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Estimation of Independence of Vehicle
Arrivals at Signalized Intersections: A
Modelling Methodology
GaNc-LnN CHeNc mtn Jaurs C. Wrrlravrs

The assumption of independent vehicle arrivals at traffic sig-
nals, such as that in the Poisson distribution, has been widely
used for modelling delay at urban intersections. The degree of
correlation among vehicles determines whether this convenient
assumption of independence is realistic. Collection of vehicle
headways seems to be the only well-known method by which
an estimate of their autocorrelation can be found. This, how-
ever, is a tedious and time-consuming task. To cope with this
problem, an effective methodology using a discrete model for
estimating the degree of interaction among vehicles under given
tralfrc and geometric conditions is proposed in the present
study. As an example of this technique's usefulness, a model
is proposed and estimated, using information collected from
,10 locations. Preliminary results appear to conlirm the strength
and applicability of the proposed method even though the
developed model is constrained by the limited available data.

One of the prerequisites for the effective design and evalu-
ation of the operation of traffic signals is to accurately estimate
the delay incurred by traffic passing through the signalized
intersection. The use of delay in determining intersection level
of service in the L985 Highwøy Capacity Manual (/) highlights
the need to accurately estimate delay. Clayton was one of the
first to make an attempt in this respect (2); he proposed a
model to calculate the delay at fixed-time signals, where vehi-
cle arrivals at and departures from a signalized intersection
were presumed to be at strictly regular intervals. Winsten (3)
revised this model, using a more realistic distribution (bino-
mial) to simulate the pattern of arrivals. Webster (4) and

Newell (5) have contributed delay formulas using a similar
methodology but a different distribution (Poisson) for the
arrival of vehicles. Subsequent models by Miller (6, 7) and
Newell (8) have incorporated the variance-to-mean ratio of
the vehicle arrivals to accommodate arrival distributions other
than the Poisson, and in Hutchinson's numerical comparisons
of various delay equations this term was added to Webster's
model (9). Because little significant progress has occurred in
this fundamental aspect over the past two decades, the delay
formulas developed by Vy'ebster, Miller, and Newell still pre-
dominate in practice (particularly Webster's delay equation),
and are incorporated in many popular traffic computer pack-

ages, such as SOAP (10) and PASSER-II (1/).
A common feature of the above-mentioned delay formulas

is that the arrival pattern of vehicles at intersections is pre-

sumed to be an independent Markov process. The average
delay and queue length are then estimated based on the given
flow rate and distribution, such as the Poisson or binomial.
The explicit assumption of independence among arrivals of
vehicles, as embedded in the basic properties of the Poisson

distribution, is convenient for deriving the desired perfor-
mance indicators such as the average delay, maximum delay,
and average queue, and indeed provides a reasonable approx-
imation of reality as long as the traffic is light. It is, however,
obviously inconsistent with what can be observed at highly
congested intersections where vehicles significantly interact
with others in the arriving flows.

As is well recognized, to characterize the complex traffic
patterns at the desired level of accuracy is a difficult yet essen-

tial task that enables the model to possess realistic features.
The uniform distribution, as used in these well-accepted delay
models, generally provides a good representation of departure
distributions, since queued vehicles at the beginning of green
time are usually discharged at a more or less constant rate.
The Poisson or binomial distributions, however, cannot cap-

ture the possible interaction between arriving vehicles that
may vary with the degree of congestion, driver behavior, phys-
ical features between adjacent intersections, speed limit, and

so on. In very light traffic, it seem's reasonable to expect that
vehicles will arrive independently and follow a Poisson process

at intersections. The degree of independence decreases as the
degree of interference among consecutively arriving vehicles,
resulting from congestion and other factors, increases. A well-
known phenomenon is the car-following relationship (12) that
describes the action-response effect between the leading and

following vehicles. As long as such interrelationships are

developed in the traffic flows, the assumption of indepen-
dence among arrivals is obviously no lcinger realistic, and will
inevitably lead to a biased estimate of the degree of delay
and the other performance measures, such as queue length.

The determination of the distribution of vehicle arrivals,
however, is a tedious and time-consuming process, necessi-
tating the collection ofvehicle headways or, at the very least,
vehicle arrivals in consecutive time periods (of 30 sec or less).

