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Traffic Distribution Fitting: A Systematic
Methodology
Russnu TrrovrpsoN AND Wrurevr YouNc

Traffic distributions are an integral part of many traffic anal-
yses. The correct determination ofthese distributions is there-
fore essential. This paper presents a methodology for the deter-
mination of the appropriate distribution. The methodology
incorporates the data investigation, model selection, parameter
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Many trafTic analysts pay scant attention to the first two steps.
The methodology is formulated within a microcomputer pro-
gram, TRANSTAT, that has been developed to determine
appropriate traffic distributions. TRANSTAT incorporates many
recent developments in exploratory data analyses, expert sys-
tems, and outlier analyses. The paper describes the program
and illustrates its application to the determination of parking
duration curves.

Traffic engineering data analysis often requires the investi-
gation of statistical distributions (1). For instance, distribu-
tions are needed for traffic simulation, checking of distribu-
tional assumptions in statistical analysis, and the determination
of outliers (non-typical observations, inconsistent with
the other values in the sample). This paper emphasizes a

methodological approach for determining appropriate
distributions.

The probability distribution fitting process can be thought
of as a set of interconnected steps. The steps in the process
are:

¡ Data collection,
. Data investigation,
o Model selection,
o Parameter estimation,
o Goodness-of-fit determination, and
. APplication.

It should be noted that curve fitting is an iterative process.

lt is a search of possible alternatives for an appropriate expla-
nation of the data. The backward link between goodness-of-
fit testing and data investigation should continue until a "rep-
resentative" model has been found. The data investigation
and model selection stages of this process are often given scant
attention, with analysts moving straight from data collection
to parameter estimation. This paper emphasizes the need to
consider these steps fully.

The overlooking of the data investigation and model selec-
tion stage often results from the time needed to prepare graphs

and plots of the data. The formalization of the methodology,
therefore, owes much to recent developments in microcom-

puters and computer graphics. These developments have cre-
ated the rapid interactive environment that allows the data
investigation and model selection stages to become an impor-
tant part of the distribution fitting methodology. The discus-
sion of the methodology is therefore couched in terms of a
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developed to fit common univariate distributions to traffic
data. The need for such a package was identified largely from
the inadequacy of the existing commercial statistical packages
(2). Most packages did not include any facilities to fit distri-
butions to data. Some microcomputer statistical packages do
allow probability densities to be fitted (e.9., STATGRAPH-
ICS, SPSS/PC*). However, the treatment is usually very
limited. TRANSTAT contains unique modules relating to
outlier analysis, model guidance and diagnostic plots. Also,
critical regions as well as test statistics are presented for all
tests. These features render TRANSTAT superior compared
with conventional analysis packages. TRANSTAT provides
a comprehensive and user-friendly package to aid the inves-
tigation and modeling of statistical distributions.

This paper describes TRANSTAT, emphasizing the need
to take a good look at the data before attempting model
fitting, then illustrates its application to the determination of
the distribution of parking duration times.

TRANSTAT OVERVIE\ry

TRANSTAT is written in the Microsoft's QuickBASIC com-
puter-programming language and is designed to run on IBM
PC-XT/AT microcomputers. Data input is via an ASCII file,
and individual data values must be separated by at least one
space. There is a data limitation of 2000 observations. The
file input data facility allows data to be directly interfaced
with automatic data collection devices enabling the transfer
of data without manual intervention. This can speed up anal-
ysis considerably and allow observations to be measured with
a high degree of accuracy. TRANSTAT is available from the
Department of Civil Engineering, Monash University, Aus-
tralia, for $100 (Aust.).

A conscious effort has been made to make TRANSTAT
as efficient as possible. Calculation speed has been given high
priority. For instance, when sorting data, the Quicksort rou-
tine has been used (3). This is accepted as being the fastest
general sorting procedure available for computers.

Color graphics have been used extensively throughout
TRANSTAT to enhance the modeling process. The package
allows either the Enhanced Graphics Adapter (EGA) or the
standard Color Graphics Adapter (CGA) to be used. EGAMonash University, Clayton, Victoria, Australia 3168
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TRANSTAT

FILENAIIE: SPEED. DAT

MAIN MENU

1... EXPTORATORY DATA ANALYSIS

2. . . SUMMARY STATISTICS

3... OUTLIER ANALYSIS

4... MODEL GUIDANCE

5... DISTRIBUTION FITTING

6... EXIT PROGRAM

ENTER OPTION?

