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Three'requations ofstate" are required to describe the traffic
fluid. The first is volume = speed . density, and the second is
the continuity of vehicles. There are at least four options for
the third equation: (1) the deterministic speed-density model,
(2) the equilibrium speed-density model, (3) the Payne model,
and (4) the Ross model. Two restrictions on the space step DX
and time step DI apply to numerical integrations of all four
models. There is an additional restriction on DT that applies
fo the last three models and a special restriction on the 'rantic-
ipation" term in the Payne model. The time required to per-
form numerical integrations of all four models is shown to be
inversely proportional to the square of the length of the smallest
feature represented. A general form for the r(relaxation time"
in the three non-deterministic models is derived. It is argued,
on the basis of experience with the Ross model, that although
a dependence upon speed is "correct," setting the relaxation
time constant is adequate for most traflic purposes. The rela-
tionship between relaxation time and lost time at signals in the
Ross model is shown to be linear.

This paper deals with five topics related to the macroscopic
(speed, volume, density) representation of traffic. The topics
are: (1) categorization of traffic formulations into four classes,
(2) permissible step sizes when numerically integrating the
traffic formulations, (3) execution time for numerical inte-
grations, (4) form of dependence of the "relaxation time," a
parameter in three of the formulations, upon average traffic
speed, and (5) relationship between "lost time" and the relax-
ation time parameter in one of the models.

TYPES OF MACROSCOPIC TRAFFIC MODELS

In this paper, the term "traffic dynamics model" or "traffic
formulation" means a complete set of relationships between
traffic volume, average traffic speed, and traffic density. