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Analysis of Traffic Flow at Complex

Congested Arterials

PaNos G. MICHALOPOULOS

A dynamic macroscopic methodology for analyzing traffic flow
at congested intersections and arterial streets is presented in
this paper. This includes complexities frequently encountered
in practice such as furning and optional lanes, sinks and sources,
and spillback effects. The dynamics of interrupted flow under
both sign and signal control are treated in an integrated fashion
by considering the coupling effects of the main and side street
flows. Compressibility is inherently included in the state equa-
tions employed; therefore, dispersion and compression char-
acteristics are built into the analysis. The proposed method-
ology is particularly applicable to severely congested networks
where spillbacks must be taken into account. Implementation
of the state equations is performed numerically; this allows
inclusion of stochastic and heuristic aspects for treating phe-
nomena difficult to deal with macroscopically. The modelling
and numerical treatment employed is easily implementable to
microcomputers.

Modelling of interrupted traffic flow at signalized intersec-
tions and arterial streets is frequently needed in traffic engi-
neering practice for simulation and control or simply for ana-
lyzing a situation during the planning and design stages. More
often than not this is accomplished in a macroscopic fashion
to minimize the computations and obtain a better understand-
ing of the overall behavior of the process being analyzed; this
is particularly the case as the size of the network increases.
However, despite the attractiveness of macroscopic models,
rigorous and comprehensive dynamic treatment of complex-
ities most frequently encountered in practice is still lacking.
Such complexities include turning or optional lanes, spillback
effects, unsignalized side streets merging to or diverging from
the main stream flow, macroscopic treatment of actuated sig-
nals, and friction effects. The problem is more acute at high
volume streets where two-dimensional modelling is needed
for describing the formation and dissipation of queues and
spillbacks in time and space and for taking into account the
effects of downstream disturbances on upstream flow.

In view of the need for improved dynamic macroscopic
modelling of congested interrupted flow, a new approach is
presented in this paper. The modelling employed is two
dimensional (time and space), takes compressibility into account
(dispersion and compression), and is particularly recom-
mended for medium to heavy flow situations. Moreover, it
considers the interactions of side streets and turning lanes and
the effects of compression and spillbacks caused by down-
stream congestion. Finally, it applies to sign and signal control
and to isolated intersections and arterials. The proposed
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.methodology is numerical, i.e., it proceeds by discretizing the

time-space domain in small increments and should be more
intensive computationally than existing one-dimensional models
used in practice. However, it is perfectly suitable for micro-
computer implementation because it requires substantially
less memory and computational effort than microscopic
modelling.

The proposed methodology could be called “mesoscopic”
as it allows inclusion of statistical and heuristic aspects for
treating certain phenomena in a manner similar to a micro-
scopic approach.

In what follows, a brief theoretical background on the state
equations employed is presented with a general numerical
solution method for their implementation. This is followed
by the treatment of simple isolated signalized intersections.
Due to space limitations, only a summary of details such as
treatment of sinks and sources, exclusive turning lanes, and
traffic actuated control is presented here. Extension to coor-
dinated intersections and implementation to exemplary situ-
ations are included to demonstrate the applicability of the
proposed modelling.

BACKGROUND

Macroscopic analysis of traffic stream flow requires estimation
of the three basic variables, i.e., density (k), speed (u), and
flow rate (g), on every point of the roadway at all times during
the analysis period. From these variables the measures of
effectiveness (delays, stops, total travel, and total travel time)
can be derived. The most rigorous approach for calculating
g, k, and u in both time and space is by employing the law
of conservation with an equilibrium speed-density or flow-
density relationship to take compressibility (compression and
dispersion) into account (I). An even more sophisticated
treatment is to also consider acceleration and inertia of a
traffic mass (2, 3), but although this approach is plausible, it
has not shown significant advantages at congested flows, add-
ing only complexity to the analysis. The methodology described
here, however, can easily be generalized to include these
effects (5).

Analytical implementation of the law of conservation to
isolated and coordinated intersections by taking time, space,
and compressibility into account has been developed recently
(5-7). The advantage of these analytical results is that they
visually depict the effects of downstream disturbances on
upstream flow. Thus, they provide a good insight on the for-
mation and dissipation of queues and congestion in time and
space; they also demonstrate (7) that platoon dispersion and



78

compression is inherent in this modelling, i.e., it does not
have to be induced externally. The dynamics of platoons and
their behavior can in addition be studied analytically (7) for
better understanding of arterial flow behavior. A disadvan-
tage of the analytical solution lies in the oversimplifications
needed in the derivation. These include simple initial flow
conditions, arrival and departure patterns, absence of sinks
or sources, and uncomplicated flow-concentration relation-
ships. Most important, complexities frequently encountered
in real situations such as turning lanes and side streets cannot
be treated analytically. As in similar problems of compressible
flow, these difficulties can be resolved by developing numer-
ical solutions for the state equations.

The methodology proposed here is computational rather than
analytical. This eliminates the disadvantages mentioned above
by allowing inclusion of complexities one is likely to encounter
in practice (turning lanes, sinks and sources, and spillbacks) and
employment of realistic arrival and departure patterns, u-k models
as well as empirical considerations. Numerical computation of
k, u, and g proceeds by discretizing the roadway under consid-
eration into small increments Ax (in the order of 30 to 150 ft)
and updating the values of these traffic flow variables on each
node of the discretized network at consecutive time increments
At (in the order of 1 sec or so0).