FIGURE I TRANSTAT's main menu.

graphics offer a higher resolution output with many more
colors.

Interactive nrenus are used throughout the package in an
attempt to make distribution modeling simple. The main menu
(Figure 1), allows any one of five modules to be chosen. After
selecting an option, another menu or prompt will be presented
requesting information. The structure of the main menu is
deliberately designed to encourage the distribution-fitting
methodology introduced above, and hence good modeling
practice, by the ordering of the options.

The following sections of the paper describe the options
offered in the main menu. They discuss the application of
exploratory data analysis, summary statistics, outlier analysis,
model guidance, and distribution fitting (the Chi-squared test
and the Kolmogorov-Smirnov test). The first two steps pro-
vide a strong indication of the type of distribution. The dis-
tribution fitting stage provides statistical measures of the degree
of fit between the observed and the expected distributions.

Exploratory Data Analysis

Exploratory Data Analysis (EDA) techniques (2) are becom-
ing very popular. These techniques seek to guide the analyst
into the appropriate analysis procedure through the visual
examination of data. Numerous plots of data can be used to
illuminate its structure and subtleties. Tukey (4) states that
EDA is "numerical detective work" and notes that its strength
lies in forcing "us to notice what we never expected to see."

EDA should precede statistical inference and stochastic
model-building. Its role is to enhance the analyst's knowledge
of the data before any inference is attempted. It is recom-
mended that several plots of the data be produced before any
models are fitted. The EDA module appears first on TRAN-
STAT'S main menu to encourage its early use in the modeling
process.

Although there are many standard types of EDA plots,
EDA itself is not a set of well defined procedures. It consists
of any plot or data analysis technique which attempts to illus-
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trate the structure or subtleties of the data. The plots included
in TRANSTAT are commonly used for investigating one
dimensional data. The box, quantile, and jitter plots are avail-
able in TRANSTAT and provide a valuable tool for model
identification. To illustrate the variety of plots the histogram,
jitter, and box plots will be discussed.

The frequency histogram (Figure 2) provides an effective
method of displaying frequency data. However, since it sum-
marizes the data, it can produce a deceiving picture and care
should be taken in its interpretation. This distortion can be
caused by the length and number of the class intervals.
TRANSTAT offers the user the option of specifying the class

size and the start of the first interval to alleviate this problem.
It is good practice to vary the class size in order to gain a

varied picture of the data's distribution. In practice, about
twenty classes over the data's range usually provide a rea-
sonable picture of the distribution.

Chambers et al. (5) introduced an alternative to the fre-
quency histogram, a one-dimensional scatter plot. This plot
is called a jitter plot. Dots are used to represent observations.
The dots are placed in the appropriate position on the major
axes. This often results in loss of data due to point overlap.
The overlap is reduced by spreading the points randomly on
the vertical axis. The latter plot can be used to complement
a frequency histogram by providing an undistorted picture of
the data's local density. The data's range, density and sym-
metry can be easily seen from this plot. An example of the
combined frequency and jitter plots for different TRANSTAT
distributions is presented in Figure 2.

Another useful EDA plot is the box plot. Initially intro-
duced by Tukey (4), this plot summarizes the data by plotting
the upper and lower quartiles as well as the median. These
quartiles are represented by the top and bottom horizontal
lines of the rectangle with the median being portrayed by the
line within the rectangle. Generally, vertical lines extend from
the box to the minimum and maximum values. However, if
a very large or small value falls outside the upper quartile
plus or minus 1.5 times the inter-quartile range, it is high-
lighted by being plotted individually. The vertical lines then
extend to the next highest or lowest value falling inside this
range. This provides a simple method of identifying possible
outliers, singling them out for further examination. This plot
conveniently summarizes many distributional properties,
including symmetry, spread, and range. Figure 3 presents box
plots for the distributions available in TRANSTAT. Distri-
bution types can be rejected on the basis of symmetry, range,
etc., narrowing the possible model types to be considered.

Box plots can also be used to study numerous "batches"
of data. Multiple box plots can also be used to partition sets
of data into homogeneous classes. Figure 4 provides an exam-
ple of the application of this type of plot to the presentation
of parking duration data over time. Here, the skewness
of the data suggests that the exponential or Erlang may be
appropriate.

