
TRA NSPORTATION RESEARCH RECORD 1187

Knowledge Representation and Software
Selection for Expert Systems Design

ARDESHIR F AGHRI AND MICHAEL J. DEMETSKY

A variety of techniques and methods for representing knowl
edge in the knowledge base of expert systems have been used.
The authors examine the significance of the means of repre
senting the knowledge base in the development of expert
systems, with special reference to transportation engineering.
The development, highlights, and shortcomings of each rep
resentation technique are discussed, and appropriate trans
portation engineering examples are given. Also presented are
the results of an investigation of expert system tools and how
they relate to different representation techniques.

The heart of an expert system is its knowledge, which is
structured to support decision making. When scientists
in artificial intelligence (AI) use the term "knowledge,"
they mean the information a computer needs before it
can function intelligently (l); this information takes the
form of facts and rules. Facts are truths in some relevant
world-things we want-to-represent-Rep~-entations of
facts are the things we will actively be able to manipulate.
For example,

Fact: Responses to a brake light from a leading vehicle
require 0.4 sec to more than 1.0 sec for some drivers (2).

Example: All physical motor capabilities deteriorate
with age.

Rules are formal representations of recommendations,
directives, and strategies; they may be expressed as condi
tional (if-then) statements. For example,

Rule: If forced flow and low speeds exist on a segment
of highway, a level of service Fis achieved.

Example: If the degree of congestion or vehicle delay, or
both, caused by daytime lane closures is severe, nighttime
construction and maintenance should be considered.

Facts and rules in an expert system are not always true
or false; sometimes there is a degree of uncertainty about
the truth of a fact or the validity of a rule. When this doubt
is made explicit, it is called a certainty factor (1).

Fact: Rail-highway crossings near major employment
centers experience more accidents with certainty 0. 7.

Virginia Transportation Research Council, Box 3817, University
Station, Charlottesville, Va. 22903.

Rule: If the average speed increases by I 0 mph with
certainty 1.0, the number of accidents will increase by I 0
percent with certainty 0.6.

The organization of knowledge in an expert system
separates the knowledge about the problem domain from
the system's other knowledge, such as general knowledge
about how to solve problems or knowledge about how to
interact with the user. The collection of domain knowledge
is called the knowledge base; the general problem-solving
knowledge is called the inference engine (J).

Different techniques and methods for representing
knowledge in the knowledge base of expert systems have
been used. The authors examine the significance of the
means of representing the knowledge base in the develop
ment of expert systems, with special reference to transpor
tation engineering. The development, highlights, and
shortcomings of each representation technique are dis
cussed, and appropriate transportation engineering exam
ples are given. Also presented are the results of a thorough
investigation of expert system tools and how they relate to
different representation techniques.

KNOWLEDGE REPRESENTATION
TECHNIQUES

In expert systems, complex problem solving requires both
a large amount of knowledge and a mechanism for manip
ulating that knowledge to create solutions to new prob
lems. A number of methods for representing knowledge
(facts) have been used in expert systems. In this paper, the
common knowledge representation techniques are dis
cussed: predicate logic, other logics, structured represen
tation, rules, and object-attribute-value triplets.

Predicate Logic

Logic is critically concerned with the validity of arguments,
that is, methods of determining whether given conclusions
can be validly drawn from given facts. Logic is relevant to
programming because a program is really a set of quasi
logical statements that are processed in some way to gen
erate a conclusion (3). In logic a "true argument" has a

2

precise, clearly defined meaning: an argument is consid
ered true if and only if all of its assumptions are true; then
its conclusions are true also.

To decide on the acceptability of a particular argument,
it is necessary to make some test. In logic the method of
doing this is to compare the text of interest with abstracted
patterns of argument to seek a match. Such patterns are
termed "forms" and are made up of abstracted sequences
of facts and rules that have been proved valid in a mathe
matical (or "formal") way (3).