Space discretization of a simple signalized traffic link with-
out side streets is presented in Figure 1 in which the dashed
segments represent dummy links necessary in the modelling
of subsequent sections. It should be stressed that this discre-
tization is only made for computational purposes, i.e., it is
not physical. Referring to the solid segments, density on any
node j except the boundary ones (i.e., 1 and j) at the next
time step n + 1 is computed from density in the immediately
adjacent links (both upstream and downstream j — 1 and
j + 1, respectively) at the current time step n according to
the relationship

1 At :
krt =g + Ko+ ko) - o= @ —g) (D)

in which
k*;, g% = density and flow rate, respectively, on node j at
t =1, + nAt;
t, = initial time; and
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At, Ax = time and space increments, respectively, such that
Ax/At > free flow speed.

Once density is determined, speed at ¢ + At (i.e., atn + 1)
is obtained from the equilibrium speed density relationship
u, (k), i.e.,

wrt = u, (ki) )

For instance, if Greenshields’ (8) linear model is adopted,
then

n+l — k;'+1
wt =y 1 - T (2a)

jam

where u; is the free flow speed and k;,,, the jam density. It
should be stressed that Equation 2 is applicable for any speed
density model including discontinuous ones; if an analytical
expression is not available, then u can easily be obtained
numerically from the u — k curve. Finally, flow at ¢ + Aris
obtained from the fundamental relationship

q7+1 = 'k]'-”'l u}.+1 (3)

in which the values of k and u are first obtained from Equa-
tions 1 and 2. As later sections suggest, the measures of effec-
tiveness can be derived from k, u, and q.

The above solution requires definition of the initial state
of the system, i.e., the values of k, u, and g at ¢t = ¢, as
well as boundary conditions, i.e., k and ¢ at j = 1 and
j = J (upstream end of the link and stopline, respectively).
However, this is essential for analyzing flow regardless of
the modelling and solution method, i.e., arrivals and depar-
tures at the boundaries and initial flows must always be
specified. For practical implementation of Equations 1, 2,
and 3 one only needs to specify arrival and departure flow
rates; density at j = 1 and j = J is obtained from the
equilibrium g-k model. It should be noted that Equation 1
does not take into account generation or dissipation of cars;
this detail is discussed later. Finally, the discretization of
Figure 1 and numerical solution of this section assume all
space increments Ax are equal. The case of variable space
discretization is presented later; however, regardless of the
discretization scheme the relationship Ax/At ) u; must be
maintained at all times for convergence.
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ISOLATED INTERSECTIONS

The basic methodology of the previous section (Equations 1-
3) is directly applicable to simple isolated signalized inter-
sections without turning lanes or sinks and sources (Fig-
ure 1). Proper definition of the initial and boundary conditions
is crucial for accuracy and emulating the particular situation
at hand. Initial conditions depend on the state of the signal
indication on the approach under consideration, and unless
an actual measurement is available, a simplified assumption
can be made. For instance, one could initially assume that
the approach is empty at ¢ = 0 (i.e., kY = 0 at all nodes) and
following an initialization interval use the flow conditions at
the end of this interval as initial conditions. Another simple
alternative is to assume that at + = 0 the signal turns green
on the approach under consideration on which an initial queue
exists; if flow within the queue is uniform, then on the nodes
within the queue ¢? = 0O and kY = k., while behind the queue
uniform arrival flow conditions, i.e., ¢? = ¢¢ and k? = k9,
can be hypothesized. In the testing presented in later sections
initial conditions are variable.

Upstream and downstream boundary conditions in case of
real time applications of the proposed methodology can be
obtained on-line from loop detectors, i.e., by measuring actual
arrivals and departure flow rates on nodes 1 and J, respec-
tively. In simulation, these rates can be obtained from the
probability distribution one is willing to accept. In some appli-
cations, however, it is desirable to reduce the computations
related to the generation of stochastic boundary conditions.
This is most easily accomplished at the downstream boundary
where the variability of departures is less pronounced for the
majority of the cycle due to the presence of the traffic signal.
For instance, the simplest modelling alternative is the one
frequently used in practice, according to which flow atj = J
during the effective green time equals saturation flow as long
as there is a queue (i.e., g7 ™! = g,,., = saturation flow) and
to arrival flow when the queue dissipates (i.e., gr+! =
q7-1). During the effective red interval flow equals zero (right
turns on red can also be considered as will be seen later).
Only one state variable (flow, density, or speed) need be speci-
fied at each boundary; the remaining are obtained from the
g-k or u-k model and the fundamental relationship g = ku.

The above and other simple common options for defining
boundary conditions were tested extensively using a data base
generated by the most recent version of NETSIM (9) (1986
version). Based on this experimentation, effective simplified
modelling of the boundary conditions was developed and is
described next.