Summary Statistics

Summary statistics calculated from the sample are important
in determining the type of distribution. Most distributions
have a constrained range and other properties based on sam-
ple statistics.
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FIGURE 2 Histograms of various distributions.

Certain statistics measure the central tendency of data. The
mean, median, and mode are included in TRANSTAT. The
mean can often be distorted when outliers are present. It is
called a non-robust estimator as a result. A possible remedy,
the trimmed mean, for making the mean less sensitive to
outliers is present in TRANSTAT. The trimmed mean is where
a small proportion of data from each end of the sample is
trimmed, and the remaining observations are used to calculate
the average (ó). The median is less sensitive to outliers and,
for nonsymmetric distributions, provides a more robust mea-
sure of location. The mode presents a poor measure of loca-
tion. Measures of dispersion indicate the spread or variability
of the data and include the range, standard deviation, and
coefficient of variation. The standard deviation provides a
suitable statistic to judge the reliability of the mean as a mea-
sure of location. The standard deviation is a measure of abso-
lute dispersion, and its units are the same as the data's. The
coefficient of variation is a measure of relative dispersion. It

allows populations to be compared. The peakness of the dis-
tribution is called the kurtosis. The symmetry of a distribution
is measured by the coefficient of skewness. A zero value
indicates a completely symmetric distribution. A distribution
can be skewed to the right (positive) or left (negative). Figure
5 illustrates the summary statistics output produced from
TRANSTAT. The use of four decimal places enables the
analyst to get an indication of the need for rounding; smaller
numbers of decimal places can be used.

Outlier Analysis

An important aspect of the distribution fitting methodology
is the determination of outliers. Outliers can be due to coding
or input errors. Further, with the increasing prevalence of
electronic equipment in data collection, protocol errors and
instrument errors are becoming common, Outliers can also
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FIGURE 4 Multiple box plots of hatf-hourly
parking duration data.

be due to measurement or copying errors, both of which can
easily occur, if the data set is large. Since these values can
significantly affect sample estimates, they should be identified
and investigated for their validity.

The criteria used to detect potential outliers in the sample

ERLâNG RAHDOIT UâRIÊTES

data are those of Tukey (4) and Barnett and Lewis (Z). The
first method is based on the test used for highlighting obser-
vations outside the fences in the box plot. Any value exceed-
ing the distance 1.5 times the interquartile range from the
median is selected. This method is distribution-free, which is
most favorable since at this stage in the modeling process no

, distributional assumptions can be inferred. It provides a con-
venient and simple rule of thumb for identifying possible sus-
pect observations. However, since it assumes symmetry, it is
only relevant for samples which are approximately symmetric.

Barnett and Lewis (7), in their comprehensive summary of
outlier tests, give little attention or hope of any non-para-
metric methods being used to detect outliers. This is colorfully
expressed by their statement, "To deliberately abandon the
model, by seeking non-parametric (or distribution free) meth-
ods in some broad aim of robustness, smacks of throwing out
the bath water before the baby has even been immersed."' Therefore, it is not surprising that nearly all Barnett and
Lewis's (7) "discordancy" tests are based on knowledge of
the underlying distribution. TRANSTAT also uses a "dis-
cordancy" test to identify any possible outliers for skewed
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TRANSTAT

DURATIONS INTERVAT 2

NO. OF OBSERVATIONS = 90
MINIMUM OBSERVATION = 1.0000
MAXIMUM OBSERVATION = 285
SAMPLE MEAN = 52.8778
SAHPLE MEDIAN = 28.0000
STANDARD DEVIATION = TT.1630
SKETINESS COEFF. - 1.7924
KURTOSIS COEFF. = Q,.9263
COEFF. OF VARIATION = 1.3458
MODE 3.0OOo

FIGURE 5 Summary statistics produced by
TRANSTAT.

distributions. It is based on the assumption that the sample
comes from an exponential distribution. This can be justified
by the fact that many known distributions have the exponen-
tial distribution as their limit, and many natural phenomena
are distributed this way. Furthermore, while being careful to
assume not all distributions are exponential, if data is signif-
icantly skewed this test is useful and performs quite well.

The system provides information relating to the observa-
tions which may be outliers based on the above criteria. It
gives the user the option of including these values in subse-
quent analysis. This relieves TRANSTAT of any decision
regarding the inclusion of these values in the analysis but
indicates that, if these values are to remain, their influence
will be significant (Figure 6). This information should encour-
age the user to investigate these observations for their validity.
Individual values can be deleted from the analysis using this
option if an outlier is confirmed.