The capabilily of logic Lo generate (or infer) new infor
mation from old is of particular interest given the tendency
to view programming as the controlled generation of in
ferences. Moreover, with many years of development be
hind it, logic also provides a well-defined and well-under
stood formalism for representing facts and the rules for
manipulating them.

Before discussion of the concepts and applications of
predicate logic, using propositional logic as a way of rep
resenting the sort of world knowledge an expert system
might need is explored. Propositional logic is appealing
because it is simple to deal with and there is a decision
procedure for it. Real-world facts can easily be represented
as logical expressions (or logical propositions) written as
well-formed formulas (wff's) in propositional logic, such
as the following (4):

It is raining.
RAINING
It is sunny.
SUNNY

These propositions could be used, for example, to de
duce that it is not sunny if it is raining:

If it is raining then it is not sunny.
RAINING -SUNNY

But it is easy to observe the limitations of propositional
logic. The obvious fact stated in "an automobile is a
vehicle" could be written "Autovehicle." But "a truck is a
vehicle" would have to be written "Truckvehicle."

This would be a totally different assertion, and no
conclusions could be drawn about similarities between
"auto" and "truck." It would be much better to represent
these facts as "Vehicle (auto)" and "Vehicle (truck)," be
cause the structure of the representation would reflect the
structure of the knowledge itself. It is even more difficult
if we try to represent "all vehicles are unsafe," because
quantification would be needed unless separate statements
were written about the satety ot every known vehicle.

So it appears that predicate logic must be the way to
represent knowledge, because it permits representations of
things that cannot reasonably be represented with propo
sitional logic. In predicate logic, real-world facts can be
represented as statements written as wff's. But a major
motivation for choosing to use logic was that if logical
statements were used as a way of representing knowledge,

TRANSPORTATION RESEARCH RECORD 1187

then there would be a good way to reason with that
knowledge. Determining the validity of a proposition in
propositional logic is straightforward, though computa
tionally it may be difficult.

Predicate logic provides a way of deducing new state
ments from old ones. Unfortunately, however, unlike
propositional logic, it does not have an associated decision
procedure (4). There are procedures that will lead to a
proof of a proposed theorem (if indeed it is a theorem),
but they will not necessarily halt ifthe proposed statement
is not a theorem. One such simple procedure is to use the
rules of inference to generate theorems from axioms in
some orderly fashion, testing each to see if it is the one for
which a proof is sought. This method, however, is not very
efficient, and investigation continues to find better ones.
So, despite the theoretical undecidability of predicate logic,
it can still serve as a useful way of representing and
manipulating some of the kinds of knowledge that an
expert system might need.

Knowledge representation by using predicate logic is
demonstrated by the examples shown below. Consider the
following statements:

l. Lee Highway was congested.
2. Lee Highway is an Interstate.
3. All Interstates are highways.
4. Washington Metro is a heavy rail train.
5. All people either like downtown New York or hate

it.
6. People only try to ignore freeways that are congested.

The facts described by these sentences can be represented
as a set ofwff's in predicate logic. But some notation must
be defined first:

A=AND
V=OR
- =negation
V =for every
3 = there exists

By using this notation, the predicate logic version of the
six statements may be presented as follows:

1. Lee Highway was congested.
Congested (Lee Highway)

This representation captures the critical fact that Lee High
way is congested. It fails to capture some of the informa
tion in the English sentence, namely, the notion of past
tense. Whether this omission is acceptabie depends on how
the knowledge is to be used.

2. Lee Highway is an Interstate.
Interstate (Lee Highway)

3. All Interstates are highways.
'V xlnterstate(x) - Highway(x)

4. Washington Metro is a heavy rail train.
Heavy rail train (Washington Metro)

Faghri and Demelsky

Here we ignore the fact that proper names are often not
references to unique items, because many things share the
same name. Sometimes deciding which of several things
is being referred to in a particular statement may require
a fair amount of knowledge and reasoning.