With respect to downstream boundary conditions (stop line),
during the green interval, one dummy segment of variable
length is introduced immediately downstream of the stop line.
This segment is shown with dashed lines in Figure 1. The
introduction of this dummy segment smooths out the dis-
charge pattern at the stop line during green, so the actual
boundary during green is not the stop line but the line B'B
(dummy node J + 1) in Figure 1. At the start of green,
free flow conditions are assumed at the dummy node, i.e.,
k?., = 0 and uf,, = u, while at the stop line k¢ = k,,,, and
u§ = 0. The length of the dummy segment AX;, at the start
of green equals Ax, where Ax is the common discretization
length used for the entire link. At every time step during
green, the downstream boundary J + 1 is determined from
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the dynamics of flow propagation, i.e., the dummy link length
is computed from the speed at which the traffic is moving at
the stop line during the previous time step; thus,

M= up Tt A 4)
The flow at the pseudo boundary J + 1 (dummy node)
equals the arrival flow, i.e., g77] = q7 and k77{ = k7, while
in all the remaining nodes, including the stop line, flow is
determined from Equations 1-3. Here the variable dummy
link requires generalization of Equation 1 for calculating flow

at the stop line. This equation, including generation terms
(not needed for the stop line), becomes

fn+l = Ky Bx + k7 Axy AHgf — g7-1)
! ij + Axi+1 ij + ij+1

+ Ad(gh 1 Ax; + g7, Ax;.q) )
Ax; + Ax;yy
where g7 represents the generation rate in segment j at the
nth time step. When there is no generation from side streets,
then g7 is zero and the last term of Equation 5 vanishes.
The above modelling implies no congestion downstream of
the intersection; this event can be taken into account as in
congested coordinated intersections described later. During
amber time, the dummy segment is not needed, i.e., the stop
line becomes the downstream boundary. Flow at this bound-
ary reduces rapidly with time; it was found experimentally
that linear reduction of flow at the stop line during amber is
sufficient. Thus during yellow, flow at j = J is

t— ¢,
t,— 1,

q](t) = q!(tg) * [1 - :| tg <t= ty (6)

where

t, = end of green,
t, = end of yellow, and
q,(t) = flow at the stop line at ¢.

From Equation 6, density during yellow is computed from
kyt) = k. [q,(9)]

where k,(q) is the equilibrium k-k relationship. This relation-
ship, however, yields in general two values for k correspond-
ing to a single g value; care should be exercised to select the
one corresponding to the congested flow because at the start
of yellow congestion begins to emanate from the stop line.
Finally, during red, zero flow conditions prevail at the stop
line, i.e., k}*! = k;,,, and g}*! = Q. If right turns on red are
allowed, then g7*! # 0, and this rate can either be specified
or determined as in the side street flow case described in the
following sections.

As mentioned earlier, at isolated approaches (or external
network links) flows at the upstream boundary are more dif-
ficult to define due to the absence of signals. If no actual
measurements are available (possibly on-line) for defining the
upstream arrival flow pattern (¢7*") in some detail, then at
every time step flow must be determined from a statistical
distribution when high accuracy is required. The literature on
selecting the appropriate distribution is quite extensive and
one can select the most appropriate based on personal expe-
rience. In the testing performed here the guidelines of Ger-
lough et al. (10) were followed, with very satisfactory results,
at least when compared with NETSIM (9). Once g7 t1is spec-

L,<t=t, )



80

ified, k7*! and uf*! are determined from the equilibrium
relationships employed, i.e., for Greenshields’ model (8),

kprt = 0.5 [Kam — (Kam = 4 Kjam 477 )] ®)
uptt = up (1 = k" ko) )

The above definition of the upstream boundary conditions
assumes that downstream congestion at the previous time step
n does not reach the upstream boundary, i.e., it assumes
uncongested upstream flow conditions. When congestion
reaches the upstream boundary, the link should be extended
artificially by adding dummy segments D,, D,, D5, . . ., D;
as shown with dashed lines in Figure 1. Extension of the
upstream boundary at the next time step n + 1 can be deter-
mined by checking density on the node immediately down-
stream (i.e., node 2 initially) at #; if this density falls in the
congested region of the u-k or g-k curve, then one dummy
segment should be added upstream at n + 1. The threshold
value for determining congestion is k,, = density at capacity;
if k"p;_, = k,,, a new dummy link is added. Boundary con-
ditions at the first upstream dummy node are determined as
before, i.e., from Equations 8 and 9. In some instances an
upper limit may exist beyond which no dummy segments can
be added; this could be the case when an upstream intersec-
tion is reached. In such cases the approach in question can
no longer be considered isolated, i.e., the two intersections
are coupled and should be treated as a system following the
guidelines of later sections.

GENERALIZATIONS AND EXTENSIONS

The basic modelling and analysis methodology presented to
this point needs further generalizations and extensions for

INTERSECTION

se| l\.

] 1
|_tJ A Sle M
e

TRANSPORTATION RESEARCH RECORD 1194

practical implementation to real situations. These include
treatment of sinks and sources, turning lanes, spillback effects,
multiple lanes, shared lanes, and coordinated intersections.
Due to space limitations the methodology for treating these
problems is. only briefly presented in this section. A detailed
presentation can be found elsewhere (17).

Sources and Sinks

When sources and sinks exist, the coupling effects of the main
and side streets must be considered. This is accomplished by
taking the state equations (conservation) of all system com-
ponents and solving them simultaneously.

In Figure 2, segment S represents the case of a side street
source. The state equations of the two components (main and
side street) have the general form of Equation 5, but they
differ in the generation term; this term is zero on the entire
side street and all segments of the main street except the
merging segment (node M) where g # 0. Since the main
street has priority, it must be realized that the stop line of the
side street is really an internal boundary. The boundary flow
condition on node J, is restricted by the conflicting flow g%,
at the merging node M; to be sure, g%, determines the merging
capacity at J,. This capacity under uncongested main flow
conditions was derived experimentally in the form of a curve
showing the merging capacity for different main flow condi-
tions. Similar curves can also be found in Tanner’s article
(12), obtained from the Highway Capacity Manual (13), or
derived experimentally. For congested conditions, the max-
imum merging flow remains constant until nearly jam density,
where it decreases gradually to zero. The boundary conditions
at node J, depend on the state of the queue on the side street.
Generally, flow at J, equals merging capacity, if a queue exists
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FIGURE 2 Space discretization of a complex arterial link.
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on the side street, and equals arrival flow otherwise. Knowing
the boundary conditions, Equations 13 are applied to deter-
mine flow conditions at all nodes of the side street while the
generation rate needed for using Equation 5 on the main street
is computed from gj,.