Hutchinson's numerical work (9) shows that the commonly
used delay equations show little difference when vehicle arrivals
are Poisson distributed; otherwise, significant differences exist
among models. In addition, preliminary results of a data col-
lection effort by the authors indicate significant differences
between estimated delay from independent and nonindepen-
dent arrivals (13).
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While independent observations are not necessarily Poisson
distributed, this distribution is typically assumed in most traffic-
related studies ifvehicle arrivals are independent. Therefore,
it would be useful to have a simple test by which the inde-
pendence of vehicle arrivals for specific traffic and geometric
conditions could be determined without collecting vehicle
headways. Of course, if the test indicates nonindependent
arrivals, assumption of the Poisson distribution would not be
valid, and further field studies and statistical tests would be
necessary to select an appropriate distribution for the proper
application of existing delay models.

A general model is presented in the next section that can
be used to estimate the probability of independent vehicle
arrivals to determine whether the commonly used Poisson
assumption is applicable. Geometric features and traffic fac-
tors likely to affect the degree of interaction are included in
this conceptual model. Techniques used to determine an

appropriate specific model are also briefly discussed. An
exampie of an appiication of tiris mociei is given in the tirirci
section; it is based on data collected from 40 intersections. In
the final section, some conclusions and directions for further
research are presented.

MODELLING CONCEPT AND ESTIMATION
METHODOLOGY

A conceptual modelling system is presented in this section.
The system relates the key features of a traffic system to
its service load from which the degree of interaction among
vehicles in the system can be estimated. This problem con-
siders a traffic system consisting of an urban road section
with N traffic lanes connecting two signalized intersections
that are not interconnected, shown in Figure L. Intercon-
nected and actuated signals are not taken into account in
this model, as each would require additional factors than
those considered here. The goal, given the geometric factors
and traffic conditions of such a road section, is to estimate
the probability that vehicle arrivals at the downstream loca-
tion are independent.

A single direction of a traffic system, such as that in Figure
1, can be analogized with a one-way channel with a unique
entrance and exit at each end. Every vehicle entering the
system, from the microscopic perspective, can then be viewed
as a particle following a predetermined path (the available
lanes) to pass through the channel. As such, whether the
interference among particles in the channel is significant or
not apparently depends on the channel's key physical features
(e.g., length, number of paths), the number of particles (or
the flow of particles), and their characteristics. Similarly,
interaction among vehicles in the sort of traffic system shown
in Figure L may vary with factors associated with the road
section's physical features and the traffic flow characteristics.

More specifically, the system's key features primarily deter-
mine the available space for the flows. This space can be
represented by

SA, : f, (L, Nu Gt, O) + (i (1)

where

Sá, : 1¡" amount of space available for traffic flows;
L¡ : the road section iength, a major factor in the degree

FIGURE I Graphical representation of two non-
interconnected traflic signals.

of platoon dispersion from the upstream
intersection;

Nr : the number of available lanes;
G¡ : the road section grade;
O¡ : other associated factors; and
(¡ : a random variable used to capture the effect of unob-

served factors.

The subscript i identifies a particular direction of a road
section.

On the other hand, volume, average speed, concentration,
and driver behavior can characterize the roadway space needed
to provide the independent-arrival environment. This can be
stated as

CS': fr(S, Q, Ki, DBi, OF,) + e,

where

CS, = the critical amount of space needed for independent
arrivals at the downstream intersection;

S, : average vehicle speed;

Q¡ : the flow (or volume);
K, : the average concentration;

DBi : driver behavior, often characterized by various
indicators;

Of,- = other associated factors; and
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e¡ : random variable used to capture unobserved asso-
ciated factors.

As before, the subscript I identifies a particular direction of
a road section.