5. All people either like downtown New York or hate
it.

V xPerson(x)--+ like(x, New York) V hate(x, New
York)
In English, "or" sometimes means the logical inclusive
"or" and sometimes means the logical exclusive "or." Here
the inclusive "or" is used. Some may argue that this English
sentence is really stating an exclusive "or." Its expression
would be:

V xPerson(x)--+ [like(x, New York) V hate(x, New
York)]

f\ - [like(x, New York) f\ hate(x, New York)]
6. People only try to ignore freeways that are congested.

V x Vy person(x) f\ freeway(y) f\ tryignore(x, y)
This sentence, too, is ambiguous. Does it mean that the
only freeways that people try to ignore are those that are
congested (the interpretation used here)? or Does it mean
that the only thing people try to do is to ignore congested
freeways?

From these statements, three important issues must be
addressed when converting English sentences to logical
statements and then using those statements to deduce new
ones:

1. Many English sentences are ambiguous. Choosing
the correct interpretation may be difficult.

2. There is often a choice of ways of representing the
knowledge. Simple representations are desirable, but they
may preclude certain kinds of reasoning. The useful rep
resentation for a particular set of sentences depends on the
use to which the knowledge contained in the sentences
will be put.

3. Even in very simple situations, a set of sentences is
unlikely to contain all the information necessary to reason
about the topic at hand.

Although predicate logic is a useful way of representing
knowledge for many expert system domains, some kinds
of information may not be easily represented by this
method. Discussed in the next section are other useful
methods of knowledge representation.

Other Logics

The techniques of predicate logic are useful for solving
problems in many different domains. But unfortunately
in many other interesting domains, predicate logic does
not provide a good way of representing and manipulating
important information. Such domains are mostly uncer
tain and fuzzy. The methods discussed in this section for
these problems with computer programs are monotonic
logic and statistical and probabilistic reasoning.

3

Monotonic Logic

Monotonic logic allows statements to be deleted from as
well as added to the data base. Among other things, it
allows belief in one statement to depend on lack of belief
in some other one. Rarely does a system contain all the
information that would be useful. But often when such
information is lacking, some sensible guesses can be made
as long as there is no contradictory evidence. The construc
tion of these guesses is known as "default reasoning."

For example, suppose the chief traffic engineer of a large
metropolitan city decides to add one lane to a road in the
city's street network that has been determined to have
severe congestion during peak hours (after all economic
and social issues have been resolved). Would adding a lane
relieve the congestion? The engineer can approach the
problem fairly well if he uses a general rule: Because the
peak-hour volume exceeds the capacity of the facility in
question, adding an extra lane would relieve the congestion
unless there is evidence to the contrary.

This sort of default reasoning is nonmonotonic (i.e., the
addition of one piece of information may force the deletion
of another), because statements so derived depend on lack
of belief in certain other statements. This means that if
one of those previously lacking statements is added to the
system, the statement generated by default reasoning will
have to be deleted. Thus, in our example, if the engineer
fails to realize that the fundamental differences between
the normative system optimization (SO) flow pattern and
the descriptive user equilibrium (UE) flow pattern on the
network may lead to Braess's paradox (5) (the addition of
the lane may actually increase the travel time of the
vehicles), he should delete his previous belief that this
particular strategy will work. Of course, he must also delete
any other beliefs that are based on the belief that has just
been discarded. This kind of default reasoning is referred
to as the "most probable choice" (4).

In general, nonmonotonic reasoning systems may be
necessary because of (a) incomplete information, which
requires default reasoning; (b) changing knowledge that
must be described by a changing data base; or (c) a
complete solution to problems, which may require as
sumptions about partial solutions.

Statistical and Probabilistic Reasoning

In representing the knowledge in expert systems, 1t 1s
assumed that either a fact is known to be true, or it is
known to not be true, or nothing at all is known about it.
Still to be considered is the possibility of facts that may be
"probably true." There are three kinds of situation m
which probabilistic reasoning may be employed:

1. The relevant world is really random, for example,
the motion of electrons in an atom or the distribution of
speeds on a certain highway.