In sinks, as in sources, the problem involves determining
the flow at the internal boundary O (Figure 2). Furthermore,
when the side street becomes congested a spillback may occur
on the main street; this requires additional modelling. The
former problem is resolved by adopting the usual assumption
that flow at O, q3%!, is a known fraction p = p(f) of the
main flow at D; however, g3%! is restricted by the capacity
flow rate q,,,, at node O. Generally, the capacity flow at Og
is lower than the capacity of the remaining nodes of the side
street due to possible pedestrian movements and the slower
speed of vehicles while turning right. This capacity can be
derived from the turning speed, which is the speed at capacity
at node Of. The maximum flow at O at every time step is
restricted by the maximum speed that can be achieved at O
by the turning flow. The speed at node O, + 1 influences
this speed; therefore, it can be assumed that the free flow
speed at O is time varying and equals to the speed at O +
1. The corresponding capacity flow at O can be estimated
by continuously adjusting the u-k relationship according to
this free flow speed. However, due to the earlier maximum
turning speed restriction (about 13 ft per sec), gt} cannot
exceed this capacity value. Thus, whenever the capacity resulting
from the speed at O + 1 exceeds this value, the latter is
imposed. Following determination of g7} at Og, not only the
u-k but also the g-k relationship at this node is adjusted
accordingly. When congestion is encountered on the side street,
the diverging node D becomes an internal boundary in addi-
tion to the boundary Oy. Therefore, the flow at D, q3*?, is
restricted by the through-portion flow (1 — p)q%, which is
allowed to proceed on node D. If congestion exists on the
side street, the flow at D will decrease, and density will be
increasing accordingly because the dissipation rate will decrease.
As a result, congestion will begin to build up behind node D
and a spillback will occur.

The simultaneous presence of a source and a sink (Figure
2) necessitates consideration of all three flows, namely the
through, merging (from node J; to M), and diverging (from
node D to Op), as well as their interaction. As Figure 2 illus-
trates, for increased generality, the network under consid-
eration is equally discretized in space except at nodes D and
M where Ax # Axp # Ax,. This necessitates a slight mod-
ification in the calculations presented to this point for the
interrupted flow region. The changes required are

Atj = D (diverging area):

wdxp + kb Axy _ Adqs, — gb_1) _
Axp, + Axyy, Ax, + Ax,,

1=
kptt =

ghit (10)

where the dissipation term is g5 = g%z/Axp.

Atj = M (merging area):

k3 1Bxy + KpAx _ Alghy1 — gB)
Axy + Ax Ax, + Ax

+1 —
kit =

+ grAr (1)

where the generation term is g3, = g}/Ax,,.
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Atj = D — 1 (the node immediately upstream of D):

1Ax + k% _,Ax Aqy — qb..5)
nt+1 D D-28Xp D D2
ks Ax + Axp Ax + Ax, 12
Atj = M + 1 (the node immediately downstream of M):

Kby + k3Ax AHqY.. — 45
1 = SMx20¥y MAX (92 — G0 13)

Ax,, + Ax Ax, + Ax

At all the remaining internal nodes, the densities are obtained
from Equation 1. Finally, all the corresponding speeds and
flows for the above cases are obtained in the usual manner,
i.e., from Equations 2 and 3.

All the needed boundary conditions, i.e., the arrival pat-
terns at nodes O and O, and the departure patterns at nodes
J and Jg, are determined or specified as before. Further,
spillback effects at node D are treated as sinks, while flow at
the internal boundaries Jg and Oy is determined dynamically
as described previously. Finally, it should be repeated that to
keep the numerical solutions within reasonable bounds, it is
necessary to maintain the relationship Ax/At ) u; this restric-
tion also applies to Ax,, and Ax,,.

Turning Lanes

Turning lanes frequently encountered in practice present
additional modelling difficulties. In this section, treatment of
exclusive lanes is summarized. This involves modelling of
diverging dynamics and appropriate definition of boundary
conditions. Because traffic in turning lanes is diverted from
the main stream, it is logical to treat the lanes as simple sinks.
However, due to the length of these lanes and possible con-
flicts at their downstream end, they should be treated differ-
ently. As before, the state equations of the main flow and
turning lanes must be solved simultaneously and their inter-
actions (exchange of flow and momenta) considered. The
conservation equation as described here takes into account
the exchange of flow. Exchange of momenta must be consid-
ered only with the high order continuum models and is incor-
porated in the momentum equation as described in earlier
publications (4, 14).

When turning lanes exist, exchange of flow between the
turning and through lanes is included in the generation rates
g(x, 1) of the conservation equation. In the previous section
a similar procedure was introduced for traffic sinks. However,
the effective diverging area, and hence the computation of
dissipation rate, was limited to only one segment Ax.