91.

Model Guidance

A small "expert system" has been included in TRANSTAT
to help users identify potential representative models. This
can eliminate many unlikely models from detailed examina-
tion. An "expert system" is described by Marksjo (8) as being
"a piece of computer software giving the illusion of being a
human expert within a restricted field of competence." There
has been considerable interest in expert software applications
in statistics, with emphasis being given to systems where con-
sultant (expert) and client (user) interactions are imitated
(5,9). This new type of software can suggest actions which
will achieve the goals of the analysis and provide explanations
of output and of recommendations.

TRANSTAT provides a list of suggesteo distributions
which should receive closer attention. The selection criteria
are based on inferences obtained from distributional prop-
erties (/0). These potentially should provide a reasonable
fit, but formal and informal tests should be used to confirm
or reject this preliminary advice. Numerous tests are per-
formed based on the data's symmetry, kurtosis, and range
to provide this initial selection of distributions. Confidence
limits are generated for the skewness and kurtosis coeffi-
cients as well as for the mean and standard deviations. These
are then compared with the properties of the theoretical
models and recommendations given as to their similarities.
The user can accept or reject the system's advice concerning
suggestions. The system provides a list of most suitable
distributions and ranks these by their apparent suitability.
Reasons, in the form of explanations, are also given for the
rejected and suggested models. This will help educate ana-
lysts. The advice provided must be interpreted as preliminary
guidance, and the suggested models should be subjected to
the appropriate statistical tests before any conclusions can be
made. A sample of the model guidance produced by TRAN-
STAT is provided in Figure 7.

TRANSTAT

FRELTI.IINARY SCANNING OF HE DA'TA HAs TDENTIFIËD I
UNREFRESENTATIVE oÉsERvltrroN(s) t¡Jt-tIcH MAy possIErLy BE ourLrERs

OFSERVATION(S):

5Sl

THE EFFECT TF THËSÉ: OFSERVA]IOI.JiS) ON SAI"IPLE STíITISTICS CAN
SEEN BY ÍHË FOT-I.-üI.'IN6 COFIPARISONS:

STATISTICS þ¡ITH t¡JITHÜ|JT UNREf¡RESENTAì IVE VAI_UES

HEAN :5Cr . I 54E} .I(:'. (-rfl4(!
STDVN 7. I 155 6.9E}4Cì
HIN 14.(l(loÕ 14.(){l{ro
l.lAX sEl. CrrlOCl SC). Cr{:¡C)Cr

DO YOU I¡JISH TO DELETE THE ABOVE OBSERVATIONS (y/N)?

FIGURE 6 Outlier detection from TRANSTAT.
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TR,ANSTAT

HODEL GUIDANCE

Atr'TER PRELIMINARY INVESTIGATION OF TIIE CHARACTERISTICS
OF THE DATA TTIE FOLLOWING INFERENCES CAN BE MADE :

THE RANGE DOES NOl INCLUDE NEGATIVE VALUES

THE DATA IS NOI APPROXIMATELY SYHHETRICAL

lHE KURTOSIS COET'FICIENT IS APPROXIMATELY 9

THE SKEWNESS COEFFICIENT IS APPROXIHATELY 2

BASED ON TIIE ABOVE INFORMATION THE MODELS THAT MAY REPRESENÎ
THE DATA IN ORDER OT PREFERENCE ÀRE:

EXPONENTIAL
ERLANG
LOGNOR}IAL

TIIIS IS PRELIIIINÂRY ADVICE PLEASE ENSURE THAT THE ABOVE MODELS
ANE SUE'ECTED TO lHE APPROPRIATE TESTS BEFORE ANY CONCLUSIONS
ARE IIâDE

FIGURE 7 Model guidance output from TRANSTAT.

Chi-Square Test

The previous discussion illustrated the general application of
a number of techniques to the investigation of the data and

the determination of the distributions likely to fit the data.
These are important steps in the distribution-fitting meth-
odology, and it is only after this investigation that data fitting
should be attempted.

