accidents per site for 3 years and the two flows. It
appears that, for the range of flows for which data are
available, the larger of the two flows exerts little influence
on the number of accidents. The smaller of the two flows
exerts a great deal of influence initially, but this tapers off
as the flows become larger.

This is an unexpected and tantalizing finding. With
hindsight one can offer speculative explanations. It is
possible, for example, that accidents of this kind involve
mostly platoon leaders; the number of vehicles arriving

after the platoon leader would in this case be immaterial.
Alternatively, one could think of the points in Figure 3a
as being a continuation of the points in Figure 3b—the
same functional relationship for both flows. Of course,
speculation is not a substitute for explanation and does
not amount to “understanding.”

Thus, on the basis of an exploratory analysis, one can
suggest functional forms for expressions that fit what has
been observed in Patterns 1, 2, 4, and 6 with parsimony.
There are not enough data for any of the remaining
accident patterns to warrant similar exploratory analyses.
For these we had to select model forms by analogy and
judgment.
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FIGURE 2 Relationship between accidents and
contributory flows for Pattern 6.

On the basis of insight gained in the exploration stage
we proceeded to the task of examining the statistical per-
formance of the several model forms that appeared prom-
ising.

ESTIMATION OF COEFFICIENTS

Coefficient estimation is the domain of the professional
statistician. It is a domain too frequently invaded by those
who mistakenly believe that a statistical software package
can be used by nonexperts. In this paper we do not attempt
a comprehensive coverage of technical detail. Rather, we
will point out some matters of method that seem important
when it comes to the statistical treatment of accident data.
It is best to do so with reference to the models at hand.

For accident Patterns 1 and 2 we have concluded that a
simple model of the form E{m} = b, = F seems sufficient.
The reflex inclination is to “run a regression” in order to
find an estimate b, of parameter b,. Although the estimate
so obtained may be adequate, in principle to do this would
be a mistake. To understand why, it is necessary to describe
the conceptual framework within which this kind of pa-
rameter estimation takes place.
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FIGURE 3 Relationship between accidents and
contributory flows for Pattern 4.

We have denoted m the safety of a specific intersection.
Imagine a population of intersections that all have the
same traffic flows. In this imaginary population, the m’s
would still vary from intersection to intersection because,
although flows are identical, they involve different drivers
in different parts of different cities, and so forth. Thus,
one can speak of the mean of the m’s (E{m]) in this
imaginary population of intersections with identical traffic
flows. This mean of »’s is what describes the safety of a
“representative” or “average” intersection for this imagi-
nary population. Similarly, one can speak of the variance
of the m’s (Var{m}) in this imaginary population of inter-
sections. To make a statement about the safety of a specific
intersection of this population, it can be said that “inter-
sections of this kind (e.g., signalized, with a specific pattern
of traffic flow) have on the average E{mj} accidents and
the variability of m in the population of intersections of
this kind is Var{m}.”

When fitting a model to accident data, we are trying to
estimate E{m} as a function of traffic flow (in this case).
That is, we are trying to determine what the m is of some
“gverage” or “representative” intersection and how it var-
ies with traffic flow. However, the data used for estimation
are not for “average” intersections. Each accident count
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we use is for one specific intersection from the imaginary
population of intersections with the same flows. It follows
that if E{m} is what we wish to estimate, the accident
count must be considered as a Poisson random variable
that comes from a site with m as its expected value and
that this m, in turn, is one of a distribution of #’s char-
acterized by E{m} and Var{mj.

Thus, the distribution of accident counts around E{m}
is one of a family of “compound Poisson distributions.”
In the special case in which the distribution of »7’s in these
imaginary populations can be described by a gamma prob-
ability density function, the distribution of accident counts
around the E{m} must be taken as negative binomial. This
is a radical departure from the assumptions on which the
usual regression software is based. Therefore, a “least-
squares” regression model should not be used without
expert modification.

In this project we have estimated coefficients using the
Generalized Linear Interactive Modeling (GLIM) software
package (/7). This software yields maximum likelihood
estimates of coefficients and allows the user to specify the
“error structure” that corresponds to the data used. In our
case we specified the negative binomial error structure,
following Maycock’s lead (18).