Figure 2 presents the space discretization of an intersection
approach with a right turning lane R. In general, diversion of
flow occurs in section r =< R of the main stream and the turning
lane. Dynamic description of flow in the main lane and the
turning lane begins by considering the three streams involved,
i.e., the total flow g in the through lanes, its diverging com-
ponent g,, and the turning lane flow g,. Simultaneous solution
of the state equations governing these streams requires knowl-
edge of the generation and dissipation rate g(x, £), which is
a function of both g and ¢,. From the physics of the problem
the generation rate of any segment j in section r at ¢ = nAt,
i.e., g7, should be a function of the diverging flow component
g7, of segment j — 1 at ¢t = (n — 1)Ar. The following
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relationship can be derived for dynamic determination of the
generation rate at turning lanes (11):

gta S7°
i Jr
Ax Z sn-1
i
i=j
-1 — -1
— an— 1,d (kjam kzr

Jr
A0S m ~ ki
isj

(14)

where

Sr-1 = storage space available in segment jin r at ¢ =
(n — DA

density of node jinratt = (n — 1)At; and
diverging flow component.

kit
i

From the above expression and Equation 5, a computa-
tional algorithm for dynamic calculation of flow on the through
and turning lanes has been developed and described in detail
(11). This takes into account both the interactions between
the main and turning flows and the proper definition of bound-
ary conditions at the stop line. For the through flow this is
accomplished as in “Isolated Intersections.” For the right
turning flow, however, node J (Figure 2) should be treated
in a manner similar to that of node Oy (described earlier) as
the cross street flow affects right turning capacity.

As mentioned earlier, the modelling presented to this point
also applies to left turning lanes. The only difference lies in
defining the boundary conditions at the stop line of the turning
lane, during the green interval. If traffic flow on this lane
moves during an exclusive phase, then flow at the stop line
is defined as in the through case described in “Isolated Inter-
sections.” Naturally, due to the lower turning speed, satu-
ration flow and therefore capacity of the turning lane is lower
than the through lanes; estimation of this capacity can easily
be obtained from the Highway Capacity Manual (13). If flow
on the exclusive lane moves concurrently with opposing flow,
then left turning saturation flow is lower and at each time
increment can be determined from the opposing flow. Esti-
mation of left turning saturation flow with opposing traffic
can also be obtained from the Highway Capacity Manual (13,
Figure 10-3) or related literature (12, 15). Thus, at each time
step, if a queue exists, flow at the stop line of the turning
lane will equal the opposed left turning saturation flow. Fol-
lowing queue dissipation, arrival flow at the immediately
upstream node must be compared to saturation flow at that
instant, and the lowest of the two will prevail.

Spillback Effects

When the flow rate on node J; drops during green or the.

turning volumes are high, spillback from the turning lanes to
the main stream is possible. In this case congestion propagates
upstream of the stop line (node J;), and as density in the
right lane increases, the generation rate decreases. Therefore,
density in the through lanes will increase as flow on the right
lane becomes congested. As an extreme example, assume that
due to congestion in the cross street, flow at the stop line of
the turning lane is very low, resulting in compact queueing
(k = k;,) in this lane. As a result, the generation rate will
be very low (g = 0), and the total flow at node J5 will prop-
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agate to the downstream node J, almost unchanged, provided
flow at J, is not disrupted by downstream congestion. This
implies that at congested turning flows, the spillback mech-
anism provided by the main turning lane algorithm is weak
and should be improved. For this reason, an improved spill-
back algorithm was developed (/I). Briefly, the algorithm
ensures that at each time step the total through volume at J,
and the remaining through volume in Section C does not
exceed the through volume passing node O,.

Multilane and Shared Lanes Treatment

Treatment of flow on a lane-specific basis may not be needed,
especially if turning lanes have already been taken into account,
for if we exclude turning movements (considered earlier),
little additional lane changing should be expected at the inter-
section. Thus, aggregate analysis of all through lanes should
suffice in most practical situations. Lane-by-lane analysis can
also be performed, if desired, using the general methodology
presented earlier; such treatment could be justified in seg-
ments between intersections.

Analysis of multilane dynamics requires consideration of
the state equations of all lanes; in the simplest case this implies
one conservation equation per lane. The exchange of flow
between neighboring lanes can be included in the generation
term of the conservation equation. This exchange can be
obtained from the observation that it is related to the den-
sity differences among lanes and other location-specific pa-
rameters. A complete modelling of multilane dynamics with
its numerical implementation is presented in an earlier
publication (14).

When no exclusive turning lanes exist, optional or shared
lanes serving more than one movement are often employed.
This situation is depicted on the westbound approach of the
first intersection in Figure 2. Modelling during the red and
yellow phases does not present any difficulty as the stop line
represents a boundary on which flow is defined as in “Isolated
Intersections.” During green, this line is no longer a boundary
and is either extended by a dummy segment (isolated case)
or replaced by the upstream node of the downstream link. In
either case the flow in the segment immediately after the stop
line includes two dissipation terms, one for each movement.
The dissipation term corresponding to the right turning move-
ment is defined as in sinks (“Sources and Sinks). For the
left turns, the dissipation term at each instant is determined
from the lowest of two values: (a) the left turning demand,
which is a fraction of the total flow at the stop line, and (b)
the left turning saturation flow, which is time varying when
moving concurrently with opposing traffic and is determined
as in left turning lanes. ’

When congestion builds up at the cross street, the right or
left turning generation terms will reduce. To ensure spillback
effects are considered, flow at the node downstream of the
stop line should not be allowed to exceed the through demand,
i.e., this node may become an internal boundary during green.
In this case the spillback mechanism described earlier applies.