The statistical fit of the data to the theoretical distribution
is tested in two ways. The first is a chi-square test. To test an

hypothesis that enumerative data falls into k classes with prob-
abilitiespr, p, . . . , pr the chi-square test compares the actual
counts 01, oz, . . . , oo with the number expected in each class

of k classes, npl, np2 . , hpr
The comparison is made using the test statistic,

x'=I(ot-E)zlEt alli

where

O¡ : observed frequency in class i
E¡ : model expected frequency in class i.

The null hypothesis is that the two distributions are the

same; and if this is true, the test statistic has a chi-square
distribution for large samples (n > 40).

Large value of ¡2 indicates that it is unlikely the hypoth-
esized probabilities pu pz, , p*, are correct and the
hypothesized distribution is incorrect. The number of degrees

of freedom is the number of classes, /c less 1, for each linear
restriction placed on the cell counts (11).

This test was originally designed for categorical data but
can be applied to continuous data models. It involves sub-
jectively choosing class lengths and the beginning of the first
cell. Different class sizes can be used, which can affect the
significance of the test (12).'fhe subjective choice of class

intervals may be a limitation with this approach. An additional
problem with this test is that low cell expectancies can seri-
ously affect the test statistic. Even with these serious prob-

lems, the chi-square test remains the most popular test used

in distribution fitting. Its popularity seems to be due to its
ease in calculating the test statistic.

The size of the classes can be specified in TRANSTAT.
There seems to be little indication of what is an optimal class

size; in practice, many should be tried. Cochran (13) reports
that expected frequencies should be equal. This produces une-
qual class lengths. Mann and Wald (1a) suggest the following
optimum number of classes (k), based on a sample stze (n):

The chi-square statistic is usually only calculated for classes

where the expected frequencies are greater than 5. However,
there seems to be little agreement among statisticians as to
the minimum expected number for each class. Cochran (13)
suggests that, "since the discrepancy between observed and
a postulated distribution is often most apparent at the tails,
the sensitivity of the chi-square test is likely to be decreased
by an overdose of pooling at the tails." In this light, he con-
siders that the inflexible use of a minimum expectation of 5

may be harmful. A sample of the output produced from this
module of TRANSTAT is given in Figure 8.

Kolmogorov-Smirnov Test

The second test of goodness-of-fit is the Kolmogorov-Smirnov
test. It is for continuous data and can be used for samples of
any size (15). The test statistic is based on the measurement
of the maximum absolute vertical difference between the two
cumulative distributions (Figure 9).

The test compares F(.r), the hypothesized (cumulative) dis-

tribution function, with S(-r), the empirical distribution func-
tion. If the data follow the hypothesized distribution, then

I F(x) - S(x) | should be small.

n 200 400 600 800 1000 1500 2000
k31414854597078
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CHI SQUâRE SUMMARY INF'ORMATION

ÎIIE CHI SQUARED cOF STATISTIC IS = 3.792273 IIITH 5 DF

FOR ATPHA=.OI CR > 15.07516

l'OR ALPHA=.O5 CR > 11.01793

FOR ALPHA=.I CR > 9.200409

Thompson and Young

FIGURE E Chi-square output produced from TRANSTAT.
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FIGURE 9 Calculation of the
Kolmogorov-Smirnov test statistic.

The Kolmogorov-Smirnov test statistic for samples of size
n is D : Supremum I f(x) - S(x) | over all -r.

The advantages of this test are that it uses all the data points,
it involves no subjective grouping, and it can be used on small
data sets. It therefore eliminates many of the weaknesses of
the chi-square test. If the parameters of the hypothesized
distribution are previously known, the critical regions are dis-
tribution-free and, for n > 30 are equal to I.36ln at the 5Vo
significance level.

However, if the parameters of the hypothesized distribution
are estimated from the sample data, the common tabulated
values are not valid; and if used, they result in a conservative
test. Recognizing this major weakness, Lilliefors (16, 17)
developed new tables of critical values for when the param-
eters are estimated from the sample. Adjusted critical regions
were derived using Monte-Carlo techniques for the Expo-
nential and Normal distributions. The Monte-Carlo critical
values presented are approximately two-thirds that of the
common tables. Monte-Carlo techniques have also been used
to generate adjusted critical values for the Log-Normal dis-
tribution (2). Over 2000 distributions were generated for odd
sample sizes up to 30, and linear interpolation was used to
produce the even sample numbers. The results seem consist-
ent with those of Lilliefors (1ó).