It is already clear that to answer some practical questions
about safety it is not sufficient to know what the safety
(E{m}) is of an “average” intersection with given traffic
flows. Ordinarily one wishes to make statements about the
the safety (m) of some specific intersection. If the Var{m}
is very large, knowledge of E{m} tells us little about the m
of a specific intersection, and vice versa. To make infor-
mative statements about the safety of specific intersections,
one also needs to know the Var{m}. From the methodo-
logical point of view, it is the approach to the estimation
of Var{my} that is of the most interest.

It can be shown that if accident occurrence follows the
Poisson probability law for each intersection in the afore-
mentioned imaginary population, the variance of accident
counts in such a population is given by

Var{accident counts}] = Var{m} + E{m} (2)

It follows that one can estimate Var{m} if estimates of
E{m} and Var{accident counts} are available. An estimate
of E{mj} is the direct product of coefficient estimation.
Thus, once we have estimates of b,, b,, ... for a certain
accident pattern, we can estimate E{m}. We explain below
how to get an estimate of Var{accident counts}.

Consider one site in our data with its specific traffic
flows. The squared difference between the accident count
on that site and the corresponding E{m]} is an estimate of
Var{accident counts} for that specific combination of
flows. When we plot these squared differences (often called
residuals) against E{m], we find a relationship of the
following form:

Varfaccident counts] = E{m} + [E{m}1*/k (3)

The same relationship was found in the analysis of
accidents at grade crossings (/4) and was suggested by
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others (19) earlier. Thus, taken together, the residuals
behave in a sufficiently regular fashion to allow the esti-
mation of the parameter k. Once an estimate of k is
available, the estimate sought is given by

Var{m} = [E{m})2/k 4)

The process of coefficient estimation that we used is
iterative. We begin by assuming a value for k and proceed
to estimate the vector of h-coefficients with GLIM. Now
we can calculate residuals. These serve as input into a
program to obtain the maximum likelihood estimate of &.
The new £ is fed back into GLIM to obtain new estimates
of b-coefficients, and the cycle is repeated until closure.

The most frequent accidents are of Patterns 1, 2, 4, and
6, accounting for 83 percent. Thus it was possible to study
these patterns in considerable detail. It was found that the
number of accidents varies with the time of day. Therefore,
the b-coefficients were estimated separately for the a.m.
peak, the p.m. peak, the off-peak, and average daytime
(daily) conditions. Although we provide models and coef-
ficient estimates for all other patterns as well, because of
the limited data, these should be regarded as unreliable.
The final models selected for the 15 accident patterns and
their coefficients are given in Table 3.

For clarity, the dimensions of E{m} (the estimate of
E{mj}) are accidents per hour (a/h) and the dimensions
of the traffic flows are correspondingly vehicles per hour
(v/h). The convenience of this consistency will become
evident in the next section.

Not all accidents are “reportable” and not all reportable
accidents are in fact reported. During the 1982-1984
period, accidents that exceeded $400 CDN in damages as
well as accidents involving injury (visible or complained
of) were reportable. These criteria as well as the complete-
ness of reporting vary in time and place. The equations
specified by Table 3 allow the estimation of total accidents
in Metropolitan Toronto during 1982-1984. To increase
the transferability of our findings, we have also provided
estimates of the injury ratio (injury accidents/total acci-
dents) for each accident pattern in Table 4.

In Figure 4 we show the ratio of observed accident count
per E{m} for the total number of accidents. The 145
intersections were arranged in ascending order according
to E{m). It is of course pleasing to see the ratios symmet-
rically distributed around 1. The upper and lower bounds
(1.72, 0.37) in Figure 4 contain 90 percent of the ratios.
The circles represent the averages of 20 ratios. This is not
a great achievement because the same data used earlier for
coefficient estimation are now used again to describe
model performance.

In Figure 5a and b we show the same ratios (observed/
estimated) for accident Patterns 1 and 6. It can be seen
clearly that the variability of the ratios decreases as £{m)
increases. The circles represent the averages of 20 ratios.
As expected, these averages fall neatly around 1.