As such, it can be expected that the interaction among
arriving vehicles in road section I may occur if CS, is greater
than SÁ,. Considering the uncertainties arising from unob-
servable factors, this statement can further be elaborated as
a probabilistic formulation. If X, and { denote the vectors
of the observable explanatory variables for SA, and CS,,
respectively, as shown in Equations 7 and2, and if A, and B,
represent vectors of parameters associated with the variables
in -{ and Y,, respectively, this probabilistic formulation is as
follows:

Prob [having independent vehicle arrivals in road section
4x, Yl
: Prob [Sá, > CSJ : Prob [f,(A, , X,)

+ (, > fr(B, , Y,) + e,]

: Prob [fr(A,, X) - fr(Bu Y) > u, - (J (3)

Accordingly, given adequate observations (varying with the
number of unknown parameters) and presumed properties of
the error terms, estimation of parameters can be carried out
by using the maximum likelihood method. Note that the spec-
ifications for SA, and CS, (equations 1 and 2) vary wittr the
available information, measurable key factors, and their inter-
relationships. Many formal statistical procedures, such as the
likelihood ratio test, the Lagrangian multiplier test, and tests
of non-nested hypotheses are available for specification test-
ing (14-16).

Prediction of the Probability of Vehicle Interaction
Leading to Independent Arrivals

As is well recognized, the methodology for estimating param-
eters of a specified model varies with the presumed properties
of the error terms. A description follows of two commonly
used econometric approaches (binary logit and probit models)
that can be applied for the estimation of equation 3. A detailed
discussion of their statistical features is, however, not within
the scope of this paper and is available elsewhere (1/).

Binary Probit Model

Assume e, and (, follow normal distributions with zero means,
a covariance of o, and variances of o2, and o2r, respectively.
Accordingly, e¡ - (, is also normally distributed with zero
mean, but with a variance o2 (: t2, + o2, - 2orr). The
probability ofindependent vehicle arrivals can then be solved
as follows:

Prob [independent vehicle arrivals]

: Prob[f,(A¡ ,X) - f,(8,,Y,)<(,- e,]

= Q[f,(A,,X,) - fr(B,,Y,)lo] o>0 (4)

where O denotes the the standardized cumulative normal
distribution.

TRANSPORTATTON RESEARCH RECORD 1 194

Binary Logit Model

Another commonly used technique is to assume that ex, (:
(, - e¡) is logistically distributed (is Gumbel distributed), with
a cumulative distribution:

F(e*') : 1/(1 + exp (-,' t*,))

u)0, -æ(e*,<æ
where u is a positive scale parameter. This distribution
approximates the normal distribution (as used in the probit
model) quite well, but is much more convenient in terms of
analytical computation. Under this assumption, the proba-
bility of independent vehicle arrivals is given by the following
expression:

Prob [independent vehicle arrivals]

: exp (u .fr(A,, X,)) u

+ [exp (u.fr(A,, X)) + exp (u .fr(B,, Y,))] (6)

Note that for convenience, but without loss of accuracy, the
scale parameter, ø, is generally assumed to equal 1.

Estimation of Model Parameters

Let each road section i, with associated key attributes as
described previously, be viewed as one observation, then,
given N observations, the likelihood function of the param-
eters in vectors A and B (Equation 3) can be constructed as
follows (18):

lv

L*(A, B) : n
i: I

(1 -

where

P,(a) : Prob [independent vehicle arrivals in road sec-
tion ll

ô¡ : 1 if the independent vehicle arrivals were observed
in road section i

õ¡ : 0 otherwise

To facilitate computation, Equation 7 is often rewritten in
the following logarithmic form, denoted as L:

L(þ,, . . .þo)

[ô, ln P,(a) + (1 - ô,) ln (1 - P,(o))] (B)

By differentiating L with respect to each of the Bs (parameters
in vectors A, and B,) and setting the partial derivatives equal
to zeto, parameters satisfying max I (Ê,, Fr, . . . , Bo) can
be obtained. In many cases of practical interest it has been
proven that the likelihood funcrion (Equation 7) is globally
concave and is, therefore, unique if a solution to the first-
order conditions exists.