Durbin (18) showed that critical regions can only be gen-
erated exactly if the estimated parameters of the distribution
are measures of location'and spread. This indicates the lim-
itation of Lilliefors's (1ó) method to the Normal, Log Normal,
and Exponential distributions. However, Durbin described a
half sample device where the parameters are estimated using

a random sample of half the data. This orocedure is asymp-
totically equivalent to the original test, and hence the common
critical regions can be used. The only drawback with this
method is that large samples (100 or more data points) are
required. TRANSTAT allows the user to specify whether or
not to use the half-sampling technique. If the half sample
technique is chosen, critical regions are displayed for the LVo,
SVo, and IIVo levels of significance for all models.

Another use of D is in comparative studies. Since D is a
measure of the model's goodness-of-fit, it can be used as a
comparative statistic for evaluating various models. For exam-
ple, a result of model fit may produce a D equal to 0.11,
which can be interpreted as meaning that the two cumulative
distributions differ by at most LIVo and should be preferred
to a model with a D value of 0.16.

The computation of the Kolmogorov-Smirnov test statistic
appears to be quite lengthy and complex, but close exami-
nation indicates both of these problems can be reduced.
D'Agostino and Nothier (19) state that this maximum distance
does not necessarily occur at an observation point, and there-
fore only using these points in the calculation of D generally
results in a conservative test. However, using mathematical
analysis it can be shown that the maximum difference will
occur either at an observation point of the empirical distri-
bution or a very small distance before one of these points
(10). Figure 10 presents some possible comparisons between
the theoretical cumulative distribution (F'(.r)) and the observed
one (S(x)). It can be seen that the maximum D value will be
found at, or just before, an observation. Using this result,
the computational effort is reduced to arrive at maximum:
twice the number of different observation points. This is sig-
nificantly more efficient than comparing these two functions
at numerous small increments. The accuracy of the test is
dependent upon how close to the data points the D value
chosen is. This in practice should be in the order a one tenth
of the measured significance.

Numerous plots can aid the interpretation of D. First, the
plot of both the model and the empirical data illustrates the
differences between them (Figure 11a). A second plot shows
the difference between the theoretical model and the observed
data points over the data's range (Figure 11b). More specif-
ically, Figure 1lb presents the D value in terms of the inde-
pendent variable and provides the 5Vo confidence intervals.
The plot provides an immediate view of the quality of the fit
on the distribution to the data.
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PARKING DURATION ANALYSIS USING
TRANSTAT

To illustrate the distribution-fitting methodology, TRAN-
STAT is applied to the investigation of parking durations. A
parking study was performed on a Saturday morning in July
1986 at the Mountain Gate Shopping Center lower carpark,
Ferntree Gully Road, Ferntree Gully, Australia. An input/
output technique was used to collect the data. Observers
recorded the time in minutes and the registration number of
vehicles entering or leaving the facility. This carpark has three
entrances and exits, a good number for such a survey. The
carpark has approximately 300 stalls with a variety of shops
adjacent to it, including a supermarket, newsagents, and a

restaurant. The data collected was summarized into half-hourly
intervals of durations by arrival times. This enabled the tem-
poral variation in parking duration curves to be investigated.
The first period was for the half-hour from 8:00 a.m. to 8:30
a.m., with the last period being from 1:00 p.m. to 1:30 p.m.
Short-term parkers mainly consisted of short shopping trips
(e.6., out-of-hours banking at the Commonwealth Handy Bank
Automatic Teller and staff being dropped off). High durations
were mainly from the staff of the shops and from the super-
market patrons.

After the collection of the data, the first step in the dis-
tribution fitting methodology is to begin to build knowledge
about the data. This can start by looking at the summary
statistics. The summary statistics (Table 1) of the duration
data by half-hour intervals provides valuable insight into
the data's structure. The durations are presented visually
in the multiple box plot in Figure 4. It can be seen that
there is a general decrease in the average duration as the
study progresses, and that there are many large durations
in the first few periods. The large durations were vehicles
of the staff of the businesses in the shopping center. They
were therefore deleted from analysis as they were consid-
ered to be outliers. The criterion used for identifying long-
term parkers was durations longer than 180 minutes. The
mean duration time of vehicles, corrected for outliers,
decreased steadily by the interval of arrival (Figure tZ). A
simple linear regression equation was fitted to this data with
the following relationship established:

Mean Duration : 46.6601 _r.4481x(Interval no.)