Finally, the reader is reminded that the equations in
Table 3 are for weekday, daytime accidents at signalized
intersections in which two vehicles collided.
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| B
PATTERN MODEL FORM TIME COEFFICIENT ESTIMATES [ &
bo by b2
1 E(m) = bg x F 0.1655x10°6 2.98
0.2178x1076 2.73
0.2164x10°6 3.54
daily | 0.2052x10-6 4,59
~
2 E{m) = by x F 0.0987x10-6 1.49
0.0933x10-6 0.94
0.1080x10"6 4.15
daily | 0.1014x10-© 1.97
4 E(m} = by x Fp2 19.020x10°6 0.1536 | 2.65
1.4127x10°6 0.6044 | 2,33
9.7329x10°6 0.3860 | 3.38
daily | 8.1296x10°6 0.3662 | 5.51
Eemy = b2 -6
6 E(m) = by x F1 x Fz 0.0283x10 0.5163 | 1.39
0.0940x10-6 0.3091 2.70
0.0718x1076 0.4127 2.20
daily | 0.0418x10°6 0.4634 2.10
Ermy = bz i -9
3 E{m} = by x F? daily | 8.6129x10 1.0682
5 E(m = by x F1°1 x F%2 | daily | 0.3449x10°6 | 0.1363 | 0.6013
7 E(m) = bg x F1°1 x FP2 | daily | 0.2113x10°6 | 0.3468 | 0.4051
Eem) = bz ; -6
8 E{m} = bg x Fp daily | 2.6792x10 0.2476
- N by . -9 |
9 E(m) = bg x F daily | 6.9815x10°9 | 1.4892 | =
10 E(m) = bg x F%2 daily | 5.590x10°12 27862 |
| o
1 E(m) = by x F1°1 x F,P2 | daily | 1.3012x10°9 | 1.1432 | 0.4353 | o
12 E(m) = bg x 11°1 x F,P2 | daily | 0.0106x10°6 | 0.6135 | 0.7858 |
13 E(m) = bg x F1°1 x FP2 | daily | 0.4846x10°6 | 0.2769 | 0.4479 !
14 Eim) = bg x F1°1 x 22 | daily | 1.7741x10°9 | 1.1121 | 0.5467 |
e b]. - -6 |
15 E(m) = bg x F daily | 0.5355x10°6 | 0.4610 I

TABLE 4 INJURY RATIO BY PATTERN

PATTERN MEAN RATIO 95% CONFIDENCE
LIMIT
1 0.3885 0.34 - 0.45
2. 0.1929 0.14 - 0.27
4. 0.3256 0.23 - 0.40
6. 0.3169 0.28 - 0.36
other 0.1685 0.13 - 0.22
TOTAL 0.2989 0.28 = 0.33
NUMERICAL EXAMPLE

To illustrate the use of the equations in Table 3, we
examine one intersection in detail. The a.m. peak traffic
flows for the intersection are shown in Figure 6. To find
the E{m)} for a particular accident pattern, the flows in
Figure 6 are substituted in the equations of Table 3. For

example, to obtain the £ {me}.m We use

4

_21 (0.0283 x 107¢ % Fy X F,,0519%)
-

7.96 X 107 (a/h)

and from Equation 4
4

E{mG}am =

Vér{mt’:]am = Z:l [EA‘j[mﬁ}am]z/Eﬁ,am
= 1,18 X 107 (a/h)*
where
F, =450 (v/h) F, =120 (v/h) forj=1
= 986 (v/h) = 41 (v/h) =2
= 850 (v/h) = 96 (v/h) =3
= 869 (v/h) = 59 (v/h) =4

To find E{ms) for 2 a.m. peak hours over 261 weekdays
in 3 years, multiply 7.96 X 107* by 2 X 3 X 261 = 1,566,
and multiply the Vair{me}., by (1,566)>. The equations in
Table 3 are for estimating total accidents; therefore, to
determine the number of injury accidents we multiply the
estimate by the injury ratio from Table 4. Hence, the
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estimated mean number of a.m.-peak, Pattern-6 injury
accidents for 3 years is

E{me Jam = 7.96 X 107* X 1,566 X 0.3169
= 0.40 (injury accidents/3 years)

In Table 5 we show the total observed counts, E{m)s,
and Var{m}’s for each accident pattern for 3 years at this

accidents on the intersection are shown on the last row of
Table 5. It is the sum of the individual E{m}’s and Var{m}’s
for each accident pattern.