2. The relevant world is not random given enough data,
but a system will not always have access to that many

4

data, for example, the likelihood of success of a traffic
control strategy to combat congestion.

3. The world appears to be random because it has not
been described at the proper level.

Probabilistic reasoning in the first two cases is utterly
appropriate. The mathematical theory of probability pro
vides a way of describing and manipulating uncertain
knowledge. Sometimes very simple techniques of proba
bility can be used effectively in expert systems.

One of the most useful results of probability theory is
Bayes's theorem, which provides a way of computing the
probability of a particular event given some set of obser
vations. The theorem states:

P(E I ff,) * P(H,)
P(H, I£) = z::..-1 P(b' j H ,,) * P(J-1,.)

where

P(H, I£)= probability that hypothesis i is true given
evidence E,

P(E I H,) = probability that evidence E will be observed
given that hypothesis i is true,

P(H,) =a priori probability that hypothesis i is true
in the absence of any specific evidence, and

k = number of possible hypotheses.

Bayes's theorem can be modified to handle a variety of
more complicated situations. For example, a single body
of evidence E might not be collected all at once. Rather, a
series of smaller observations might be made over time.
Other results in probability theory can also be applied to
these kinds of problems.

Structured Representation

A good system of representing complex structured knowl
edge in a particular domain for use in expert systems
should have the following four properties (4):

I. Representation adequacy-the ability to represent all
of the kinds of knowledge that are needed in that domain.

2. Inferential adequacy-the ability to manipulate the
representational structures in such a way as to derive new
structures corresponding to new knowledge inferred from
old.

3. Inferential efficiency-the ability to incorporate into
the knowledge structure additional information that can
be used to point the inference mechanisms in the most
promising directions.

4. Acqu1s1t10nal efficiency-the aoiiity to acquire new
information easily. The simplest case involves direct inser
tion of new knowledge into the data base. Ideally, the
program itself would be able to control knowledge acqui
sition.

The representation techniques discussed previously are
useful for representing simple facts, but they cannot always

TRANSPORTATION RESEARCH RECORD 1187

have the desired properties of a representation technique.
Several techniques for acquiring these properties have been
developed. These techniques are referred to as "declarative
methods" (4). In declarative knowledge representation,
most of the facts are presented as a static collection of
knowledge accompanied by a small set of general proce
dures for manipulating them. In this section, three decla
rative mechanisms for representing knowledge are pre
sented: semantic nets, frames, and scripts.

Semantic Nets

The term "semantic net" is used to describe a knowledge
representation method that is based on a network struc
ture. Semantic nets were originally developed for use as
psychological models of human memory but are now a
standard method of representation for a1iificial intelligence
and expert systems. A semantic net consists of points
(nodes) connected by links (arcs) describing the relations
between the nodes. The nodes in a semantic net represent
objects, concepts, or events. Arcs can be defined in differ
ent ways, depending on the kind of knowledge being
represented.

Isa arcs are most often used to establish a property
inheritance hierarchy; that is, instances of one class have
all properties of more general classes of which they are
members. Has-part arcs identify nodes that are properties
of other nodes. Figure I shows both isa and has-part arcs
in a simple net for the concept of a public transit mode.

The isa relation, like the has-part relation, establishes an
inheritance· hierarchy for properties in the net (/), so that
items lower in the net inherit properties from items higher
in the net. This saves space, because information about
similar nodes does not have to be repeated at each node
and can be stored in one central location. For example, in
the public transit-mode semantic net the common parts
of each node, such as passenger seats and engine, are stored
once at the node level instead of repeatedly at lower levels
like a bus or a particular bus system. The net can be
searched, by using knowledge about the meaning of the
relations in the arcs, to establish facts like "Washington
Metro has passenger seats." Semantic nets are a useful way
to represent knowledge and to simplify problem solving in
domains that use well-established taxonomies (/).