COORDINATED INTERSECTIONS

The modelling presented to this point can easily be extended
to coordinated intersections. This requires modifications to
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the boundary conditions at the upstream end of the coordi-
nated links. Referring to Figure 2, it can easily be realized
that the upstream boundary of a signalized link is no longer
an external boundary. For instance, consider node O 4. During
the EB green phase at intersection 1, O, is treated as any
ordinary node, i.e., flow on O, is obtained from Equations
1-3 by adding one or more segments connecting O, to the
stop line upstream as shown in Figure 2b. If exclusive lanes
exist on the upstream approach, flow on the nodes falling
within the intersection is also computed from Equations 1-
3; otherwise, if shared lanes exist, the dissipation terms of
the turning movements must be considered (‘“‘Multilane and
Shared Lanes Treatment’). If right turns on red are allowed
from the NB approach, they can be treated as described in
“Sources and Sinks” (i.e., as in sources); in such a case the
generation term should be added to node O, — 1.

Following the EB green phase at intersection 1, several
phasing possibilities exist with varying effects on O,. Consid-
ering the possibility of an exclusive left turning phase from
the SB approach, Figure 2c applies, i.e., flow is again com-
puted by connecting O, to the stop line of the left turning
movements and employing Equations 1-3. During the NB-
SB green phase the right turning flows from the NB approach
can be treated as in “Turning Lanes” (sinks); in such case
node O, is an internal boundary analogous to O of section
E in Figure 2a. Stated otherwise, the sink treatment applies
in this case where the main flow is in the NB direction. The
only complexity is introduced when left turns from the SB
flow are also allowed simultaneously with the right turns and
through movement NB. This situation requires further
modelling. Referring to Figure 2d, one sees the total flow at
O, consists of the right turning component of the NB stream
and the left turning component of the SB stream. In this case
flow at O, and the right turns have priority and are treated
as before, i.e., nodes O ,; and O, are treated as nodes D and
Oy in Figure 2a, respectively. Flow at O}, is restricted by the
total flow at O, and is determined as in the optional left
turning case. Thus, at each time step total flow at O,, will be
the sum of the turning flows at O, and O.,. Because capacity
at O, is restricted by the flow at O, + 1 (see “Sources and
Sinks” for smks) capacity at O, restricts flow at O, first and
then at O.,. When these restrictions are in force, nodes O
and O become internal boundaries to allow propagation of
spillbacks.

TEST RESULTS

Testing of all the modelling details presented here requires
substantial data collection at many locations over a reasonably
long time. Due to the limited resources available, extensive
model testing could not be performed. As an alternative to
field data collection, microscopic simulation was employed to
generate the data base necessary to judge the realism and
estimate the expected accuracy of the proposed methodology.
More specifically, the most recent version of the NETSIM (9)
program was employed for this purpose. This program is rea-
sonably well established and documented and has been exten-
sively tested over the many years of its development. In addi-
tion to the comparisons against the simulated data, limited
testing with field data was also performed and is presented
in an earlier publication (16). In these earlier tests, nonlinear
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equilibrium u-k models were also employed including discon-
tinuous ones, and it was concluded that although proper u-k
selection can improve model performance, the linear alter-
native leads to acceptable accuracy levels. Prior to the com-
parisons with the data base, model performance was initially
determined by inspection of the results, including visual
checking of g, k, and u plots versus time and distance. This
was very effective for screening many modelling alternatives
that led to unreasonable results.

The measures of effectiveness employed to determine the
overall model accuracy and the method of their computation
are as follows:

Total Travel (in vehicle-miles):

N

J
T=> 2 q7 At Ax
j=1n=

where J is the total number of nodes (excluding the dummy
seomen ) and N is the simulation time/At.

segm the simulation tim
Total Travel Time under Interrupted Conditions (in vehicle-
minutes):

N J
TTTi = 2 }‘, n Ax At

Total Travel Time under Uninterrupted Flow Conditions (in
vehicle-minutes):

TTTu = 2 2 « Bx At

n=1j=

where k7, is the density that would have been realized at node
j under ideal conditions, i.e., if the signal were not present.
This is obtained by assuming continuous green at the stop
line of the approach being considered.

Delay (in vehicle-minutes):
Delay = TTTi — TTTu
Average Speed (in mph):
u=TTITTTi

Total Arriving Volume (in vehicles):
N
A=2 qii
n=1
Total Departing Volume (in vehicles):
N
D=3 qh
n=1

The deviations of the above measures of effectiveness from
the NETSIM estimates were computed and the percentage
difference (PD) between them determined. In the results pre-
sented next, a positive PD indicates that the modelling pro-
posed here overestimates the corresponding MOE compared
to NETSIM; conversely, a negative PD indicates underesti-
mation. Finally, it should be noted that the space increment
necessary for obtaining reasonable accuracy was found to be
in the range of 30 to 150 ft.

Space limitations do not allow presentation of all test results.
For this reason; only the comparisons from two representative
situations are presented. The first situation represents a straight
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through link without turning movements under light, medium,
and heavy flow conditions. The second one represents a coor-
dinated link without turning movements, under varying off-
sets. In the second situation, for easy intuitive inspection, it
is assumed no turning movements enter the link from the
cross street at the upstream ‘intersection.