The fit was reasonable with an .R-squared value of 78.44Vo.
This result is very useful, as the model type that is chosen to
represent durations by intervals has the mean as a parameter.
The estimation of this parameter can be made with associated
confidence intervals using this relationship.

The standard deviation of the durations also decreased in
proportion to the mean with a constant linear relationship
evident. A linear regression model was fitted providing a very
good relationship (R squared of.93.74Vo). The following rela-
tionship was established using Least Squares Regression:

Mean = -9.8457 * t.Ot34-(Standard deviation)

Data for all the intervals were positively skewed ranging from
1.274I to 2.564L. These high values of skewness indicate that
the normal, logistic, and rectangular distributions would not be
suitable for modeling this data. The kurtosis coefficients were
between 3.9 and 9.00, with those around 9 indicating the suit-
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FIGURE 11 Kolmogorov-Smirnov analysis plots
produced from TRANSTAT: (a) plot of empirical and
theoretical cumulative distributions and (b) difference
between observed and theoretical distributions.
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TABLE 1 SUMMARY STATISTICS FOR PARKING DURATION DATA BY
INTERVAL

INIERYALNO. N r{Ar(

I 48 200
1/A 47 160
2 90 285
2/A 79 149
3 153 262
3/A 143 165
4 160 155
5 181 155
6 219 LOz
7 193 116
I 171 81
I 104 75
10 63 47
11 38 15

ALL L42O 285
ALL,/A 1398 165

1 35. 19 30 40.00
1 31.68 29 32.L3
1 52.88 28 71 . 16
L 28.92 20 30.71
1 37.05 L7 53.94
1 24. 90 16 27 .92
r 25.L4 t7 24.Or
1 26.35 15 30.14
t 25.3L 19 2r.52
L 27.35 20 24.L7
r 2L.98 16 19.01
1 18.08 14 76.42
1 11.48 I 10 . 28
1 4.90 4 3.40
1 26. 96 16 34. 19
1 23.96 15 24.42

2.2L 8.82 1. 14
t.73 6.98 1.01
1.79 4.98 r.35
1.84 6.74 1.06
2.56 9. 00 1 . 46
2.67 7t.94 t.Lz
1.94 8.58 0.96
2.27 8. 56 1 . 14
t.27 4. 31 0. 85
1.28 4. 41 0. 88
r.29 3. 94 0. 8?
t.44 4.76 0.91
L.47 4.74 0.90
1. 54 4.96 0. ?0
3.46 18.98 L.27
2. to 9. 19 1 .02

SÎANDAND SKEI{. KOBTOS. COEFF
I'IN I'EAN MEDIAN DEV. COEFI" COEtrF. VAR.

Nore: /A = data with extreme low values removed,

HâLE HflJn IMXßrRt Nt.

FIGURE 12 Plot of mean duration by arrival interval.
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ability of the exponential distribution. A histogram and jitter
plot of the data for half-hour interval number 5 is presented in
Figure 13. The data for the whole morning can be conveniently

summarized in a multiple box plot (Figure 4). The positive

skewness of the data by intervals is evident from the small

distance from the median and the minimum value compared to

the maximum value. The steady decay of duration times by

interval is obvious from the reducing medians and maximum

values. The high number of outliers, particularly in the early

intervals, highlights the long-term (staff) parkers. The general

decrease in frequency with increasing duration is consistent with
an exponential or Erlang distribution.

From the exploratory data investigation, it was considered

that only the Exponential, Erlang, and Log Normal models

could possibly represent the data to an acceptable level.

Observations over 180 minutes were deleted from the anal-
ysis, as their properties were of little interest. The Kolmo-
gorov-Smirnov test was used for analyzing the goodness-of-

fit of the distributions and the half-sample parameters were

used when the sample size was over 150. This enabled critical
regions to be established for these data sets. For the intervals

where there was a small number of observations, the Monte-
Carlo generated values were used.