ESTIMATION OF SAFETY WHEN ACCIDENT
RECORD IS GIVEN

If someone provides us with the traffic flows on a signalized
intersection and asks about its safety, we first calculate
E{m} and Var{m} and then proceed to state: “Intersections
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TABLE 5 CORRESPONDENCE BETWEEN GBSERVED
AND ESTIMATED NUMBER OF ACCIDENTS

PATTERN OBSERVED E{m} VAR({m}
(1982-1984) (3 years) (3 years)

1 4 4.837 1.295
2 2 1.886 0.457
3 0 0.119 0.004
4 1 2.380 0.257
5 0 0.318 0.013
6 6 6.565 5.245
7 0 0.327 0.139
8 1 0.220 0.006
9 0 0.137 0.003
10 o] 0.011 0.000
11 0 0.034 0.000
12 1 0.141 0.003
13 1 0.601 0.051
14 o] 06.772 0.088
15 0 0.116 0.002
TOTAL 16 18.464 7.563

with such flows are estimated to have, on the average,
E{m) accidents and the variability of 7’s among similar
intersections with such flows is estimated to be Var{m}.”

How does the statement change if, in addition to infor-
mation about the traffic flows, we are also told that in the
last n units of time, X accidents (of a certain pattern) have
been recorded?

Before the question is answered, it is instructive to see
that the conceptual framework specified earlier still con-
tinues to serve. In the section headed Estimation of Coef-
ficients, we have imagined a subpopulation of all intersec-
tions such that all its members have the same pattern of
traffic flow. This allowed us to make statements about the
safety of intersections with a specific flow. The statement
in the opening paragraph of this section is about one
member of such a subpopulation. Now we are given more
information. Not only do we know the flow of traffic for
the intersection of interest, we also know its accident
record. Thus, the earlier subpopulation (intersections with
a certain traffic flow) can be further subdivided in our
imagination into still more specific subsets; those with 0
accidents in » units of time, those with 1 accident in »n
units of time, and so on. The more information we have,
the more specific is the subpopulation. For notational
clarity we will use E{m | X,n} and Var{m | X,n} to denote
the mean and variance of the m#’s in the subpopulation of
intersections with the given flow of traffic and a record of
X accidents in the past » units of time.

It can be shown that if the distribution of m’s in these
imaginary populations can be described by a gamma prob-
ability density function (and accident occurrence on any
entity follows the Poisson probability law), then

Em|Xn =X+ b/(n+ a) (5)
Var{m | X,n} = (X + b)/(n + a)® 6)
in which,

a = E{m}/Var{m}
b = (E{m})’/Var{m)]

a thic we cont
C 1S We Cont
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E{me} = 7.96 x 10~*(a/h) and Var{ms} = 1.18 X 1077
(a/h)>. What can be said about the safety of one such
intersection on which two weekday, a.m.-peak, Pattern 6
accidents occurred in the last 3 years?

Using the estimates of E{ms} and Var{ms} above, we
find that @ = 6,745.76 and b = 5.37. Therefore, from
Equations 5 and 6 we get

E{m|2,1566} = 8.87 x 10* (a/h)
and

Var{m|2,1566} = 1.07 X 10~ (a/h)

This can be made more tangible by visual representation.
The gamma probability density function is given by

fim) = a®* m"™' e /T(b)
for m > 0 and O otherwise (9)

Curve A in Figure 7 shows the f(m,) for intersections
with flows given in Figure 6. The mean of m’s for such
intersections is 7.96 X 10~ (a/h), and the variance is 1.18
X 1077 (a/h)>. By using f(m) one can even say, for example,
that 5 percent of intersections of this kind have m’s in
excess of 0.00146 (a/h).

Curve B in Figure 7 shows the f(m, | X,n) for the same
F’s and F,’s when X = 2 accidents and n = 1,566 hr. To
plot this curve we use Equation 9 again, except that a is
replaced by (n + a) and b is replaced by (X + b). The mean
of m’s for intersections carrying these flows and with such
an accident record is 8.87 X 10~ (a/h), and the variance
of m’sis 1.07 X 1077 (a/h)~

SUMMARY AND DISCUSSION

We have used accident data and information about inter-
section traffic flows to build models for the estimation of
safety at signalized intersections.

During the course of model development we reached
some useful insights. First, for a model to portray a rela-
tionship between cause (traffic flow) and effect (collisions
between vehicles) we chose to relate accidents to the traffic
flows to which the colliding vehicles belong. In our view,
the logic of attempts to seek an aggregate relationship
between accident frequency and some function of all flows
(sum of entering flows, sum of products of flows, etc.) is
unsatisfactory.

Second, it appears that the customary categorization of
accidents by initial impact (rear end, angle, turning move-
ment, sideswipe, etc.) is not very informative. One cannot
assume, for example, that classification of an accident as
an angle accident implies that the vehicles were traveling
at right angles to each other or that most accidents involv-
ing left- or right-turning vehicles will be classified as turn-
ing accidents.