Isolated Case

In this case, all through lanes are treated in an aggregate
fashion; thus, the results presented and the demand pattern
are per lane estimates. The link length is 2,600 ft. The arrival
flow changes from 630 vehicles per hour/lane to 900, 1,170,
and 360 vehicles per hour/lane every 15 min. These changes
replicate a realistic peak hour demand pattern. Assuming a
two-phase operation, a cycle of 60 sec, and a yellow interval
of 3 sec, the green time of the approach under consideration
is varied three times from 39 sec to 27 sec, generating light,
medium, and heavy congestion. The average degree of sat-
uration X corresponding to these timing plans and demand
pattern is 0.66, 0.85, and 0.94, respectively. Initial conditions
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in each case were determined from the NETSIM (9) program
following an initialization interval.

In earlier experimentation (4) the optimal step size was
Ax = 50 ft and At = 1 sec; this step size was adopted here.
Further, although nonlinear equilibrium u-k models can result
in higher accuracy (4), the linear model was employed here
to demonstrate the robustness of the proposed treatment. The
model parameters, i.e., the free flow speed u, and jam density
Kjam, Were assumed to be 34 mph and 212 vehicles per mile/
lane, respectively.

Table 1 presents the results obtained from the comparisons
between the model and NETSIM estimates following 1 hr of
analysis. The right half of the table (columns 6—10) presents
results obtained by. generating the arrivals according to the
stochastic process described in “Isolated Intersections” using
the 15-min averages previously mentioned. The left half (col-
umns 1-5) of the table corresponds to the NETSIM-generated
arrivals that were averaged every 3 min and used for obtaining
the model results. In both cases the NETSIM estimates are
the same because only the boundary conditions were changed
for testing the modelling proposed earlier. As expected, the

TABLE 1 COMPARISONS OF MODEL- AND NETSIM-GENERATED RESULTS

. NETSIN generated arrivals Model generated arrivals
CASE X=0.66 X=0.85 X=0.9%% X=0.66 X=0.85 X=0.9%%
Cap=1800 |Cap~=1800 | Cap=1636 Cap=1800 | Cap=1800 | Cap=1636
Uf=s34 Uf=32 Uf=34 Uf=34 uf=32 uf=34
NOE ) (2) 3 ) 5) 6) (¥4} (8) 9 (10)

v NETSIN 377.44 377.235 377.39 343.19 376.98 377.44 | 377.25 3717.39 343.19 376.98
(veh-mi.) | Nodet 399.30 401.09 401.46 372.19 383.76 400.87 393.86 | 416.19 366.78 417.96
PO (X) # (5.8) (6.5) (6.4) (8.4) A.8) 6.2) (4.4) (10.3) 6.9 (10.9)
VIt NETSIN 895.61 | 1726.22 | 1715.51 | 1543.74 | 2715.47 895.61 | 1726.22 | 1715.51 | 1543.74 | 2715.47
(veh-min) | Model 1026.23 | 1822.75 | 1784.84 | 1620.41 | 2083.83 | 1034.98 | 1787.05 | 1920.89 | 1695.85 | 3126.95
PO (X) (14.6) (5.6) (4.0) (5.0) (6.2) 15.6) (3.5) (12.0) (9.8) (15.2)

My
(veh-min) | Modet 806.84 806.78 848.00 746.64 760.91% 811.33 1.3 882.15 740.11 939.94
Delay NETSIN 223.70 | 1063.03 | 1009.47 954.84 | 2073.89 223.70 | 1063.03 | 1009.47 954.84 | 2073.89
(veh-min) | Model 219.39 | 1015.97 936.85 873.77 | 2122.92 223.66 995.73 | 1038.74 955.73 | 2187.01
PO (X) -1.9 (-4.4) (-7.2) (-8.5) (2.4) (0.0) -6.3) 2.9) (0.1) (5.4)
Average | NETSIN 25.30 13.14 13.23 13.39 8.38 25.30 13.14 13.23 13.39 8.38
Speed Model 23.35 13.23 13.50 13.78 7.98 23.24 13.22 13.00 12.96 8.02
(mph) PO (X) 7.7 (0.7) (2.0) 2.9) (-4.8) (-8.1) (0.6) .0 (-3.1) (-4.3)
Total NETSIM 763.50 763.10 763.20 694.30 763.00 763.50 763.10 763.10 694.30 763.20
Arrivals | Modet 763.70 763.80 753.80 703.60 T46.70 767.00 746.20 782.20 699.50 894.60
(veh) PO (X) (0.0) (0.0) -1.2) (1.3) (~2.?) (0.4) (-2.2) (2.5) 0.7) (17.2)
Jotal NETSIN 769.50 769.40 770.20 700.30 763.40 769.50 769.40 770.20 700.30 763.40
Departures | Nodel 843.00 780.50 T782.60 718.90 735.10 | 844.30 T73.40 | 803.40 710.10 754.90
(veh) PO (X) (9.6) (1.4) (1.6) 2.7 3.0 9.7 (0.5) (4.3) (1.4) (-1.1)

* Results above correspond to one hour simulation.
# PD (X) = percentage of difference from data = (Model-NETSIN)/METSIN * 1001.
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results of the left half of the table are closer to the NETSIM
data, although both are equally satisfactory.

Columns 2—4 and 7-9 corresponding to X = 0.85 include
two additional values of u, and capacity affecting the equilib-
rium u-k relationship to demonstrate the model sensitivity to
this relationship. As the tablé suggests, although model per-
formance deteriorates, the results are still acceptable. To be
sure, all the estimates obtained by the model are satisfactory
as they deviate mostly well below 10 percent from the NET-
SIM data. When the degree of saturation increases, model
performance improves; this suggests that the proposed
modelling is more appropriate for congested flows.