Frames

Frames provide another method of representing facts and

contains slots for all the information associated with the
object. Values may be stored in slots. Each slot can have
any number of procedures attached to it. Three useful
kinds of procedure often attached to slots are

I. If-added-executes when new information is placed
in the slot,

Faghri and Demetsky 5

Public Transit

Mode

lsn

Taxi Bus

Isa I sa

Heavy Rall
Train

has-part has-part has-part Isa

Fare
Collection Track

System

Washington
Metro

has-pert

Engine

has-part

Cylinder

has-part

Passenger
Seats

FIGURE 1 Semantic network, showing isa and has-part arcs.

2. If-removed-executes when information is deleted
from the slot, and

3. If-needed-executes when information is needed
from the slot but the slot is empty.

These attached procedures can monitor the assignment of
information to the node, thereby ensuring that appropriate
action is taken when values change.

A frame is organized much like a semantic net. It is a
network of nodes and relations organized in a hierarchy
in which the higher nodes represent general concepts and
the lower nodes represent properties of those concepts.
Frame systems are useful for problem domains in which
expectations about the form and content of the data play
an important role in problem solving, such as interpreting
visual scenes or understanding speeches. Figure 2 shows
an example of a frame network for an expert system.

Scripts

A script is a structure in which a stereotyped sequence of
events in a particular context is described. A script consists
of a set of slots. Associated with each set of slots may be
some information about what kind of values it may con
tain, as well as a default value to be used if no other
information is available. So far this definition seems sim
ilar to that for frames, but scripts have other important
components, a few of which are

I . Entry conditions-conditions that, in general, must
be satisfied before the events described in the script can
occur;

2. Results-conditions that, in general, will be true after
the events described in the script have occurred;

3. Props-slots that represent objects that are involved
in the events described in the script (the presence of these
objects can be inferred even if they are not mentioned
explicitly);

4. Roles-slots that represent people who are involved
in the events described in the script (the presence of these
people, too, can be inferred even if they are not mentioned
explicitly-if specific individuals are mentioned, they can
be inserted into the appropriate slots); and

5. Track-the specific variation on a more general pat
tern that is represented by the particular script (different
tracks of the same script will snare many but not all
components).

Although scripts are less general than are frames, and so
are not suitable for representing all kinds of knowledge,
they can be very effective for representing the specific
kinds of knowledge for which they are designed.

Rules

In expert systems the term "rule" refers to the most popular
type of knowledge representation technique, the rule-based
representation. Rules provide a formal way of representing
recommendations, directives, and strategies; they are often
appropriate when the domain knowledge results from
empirical associations developed through years of prob
lem-solving experience. Rules are generally expressed as
conditional (if-then) statements. Rules might exist in an
expert system for determining whether to rehabilitate or
replace highway bridges:

I. If a bridge has a sufficiency rating between 50 and
80, then it should be rehabilitated.

2. If a bridge is scheduled to be replaced within 6 yr,
then only routine maintenance will be necessary until it is
replaced.

3. If any one component of a bridge (namely, the sub
structure, superstructure, or deck) has a condition rating
greater than 5 and the bridge is less than 20 years old, than
only routine maintenance will be required on that com
ponent.

6 TRANSPORTATION RESEARCH RECORD 1187

ROADS

Urban Freeway Rural Freeway Urban Street

3-Lane
2:. way

Volumo Voluma Volume

Allerna le Peak-Hour
Roule Volumo etc .

et c . etc. etc. etc.

FIGURE 2 Frame network.

Each of the two parts of the antecedent in Rule 3 is
called an "expression," or "if clause." The consequent
usually contains a single expression, or "then clause"; it
could contain more than one. The clauses in the anteced
ent can be connected by the logical operator "and" or
"or."

In a ruie-based expert system, knowledge is represented
as sets of rules that are checked against a collection of facts
or knowledge about the current situation. When the an
tecedent of a rule is satisfied by the facts, the action
specified by the consequent is performed. When this hap
pens, the rule is said to "fire" or "execute" (J). A rule
interpreter compares the antecedents with the facts and

etc.