Third, a close examination of how the frequency of
collisions depends on the traffic flows from which they
arise reveals that preconceived notions are at times not

harna it by amnirical avidanca We find that the fra_
oCIne cutl 8y SmpiriCa: SviGence, YW ngd iuhatr mnl ird

quency of collisions between vehicles traveling in the same
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direction is proportional to the traffic flow in that direc-
tion, as one would expect. However, we also observe that
the frequency of collisions between vehicles turning left
and those proceeding straight through is proportional to
the flow of through traffic but less than proportional to
the flow of left-turning vehicles. In addition, the frequency
of collisions between vehicles traveling at right angles to
each other (~12 percent of all collisions) does not seem to
depend at all on the larger of the two traffic flows; it
increases with the smaller flow, but less than linearly.

Taken together, these observations lead to the conclu-
sion that the popular assumption that intersection acci-
dents are proportional to the sum of entering volumes is
not in line with empirical evidence for several common
accident types. Therefore, it cannot be true for the totality
of intersection accidents. It follows that it is not correct to
use intersection accident rates calculated on the basis of
the sum of entering volumes to compare the safety of two
different intersections nor is it proper to use the sum of
entering volumes to correct for exposure in before-and-
after studies.

On the basis of such exploratory analysis we have se-
lected plausible model forms that would fit the data with
parsimony of coefficients.

The following conceptual frame serves for both coeffi-
cient estimation and later for the model use. We think of
a specific intersection as being a member of an imaginary
population of intersections with similar features. Thus, for
example, if we know the accident history and traffic flows
for a certain signalized, four-legged intersection in metro-
politan Toronto, we imagine a population of such inter-
sections with the same flows and accident history. When
making a statement about the safety, m, of a specific
intersection, we say that intersections with similar features
have on the average E{m} accidents and that in this
imaginary population, m’s have a variance given by
Var{m}. Thus, the estimate of the population average
[E{m]] is our best estimate of the m for the specific

intersection about which we speak and the estimate of
Var{m} describes the uncertainty surrounding this estimate
of m.

This sounds like academic hairsplitting and an unnec-
essary stretching of the imagination. However, the conse-
quences of adopting this approach are immediate, practi-
cal, and far-reaching,

First, this approach implies that the run-of-the-mill least-
squares regression software should not be used in the
analysis of accident data. The error structure must be
taken to be the compound Poisson kind. Second, the same
approach allows one to use the residuals in order to obtain
an estimate of Var{m}. The knowledge of Var{m} is essen-
tial, as is shown; it allows us to combine data about
accidents and information about traffic flows and use both
for the estimation of safety. Knowledge of Var{mj is also
the basis of all statements about the effect of any safety
treatment or about what is “normal” or “unduly hazard-
ous.”

The results of our modeling and coefficient estimation
efforts are summarized in Table 3. Here we give equations
for each of 15 accident patterns to estimate E{m} and
Var{m} as a function of intersection flows. The use of
these equations is demonstrated by a numerical example.
We show that given the details of traffic flow at an inter-
section, we are now in a position to estimate the number
of accidents expected to occur per unit of time in each of
15 accident patterns and also to describe the uncertainty
surrounding this estimate.

Thus far the estimates have been “personalized” to
account for the specific traffic flows at an intersection. The
next step is to harness for estimation also the information
about the accident history of a specific intersection. The
conceptual framework set up earlier again stands in good
stead. Simple equations allow the transition from the
estimate of E{m} and Var{m} based on traffic flows to the
corresponding estimates, which are now based on the
accident history as well. The underlying assumption is that



the #7's in each uuag nary p pulation
of 1ntersect10ns with similar features can be described by
a gamma probability density function.

Relying on the same assumption, one can now obtain a
complete description of the probability density of m’s. We
have shown this in another numerical example. Thus, we
are now in a position to make several informative state-
ments.

First, given the flows of a signalized intersection, we can
say how many accidents and what type should be expected
to occur on it. We can also specify the variance to be
expected; in fact, the complete probability density function
can be specified and plotted. On the basis of the probability
density function we can decide what an unusually high m
would be for accidents of a certain type on intersections
with such flows.

Second, we can calculate how the number of accidents
by type is expected to change when flows change. This
allows us to separate changes in safety due to changes in
traffic flow from changes due to other reasons. It also
allows the correct cross-sectional comparison of the safety
of several intersections instead of incorrect comparisons
couched in terms of accidents per million entering vehicles.