Before concluding, it should be noted that with respect to
uninterrupted total travel time TTTu, the differences between
the model results and NETSIM were more pronounced. This
is because of the difference in the method of calculating TTTu.
According to NETSIM, TTTu or “ideal travel time” is esti-
mated according to a ‘“target speed” for the link; however,
no further information on this speed is included in the pro-

gram documentation, and. nothing is mentioned about the

existence of the signal and how it is taken into account in the
calculations.

Signalized Links

During the testing of oversaturated coordinated links, it was
quickly realized that for the reasons mentioned later in this
section, NETSIM in its present form is not suitable for gen-
erating a reliable data base, i.e., it does not treat oversatu-
rated signalized links effectively. Therefore, the effectiveness
of the model can only be judged by intuitive inspection of the
results. Two test cases are presented here: one demonstrating
a spillback to the upstream link and another without spillback.
As in the isolated case, all through lanes are treated in an
aggregate fashion. As such, the results presented here pertain
to per lane estimates. A two-phase operation of a one-way
signalized link is assumed with a base cycle length of 150 sec
and a yellow interval of 3 sec. The layout is as in the EB
direction of Figure 2a; however, no side streets and turning
lanes are taken into account in these test cases. The arrival
flow begins at 864 vph/lane (capacity is 1,800 vph/lane) for
15 min and drops to 576 vph/lane for another 15 min. The
green times are 90 sec and 60 sec at the first and second
intersections, respectively. The average degree of saturation
corresponding to this time plan and demand pattern is 0.80
for the upstream link and 1.20 for the downstream link. A
two-cycle initialization period, with a flow of 720 vehicles per
hour/lane, was used to define initial conditions. A free flow
speed of 40 mph and a jam density of 180 vehicles per mile/
lane were assumed. The step size for both cases is Ax = 60
ft and Af = 1 sec. As noted previously, no turning movements
are assumed in this example; this implies no input to the
upstream end of the signalized link during red, for easy intu-
itive inspection of the formation and dissipation of congestion.

In the first case, the signalized link length is assumed to be
2,000 £t; this represents the case in which no spillback occurs.
Spiltback results when the queue from the downstream link
extends into the upstream link. In the second case, the sig-
nalized link length is 1,500 ft; this represents spillback of
congestion during the test period. In both cases, the offsets
are increased in steps from zero with a step size approximately
one quarter of a cycle. The test runs are for a period of half
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an hour. The results indicated that in the second case, the
queue from the downstream signal backs up into the upstream
link in the fourth cycle. The spillback recedes after five cycles
(i.e., in the ninth cycle) due to the lower arrivals into the
system after the first 15-min. interval.

The test runs also indicated that the offsets do not signif-
icantly affect the model results (MOEs) such as total travel,
total travel time, and average speed, while total arrivals and
departures are the same. When an aftempt was made to verify
this result by NETSIM, it was realized that this program pres-
ently cannot effectively treat oversaturated signalized links.
This is because the NETSIM results demonstrated great var-
iability with change in offsets. This latter result does not agree
with experience and intuition according to which at high sat-
uration levels, such as those presented, offsets should not
produce such large differences, i.e., they should not signifi-
cantly affect the MOEs. Part of the problem lies with the
NETSIM program, which presently does not deal with severe
congestion. For instance, when the upstream end of the link
is reached, NETSIM begins to store cars vertically ignoring
space and spillback effects.-Improvements to the NETSIM
program are being made to take spillback effects and severe
congestion into account. ‘

A visual depiction of the model’s performance is seen in
Figure 3, which shows the density plots versus space and time
for both cases. The plot includes the cycles at which conges-
tion is maximum. In the first case congestion barely reaches
the upstream intersection, while in the second case it spreads
to the upstream link. The blank spaces in Figure 3 are gen-
erated because, as explained earlier, no input occurs during
the red phase to the signalized link to allow some dissipation
of congestion. In this manner the trajectory of the queues
becomes clearer and their evolution easier to track. Finally,
compression and dispersion characteristics are manifested.

CONCLUDING REMARKS

In this paper an attempt was made to treat traffic flow at
congested intersections and arterials in a unified and consist-
ent macroscopic fashion. This was done without ignoring
important components and characteristics of urban streets and
making the oversimplifications usually encountered in prac-
tical and theoretical models. Major advantages of the approach
taken here are the explicit inclusion of both time and space
and compressibility characteristics. Unlike empirical models,
these characteristics are not induced artificially, but are inher-
ent in the modelling.

Another consideration concerning the usefulness of the
modelling presented here is that it can be implemented in
microcomputers. This is because of the simplicity of the
numerical schemes employed and the macroscopic nature of
the models, which allow efficient computations and minimal
memory requirements. The test results were in fact obtained
by implementing the proposed methodology in IBM-PC-based
software. Similar modelling was employed in an earlier
interactive microcomputer-based simulation program for
freeways (17).

- The testing presented here and testing against actual field
data presented in an earlier publication (16) are limited.
Although this earlier testing included more complex equilib-
rium models (nonlinear and discontinuous ones), more testing
is needed for model refinement and verification. This could
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FIGURE 3 Density plots demonstrating propagation of congestion.

lead to simplifications that are probably necessary for more
widespread practical implementation of the methodology pre-
sented here. Although the computational requirements of the
proposed modelling are substantially lower than those of
microscopic models, they are probably higher than empirical
models. A sacrifice in computational effort, however, should
be expected for more detail, accuracy, and realism.
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