Vol ume Volume

Peak-hour Peak-Hour
Vo fu mo Volum e

% Trucks % Trucks

Width Madi on

Ni ght
Volume Width

etc . etc. etc.

FACTS

A flammable The pH ol Spill smells The spill
llquld was the spill llke vinegar matorlal

spilled Ion than 6 la an acid

~ .• ~

New fact
EXECUTE added to

MATCH knowledge
base

' ~

II the pH ol the spill Is less than 6,

tho oplll matorlo l la en acid.

executes the rule whose consequent matches the facts, as RULES

follows:

Facts: A flammable liquid was spilled.
The pH of the spill materials is less than 6.
The spill smells like vinegar.

Rule: If the pH of the spill is less than 6, the spill material
is acid.

The new fact is added to the knowledge base: The spill
material is an acid.

The action of the rule may modify the set of facts in the
knowledge base by adding a new fact. The new facts added
to the knowledge base can themselves be matched to the
antecedent of the ruie. The matching of ruie antecedents
to the facts can produce what are called "inference chains"
(J). The inference chain for this example is shown in
Figure 3. This inference chain shows how the system used
the rules to infer the identity of the spill material. An
expert system's inference chains can be displayed to the
user to help explain how the system reached its conclu
s10ns.

FIGURE 3 Inference chain.

Object-Attribute-Value Triplets

Another way to represent factual information is by object
attribute-value (OA V) triplets. In this scheme, an object
may be a physical entity such as a door, a car, or a
pavement, or it may be a conceptual entity, such as a logic
gate, a bank loan, or a sale. An attribute is a general
characteristic or property of an object; for example, interest
rate is an attribute of a bank loan. The final member of
the tripiet is the vaiue, which describes the specific nature
of an attribute in a particular situation. For example, the
number of lanes on a certain highway might be 6, or the
interest rate for a bank might be 12 percent. Figure 4
shows an example of OA V representation.

Representing knowledge with OA V triplets is a special
ized form of semantic network. Exotic links are banished
in favor of two simple relationships. The object-attribute

Faghri and Demetsky

Washington
Expressway

Level of Service 0,__________.,... D
During Morning

Rush Hour

FIGURE 4 OA V representation.

link is a has-a link, and the attribute-value link is an isa
link. For example, a bank loan has a rate of interest, and
12 percent is a rate of interest. Nodes are classified as
objects, attributes, or values.

EXPERT SYSTEM TOOLS

Expert system tools are the programming languages and
support packages used to build the expert system. The
three major categories of tools available for expert system
building are programming languages, knowledge engineer
ing languages, and system building aids. The most com
mon tools currently used by transportation engineers to
develop expert systems are knowledge engineering lan
guages (SHELLs) because they are relatively easy to use.
However, depending on the nature of the problem and the
kind of representation a knowledge engineer chooses, a
different kind of expert system building tool may be em
ployed. The three categories of expert system tools, some
of the current commercial systems available in each cate
gory, and the kind of representation technique for which
each system was designed are described next.

Programming Languages

The programming languages used in expert systems appli
cations are generally either problem-oriented languages,
such as FORTRAN and Pascal, or symbol-manipulation
languages, such as LISP and Prolog. Currently, the most
popular symbol-manipulation language for expert system
applications is LISP. A feature of LISP that distinguishes
it from most other languages is its mechanism for manip
ulating symbols. LISP can manipulate symbols readily
because of its list structure characteristics. List structures
are collections of items enclosed in parentheses, in which
each item can be either a symbol or another list. Complex
concepts can be represented in and built into an expert
system using the list structures.