ILLUSTRATIVE EXAMPLE

This section presents an example that illustrates the modelling
procedures and methods used for specification testing. The

(s)

(7)¿(o))'-'']l*øi',
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data set for parameter estimation consists of 40 nonintercon-
nected signalized intersections, all located in the Salt Lake
City metropolitan area in Utah. Due to limited resources, our
data collection focused on those variables relatively inexpen-
sive to collect, yet are critical to the model development. The
available data and proposed formulation for a model that will
evaluate the degree of correlation, or interaction, among
arriving vehicles are stated below. Each variable corresponds
to a particular road section i and the traffic approaching the
particular intersection in question. The available key variables
are as follows:

L. Length of road section i (L,), measured from the stop
line of the selected intersection back to the nearest signalized
intersection upstream;

2. Number of lanes, omitting exclusive turn lanes (N,);
3. Average vehicle speed (S);
4. Flow rate to the selected intersection (p,); and
5. Vehicie heaciways, taken separateiy for each iane (if rv,

) 1), between each successive vehicle.

The vehicle arrivals at the downstream intersection are assumed

to be independent if the vehicle headways are not significantly
correlated. Estimation of the correlation was carried out by
analyzing the vehicle headway time series collected over a 30-
min interval in the selected road section with a general ARIMA
model (19).

Model Specification

Given the available information above, several plausible spec-
ifications for Equation L and 2 were proposed and examined
based on the estimated results. Primary criteria used to carry
out the comparisons are the t-statistic, likelihood ratio index,
and physical implications of the estimated parameters. Of the
specifications tested, the one providing the best fit (highest
likelihood ratio index) and having a reasonable physical mean-
ing reflected by the proper parameter signs is

Amount of space available : SA¡ : N,' L, (9)

Critical amount of space needed :
CS, : at(Q)" + d3(sr)"0 + e¿ (10)

where ar, ar, ar, and øo are model parameters. The notion
embedded in this formulation is that under the given envi-
ronment (as characterized by SA,) the flow rate and speed
are critical factors that contribute to the formation and the
degree of interaction among vehicles. More specifically, the
vehicle arrivals along road section i may be significantly cor-
related if Sá, is less than CS,. The probability of existing
dependent arrivals of vehicles is as follows:

Frob[SÁ,< C$]

: Prob[N,.L,<ar(Q)", + ar(S,)'o + e,]

: Prob [(N, . L,) - ar(Q,)"' - ør(s,),. < e,] (11)

This proposed formulation cannot be considered the standard
model for predicting the independence among vehicle arrivals
because of limitations of the collected data; it simply serves
as an illustrative example. For instance, the value of SÁ,, in
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practice, depends on the number of lanes and the length of
the road section and varies with the system's other geometric
characteristics, such as grade. In addition, information regard-
ing drivers' behavior or risk attitude that could be one of the
critical factors was not collected due to the prohibitive cost
of data acquisition and classification. Also, the arrival pattern
depends, to some extent, on the departure pattern from the
upstream signalized intersection; and for the same flow rate,
many possible departure patterns exist. Although this is not
directly modelled, the degree of variation of the arrival flow
patterns is constrained by the distance between the signalized
intersections, which has been incorporated in the model.

Parameter Estimation and Implications

Because the variable CS, is not directly observable, the param-
eters in Equations 9 and 10 should be estimated using discrete
methods, such as eirher the iogit or probit mociei, as presenteci
in the second section. Justification of a proper specification
for a discrete model, as for regression, is often carried out by
examination of (1) the exhibited sign of estimated parameters,
(2) the asymptotic standard error (or /-statistic), and (3) a
goodness-of-fit index such as p2, the likelihood ratio index.
This index measures the fraction of an initial log likelihood
value explained by the presented model and is defined as [1
- L(þ)|L(O)\ where L(0) and L(B) denote the initial value
(when all the parameters are zero) and the maximum value
(at convergence) of the log likelihood function, respectively.
The p2 is analogous to .R2 used in the regression models, and
must lie between zero and one for a binary discrete model.
It is particularly useful in comparing alternative specifications
developed on the same data set. A more in-depth discussion
regarding the statistical properties ofthe likelihood ratio index
is available elsewhere (18).

Table L summarizes the results of the parameter estimation
for the illustrative model, as presented in Equations 9 and 10

using the discrete logit model. As expected, all parameters
exhibit positive signs, except ør. The implications are that,
within a given road section, as partly characterized by S,4,,
an increase in the flow will significantly increase dependent
vehicle arrivals. On the other hand, a facility with better
geometrics generally allows a higher speed under a given traffic
volume, and thus results in less interaction among vehicles as

reflected by the negative sign of parameter ør.