Third, we can obtain an estimate of m for an intersection
with a known accident history (E{m | X,n}) and compare
it with what is expected at an average intersection with
such flows (E{mj}). It is on the basis of the magnitude
E{m| X,n} and its comparison with E{m} (and also the
two corresponding variances) that one should make deci-
sions on what is deviant and where remedial action is
warranted.

In particular, some warrants in the Manual on Uniform
Traftic Control Devices (e.g., 2B-6 and 4C-8) refer to an
“accident problem” and suggest that this 1s indicated by a
certain “number of reported accidents of a type susceptible
to correction” that occur in a 12-month period. In our
view, such warrants should refer to estimates of E{m} and
E{m| X,n} and their comparison and not to the count of
reported accidents in a relatively short period of time.
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DISCUSSION

CARL N. MORRIS
Department of Mathematics and Statistical Sciences Center, Univer-
sity of Texas, Austin, Tex. 78712

The idea by Hauer et al. of estimating traffic accident rates
based on relevant flow rates certainly must be a welcome
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advance. But | will leave further assessment of that topic
to others and concentrate on the statistical issues, about
which I am most familiar.

The authors build on their weighty past contributions
to accident analysis by again developing hierarchical and
empirical Bayesian models for accident rates, this time
further including regression model features. I will sum-
marize their statistical model within a very useful para-
digm, which I sometimes call the General Model for
Statistics (/, 2) because it contains the main branches of
statistical thought. Without going through the general
ideas, I immediately specialize that model to the Poisson-
gamma model of Hauer et al., using their notation. The
model has two completely equivalent renderings, a descrip-
tive model that describes how we visualize distributions
for the data and parameters, and an inferential model that
rewrites the distributions in more convenient form for
making inferences. Table 6 will help to clarify my ques-
tions.

The descriptive model is mathematically equivalent to
the inferential model (Table 7), which specifies the mar-
ginal distribution for the data and the conditional distri-
bution for the parameters.

Equation 14 in Table 7 declares the marginal distribu-
tion of X to be a negative binomial distribution, with usual
parameters b > 0 and p = n/(n + a). Expression 15 specifies
the mean and variance of this negative binomial distribu-
tion inside the square brackets. Similarly, the square-
bracket notation in Equation 18 indicates the mean and
variance.

I now ask several questions that arise from consideration
of the authors’ methodology as structured in Equations
10-18.

Distribution for
Observed Data: X | m ~ Poisson(mn) (L
X = accidents at a site
m = true accident rate

n = exposure (time)

Distribution for il
Unobserved Parameters: m | b,a ~ Gam(b —) i
a
Em=bja=bF F" =y, (12
Var(m) = b/a? . 3
¢ = unknown hyperparameters = (b. by. b;. b;)

TABLE 7 INFERENTIAL MODEL

Distribution for

b Data: ~ i = 14
Observed Data X ~ NegBin (b,p = a) |
. . rnb n?%b . X u? o
_NegBm[j,?—] —f\egBm[p.p+T] (AR
p=bla=bFlEy . i6d
Distribution for i
Unobserved Parameters: m | X ~ Ga.mma(b + X, —) 171
n+a
b+ X X
:Gamma[ : = b \;] s
n+a (nt+al

59

1. Parameters b and k: The authors have an expression
similar to my Expression 15 for Var(X) = p + u/b, which
is their Equation 3 of the section headed Estimation of
Coefficients. But they use & for b. Isn’t k = 5? In Pattern
6 they estimate k = 1.39 in the morning (Table 3) but b =
5.4 (Figure 7) for the same data. Shouldn’t these values
agree?

2. The link function: The regression coefficients by, b,
b, are estimated by the authors using GLIM, which re-
quires, among other things, specification of the so-called
“link function” n = g(u). Here 7, the linear form of the
model, is

n = log(by) + b, log(F)) + b log(F>) (19)
The mean structure therefore satisfies

nb

w=EX=—"=bhFiFt = exp(n) (20

and so, presumably, we are required to use

7 = log(u) (21)

which is the “log link.” Is this correct? Note that the
“natural link” for the negative binomial family,

=g = log(b " M) = log(n - a) (22)

would be fit by GLIM if no specification were made. But
the natural link is not the link in Equation 21.