The results of each of the models performance are pre-

sented in Thompson (10). Overall, only one data set (half-
hour interval no. 11) failed to be satisfactorily represented by

any of the models. To summarize the model fit, a ranking
procedure was adopted. A score of 3 points was given for a

model fit with no significant difference between the model

and the data at the l\Vo level. A score of 2 was assigned to

a

I
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FIGURE 13 Histogram of parking durations half-
hour interval no. 5.

a fit where a significant difference was detected at the l\Vo
level. A score of 1, was assigned to a fit where a significant

difference was detected at the 5Vo level. A zero score was

assigned if a significant difference was detected af the tVo

level. Using these rankings, the results are summarized in

Table 2.
The best overall model was the Exponential, with the Log-

normal distribution also performing well. The Erlang model
rarely fitted the data well. Figure 14 illustrates the fit of both
the Exponential and the Log Normal models to the duration
data observed in half-hour interval number 8. An alterna-
tive ranking procedure based on the smallest D value for
each model produced similar results. They are presented in
Table 3.

The closeness in performance of the Exponential and Log
Normal models is highlighted in Tables 2 and 3. Overall, the
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Exponential distribution appears to accurately represent the
parking durations of shoppers by half-hourly intervals. The
associated parameters are a function of the mean of the data.
This provides a convenient method for the generation of dif-
ferent distributions with varying means, since the mean/half-
hourly interval relationship allows for the temporal variation
to be included.

The more common method of looking at the distribution
of parking durations is to group the data for the entire study
period. The distribution of parking durations for all the data
is therefore presented in the box plot in Figure 15. It illustrates
the high degree of skewness and large number of outliers that
are present.

The summary statistics of the durations for all the data
(Table 1) exhibit many of the same characteristics as the indi-
vidual half-hour interval data: high skewness and kurtosis
coefficients. This general trend is further highlighted in the
frequency and jitter plots presented in Figure 16. A very high
coefficient of kurtosis of 18.7883 was calculated.

The distribution of the parking duration for the entire study
period was also investigated. It showed no distribution could
be accepted at the I}Vo significance level. However, after
excluding the outliers from the data, the Log Normal model
just failed to be accepted at the llVo level, with a D value of
0.0477. Poorer fits were found when every distribution was
applied to the data sets with the long-term parkers included.

CONCLUSIONS

This paper has outlined a methodology for traffic distribution
fitting. The methodology incorporates the steps of data inves-
tigation, model selection, parameter estimation, and good-
ness-of-fit testing. The methodology has been formulated in
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TABLE 2 RANKING OF SIGNIFICANCE OF ERLANG, EXPONENTIAL, AND LOG NORMAL
DISTRIBUTIONS TO DATA

Half-Hour Interval Number

Model 1110

Rank
Sum

23
9

20

21332033330
30330000000
00323323t30

Exponential
Erlang
Log normal
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FIGURE 14 Exponential and Log Normal models of interval 8.
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TABLE 3 RANKINGS OF DISTRIBUTION FITS BASED ON D

Half-Hour Interval Number

Model 1110
Rank
Sum

25
77
24

22322332321
37231111112
13113223233

Exponential
Erlang
Log normal

Nore: 3 = smallest D,2 = 2nd smallest D, 1 = largest D.
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z,Etø

150

Løø
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ø

FIGURE f5 Box plot of durations
for all intervals.

IruRñÎlotB âtL ÌtttBtÊLs

FIGURE fó Histogram of all durations.

terms of a statistical package (TRAr{STAT). The package
has incorporated recent developments in exploratory data
analysis, outlier determination, and expert systems. It is a
comprehensive probability distribution-fitting package which
enables probability density functions to be easily fitted to
sample data. Full statistical details are provided enabling sub-
sequent probability analysis. The package offers the traffic
analyst an interactive, fast, and accurate package to aid in
distributional analysis. TRANSTAT has been used for check-
ing distributional assumptions in classical statistical analysis,

preparing input to simulation models, and performing prob-
ability and analysis.

The distribution fitting methodology was applied to the
investigation of the distribution of parking times. The distri-
bution of parking times was shown to be an exponential dis-
tribution. However, more importantly, the study demon-
strated that the distribution of parking times varied throughout
+!'- '¡^" 'fL^ *^^- -^-1.:-^ +:*^,-,^- ¡^,.-J ¿^ l^^-^^^^ L--lt¡v ucJ. r r¡v ruvor¡ y@¡Àrl¡Ë trurç waù lvullu Lv uççrtr4ùç uy
approximately 3.5 minutes/half hour, from a maximum of 46
minutes in the first half-hour to a minimum of 9 minutes.
Other applications of TRANSTAT look at the speed of vehi-
cles in parking lots and headway distributions (10).
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