Turning to the t-statistics as shown in Table 1., it can be
noted, using a 0.95 statistical confidence interval, that both
parameters arand ao are not significantly different from one.
As such, the model represented by Equations 9 and 10 was
re-estimated with a simple linear specification presuming that
parameters a, and ao are known to equal one. Estimated
results of the simplified specification present similar infor-
mation and are reported in Table 2.

In addition to the commonly used /-statistics, Tables L and
2 present the result of the log likelihood ratio test, defined
as - 2 [¿(0) - ¿(9)], a statistic used to test the null hypoth-
esis that all parameters are zero. This statistic is asymptotically
distributed with an ¡2 distribution with K degrees of freedom,
where K is the number of parameters. In this example the
value of the log likelihood ratio is 37.74 (see Table 2), which
indicates the null hypothesis can be rejected (the X'zvalue at
the 0.05 Ievel of significance is9.a9).



46 TRANSPORTATION RESEARCH RECORD ] 194

TABLE 1 ESTIMATION RESULTS OF THE ILLUSTRATIVE MODEL

Parameter Associated Variable
t

Estimated Value Standard Error Statistic

a1

a2

Total approach
volume: Q,

Total approach
volume: p,

Average speed: S,

Average speed: S,

0.00865

0.96377

-0.17642
0.91425

0.0027

0.0357

0.0618
0.0733

3.20

1.01"

2.8s
t.t7'

a3

a,

Norr,: Number of observations : 40; L(0) : -27.726; L(þ)
31.224; p2 : 1, - L(þ)/L(O) = 0.707.

"Not significant at 95 percent confidence level (ø, = 1 tested).

= -8.114; -2(L(0) - ¿(B)) :

TABLE 2 REESTIMATED RESULTS OF THE ILLUSTRATIVE MODEL

Paramete¡ Associated Variable Estimated Value Standard Erro¡
t

Statistic

a1

A3

Total approach
volume: gi

Average speed: S,

0.00911

- 0.17518

0.0038

0.0649

2.372

2.698

Numberof observations : +0; ¿(0) = -27.726; ¿(9) = -8.856; -2(L(0) - ¿(P)) = 37.74;

P2 : t - L(þ)|L(O) : 0.681.

With respect to the goodness of fit, the likelihood ratio
index, p2, generally serves as a good indicator for discrete
models, as described above, although other rigorous, yet com-
plex, statistical tests are available (14-16). Owing to the inev-
itable involvement of various behavioral or unobservable fac-
tors, the likelihood ratio index in most discrete models, which
may be considered to be well specified, often cannot achieve
as high a value as iR2 in successful regressions. In fact, the
illustrative example with p2 near 0.7, as shown in Tables 1

and 2, will generally have a reasonably good specification.

Model Application

Instead of spending time and money in collecting vehicle
headways, a traffic engineer could use a model such as this
(Equations 9 and 10) to predict the probability of dependent
vehicle arrivals under the given traffic conditions and geo-

metric characteristics. The following example illustrates the
procedure for estimating this probability. If L, : 400 Ît =
0.0758 mi, S¡ : 15 mi per hour, Ø: I50 vehicles per hr per
lane, and ¡/, : 3 lanes, then

SÁ, : ¡t, . Lt : Q) (0.0758) : 0.2273

CS,: ar(Q') + ø'(S')

: (0.00e11) (1s0) (3) - (0.17s18) (15)

: 1..4718

Accordingly, the probability of incurring correlated arriving
vehicles under the above traffic colditions is

Prob rnonindependent 

r"::ii äJ., l;j; I "Ír',*,,,
: 4.357r I (4.3571 + t.4718) = 0.77

In other words, one can conclude that the traffic flows in this

road section are highly correlated aboú 77 percent of the
time; thus, the commonly used Poisson distribution is not valid
under this scenario. This result should not be unexpected,
given the volume and the close signal spacing used for this
example. Other distributions that can provide for dependent
and independent arrivals should be considered.

CONCLUSION

The present study has introduced an effective yet economic
approach to estimate the degree of correlation among arriving
vehicles under given conditions and geometric characteristics.
With the proposed technique, traffic professionals can easily
determine if the existing delay formulap and other traffic models
based on the Poisson distribution are applicable. In particular,
the results of this test can indicate when the Poisson assump-
tion may be used.