3. Variable exposures (#): Do the exposures # in Equa-
tion 10 vary from intersection to intersection? Assuming
50, should that complicate the estimation of b and of the
coefficients (b, b\, b,) through Equation 137

4. Details about GLIM: Models like Equation 14 are
quite difficult to fit. The authors seem to have found an
ingenious way to estimate the “hyperparameters” (b, b,
b,, b-) in the model. (Note that a can be defined in terms
of the other paramters by using Equation 16.) More details,
beyond the material surrounding the authors’ Equation 4,
are needed for an adequate understanding of this proce-
dure. Most particularly, the subscripts that indicate the
specifics of the intersection are not shown by Hauer et al.,
and so are also avoided in my rendering above. The
clarification would reveal which values are intersection
dependent and specify the assumed probabilistic inde-
pendence of the data {X} and of the parameters {m,}.

5. Need for dependence of the mean on both F, and F-:
Although the points lie on a horizontal line in Figure 3a,
the fitted curve must go through the origin (no flow implies
no accidents). Thus, forms like b,F.b- used for Pattern 4
do not seem reasonable because they predict a substantial
number of accidents when F, = 0.

6. Errors in variables: Substantial errors must be made
in estimating (F,, F-). If so. this produced an errors-in-
variables bias in estimation of b,, b.. Is there any way to
determine how large this bias might be, or how accurately
the flows are measured?

In conclusion, the paper offers a potentially very useful
methodology that should further improve assessment of
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traffic hazards. The answers to the foregoing questions wiii
help me to further understand the approach offered and
its advantages.
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AUTHORS’ CLOSURE

It is most gratifying to have a prominent statistician review
and comment on our work. We will attempt to respond
to the questions raised.

PARAMETERS b AND k&

There is no natural reason why in some population of
intersections the »7’s should fit a gamma distribution.
However, if they do, the plot of squared residuals should
be of the form specified by Equation 3. Having reassured
ourselves that using the gamma assumption is in accord
with our data, we estimated the value of k. Indeed, the
estimate of k is also the estimate of b, as pointed out by
the discussant.

As pointed out by the discussant also, for Pattern 6 (a.m.
peak), K = 139, whereas a few pages later, for the same
pattern, we use b = 5.37, an apparent discrepancy.

To see why the two values must differ and how, consider
the characteristic function of a gamma distribution,

(1) = 1/(1 - it/a)’

If four independent random variables have the same
gamma distribution, their sum will have a characteristic
function,

o * (0= 1/(1-it/a)*"
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indeed, ihe i.39 (/'E) vaiue 1n Tabie 3 refers io one
gamma-distributed variable. The 5.37 (b) used later per-
tains to a sum of four random variables (similar but not
identical). Thus the usage does seem to be correct.

QUESTIONS ABOUT GLIM

The GLIM software has been used for this purpose by
others before us [e.g., Baker and Nelder (/), Pickering et
al. (2), and Hall (3)]. That is why we decided not to
“attempt a comprehensive coverage of technical detail” in
our paper (section on Estimation of Coefficients). Because
the frame of reference has not been provided in the paper,
it is difficult to give an intelligible discussion here.

In answer to Questions 3 and 4, accident count, duration
of accident history, and traffic flow data are all intersection
specific and are so represented for use in GLIM.

We have elected to measure u in accidents per hour and
F in vehicles per hour. Suppose now that we have at a
certain intersection 3 years’ worth of accident data for two
morning peak hours during 250 weekdays a year. The n
for this intersection would be 3 X 2 X 250. For an
intersection i,

i = n; 11 F}h’
1, =In(n) + ¥ [b; X In(F))]

In GLIM, In(n,) is treated as an “offset.”

NEED FOR F, AND F,

The discussant notes that if b,F>" is used, one would
predict u > 0 even when F, = 0. Recall that in the section
of our paper on how accidents depend on contributory
traffic flows, we called the larger flow F, and the lesser
flow, F,. Therefore, F, = 0 implies that F, = 0 and “no
flow implies no accidents,” as is required.

ERRORS IN VARIABLES

As noted by the discussant, F; and F,, which are taken to
apply to a 3-year period, are actually estimated from a 1-
day volume count. Thus, although GLIM and other statis-
tical software treat the independent vanables as if they
were measured accurately, in fact they are also subject to
error. Some ramifications of the “error-in-variables” prob-
lem have been explored recently by Weed and Barros (4).
Unfortunately, we still do not know what effect this might
have on estimates of b, and b..
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