Problem-oriented languages are generally designed for
solving particular classes of problems. FORTRAN, for
example, performs algebraic calculations for scientific,
mathematical, and statistical problems. Problem-oriented
languages have been used in expert system development
but are not very popular for extensive applications. Some
of the commercial programming languages for developing
expert systems are INTERLISTP-d and SMALL T ALK-80
(Xerox Corporation); LISP (LISP Machine, Inc.); Prolog

7

(Quintus Computer Systems, Inc.); and GCLISP (Gold
Hill Computers, Inc.).

Knowledge Engineering Languages (SHELLs)

Knowledge engineering languages are a subclass of pro
gramming languages designed specifically for expert sys
tems development. They fall into two major categories:
skeletal systems and general-purpose systems. Removing
from the expert system domain-specific knowledge leaves
the skeletal system, the inference engine, and the support
facilities. Support facilities are the environment associated
with a building tool in the expert system that helps the
user interact with it. Because skeletal systems apply only
to a limited class of problems, they lack generality and
flexibility as a building tool method. The structure and
built-in facilities of a skeletal system, however, make expert
systems development easy and fast. The key decision that
must be made initially by the system developer is to select
an appropriate SHELL that matches the problem.

In contrast, general-purpose knowledge engineering lan
guages can handle a wide range of problem areas and
types. They provide more control over accessing infor
mation in the knowledge base than does a skeletal system.

The general-purpose languages, however, may be more
difficult to use. Table 1 shows some commercially avail
able SHELLs along with the type of representation tech
nique for which they were designed.

System-Building Aids

System-building aids consist of commercially available
software programs that can be classified as either design
aids or knowledge acquisition aids. Design aids help the
expert system developer design and build an expert system
by establishing a framework for the representation of
knowledge and its supporting facilities. Knowledge acqui
sition aids help the expeq system builder transfer the
knowledge rules and heuristics from the human expert to
the knowledge base of an expert system. Available expert
system building aids include EXPERT-EASE (Expert Sys
tems International), RULE-MASTER (Radian Corpora
tion), and TIMM (General Research Corporation).

TABLE I SELECTED EXPERT SYSTEMS SHELLs

Tool Representation Developer

ART Rule and frame-based Inference Corporation
DUCK Logic and rule-based Smart Systems

Technology
EXSYS Rule-based Exsys, Inc.
KEE Rule and frame-based Intellicorp
M.I. Rule-based Teknowledge
OPS 5 Rule-based Digital Equipment

Corporation
S. I Rule and frame-based Teknowledge
SRL+ Frame-based Carnegie Graphics Inc.

8

CONCLUSION

Presented in this paper are the options available in expert
systems technology for building systems to aid in solutions
for transportation engineering problems. First, the prob
lem must be defined in terms of the most appropriate way
for source knowledge about the problem to be represented.
Eight common techniques for representing knowledge are:
predicate logic, monotonic logic, statistical and probabilis
tic reasoning, semantic nets, frames, scripts, rules, and
object-attribute-value. Rules are the most commonly used
because of the availability of rule-based SHELLs. Second,
the problem must be matched to a practical system build
ing tool. When these major decisions are made, the knowl
edge acquisition and system development process can
proceed. The state of the practice of building expert sys
tems will mature when categories of tools can be related
to classes of problems that generalize categories of expert
systems applications in transportation engineering.

TRANSPORTATION RESEARCH RECORD 1187

ACKNOWLEDGMENT

This paper was produced with the cooperation of the
FHW A, U.S. Department of Transportation.

REFERENCES

1. D . A. Waterman. A Guide to Expert Systems. Addison-Wesley
Publishing Company, Reading, Pa., 1986.

2. E. C. Carter and W. S. Hamburger. Introduction to Transpor
tation Engineering. Reston Publishing Company, Inc., Reston,
Va., 1978.

3. J . L. Alty and M. J. Coombs. Expert Systems. NCC Publica
tions, Manchester, England, 1984.

4. E. Rich. Artificial Intelligence. McGraw-Hill Book Company,
New York, 1983.

5. Y. Sheffi. Urban Transportation Networks. Prentice-Hall, Inc.,
Englewood Cliffs, N.J ., 1985.