As the primary focus of the paper is to introduce the model-
ling methodology and its application, only the simplest case
comprising two noninterconnected intersections is consid-
ered. This model can be extended to more complex traffic
systems if appropriate model variables are included in the
specification, ê.8., ã variable indicating whether a platoon
arrives during the red or green time would be necessary when
formulating a similar model for a progressive signal system.

The formulation proposed in the example serves only as an
illustration. More complete information, as described in pre-
vious sections, must be collected, and rigorous statistical pro-
cedures applied for the testing of the model specification to
determine the most appropriate formulation.

ACKNOWLEDGMENT

The data used in the illustrative example was collected by
Tsai Ying-Chieh.



Chang and WíIlinms

REFERENCES

7. Special Report 209: Highway Capacity Manual. TRB, National
Research Council, Washington, D.C., 1985.

2. A. J. H. Clayton. Road Traffic Calculations. Journal of the Insti-
tution of Civil Engineers, Vol. 16, 1940.

3. M. Beckman, C. B. McGuire, and C. B. Winsten. Studies inthe
Eco nomics of Tr ans p ortatio n, Y ale University Press, 1 956.

4. F. V. Webster. Traffic Signal Settings. Road ResearchTechnical
Paper Nr. 39,1958.

5. G. F. Newell. Queues for a Fixed-Cycle Traffic Light. Annual
Mathematical Statistics, Vol. 31, 1960.

6. A. J. Miller. Settings for Fixed-Cycle Traffic Signals. Operational
Research Quarterly, Vol. 14, 1963.

7. A. J. Miller. The Capacity of Signalized Intersections in Aus-
taLia. Australian Road Research Board Bulletin Nr. 3, 1968.

8. G. F. Newell. Approximation Methods for Queues with Appli-
cation to the Fixed-Cycle Traffic Light. SIAM Review, Yol. 7,
1965.

9. T. P. Hutchinson. Delay at a Fixed Time Traffic Signal, II:
Numerical Comparisons of Some Theoretical Expressions. Iraru-
-^-.-.:^-- a^:^-^^^ 1r^l Á 1^14putauaaul, ¿cactaLc, f vt. vt L7tL.

Signal Operations Analysis Package (SOAP). Implementation
Package IP-79-9, five volumes. FHWA, U.S. Department of
Transportation, 1979.
Analysis of Reduced-Delay Optimization and Other Enhance-
ments to P,4SSER II-&?-PASSER II-84-Final Reporr. Report
No. TTI-2-18-83-37 s-lF. Texas Transportation Institute, 1984.

4'7

12. R. Herman and R. B. Potts. Single-Lane Traffic Theory and
Experiment. Proc. , lst Symposium on the Theory of Traffic Flow,
ed. R. Herman, Elsevier, 1961.

13. G.-L. Chang and J. C. Williams. Empirical Investigation of The-
oretical Delay Models, working paper.

L4. J. L. Horowitz. Testing Probabilistic Discrete Choice Models of
Travel Demand by Comparing Predicted and Observed Aggre-
gate Choice Shares. Traruportation Research B, Vol. l9B, 1985.

15. T. S. Breusch and A. R. Pagan. A Simple Test for Heteroske-
dasticity and Random Coefficient Variation. Econometrica, Y ol.
47,1979.

16. J. L. Horowitz. Statistical Comparison of Non-Nested Probabi-
listic Discrete Choice Models. Transportation Science, Vol. 17,
1983.

17. C. F. Daganzo and L. Schoenfeld. CHOMP User's Manual.llS
Research Report UCB-ITS-RR-78-7. Institute of Transportation
Studies, University of California, Berkeley, 1978.

18. M. Ben-Akiva and S. R. Lerman. Discrete Choice Analysß. MIl
Press, 1985.

19. G. E. P. Box and G. M. Jenkins. Time Series Analysß: Fore-
casting and Control. Holden-Day, 1976.

The authors are solely responsible for the content of thß paper.

Publication of thß paper sponsored by Committee on Trffic Flow
Theory and Characterßtics.

10.

11.


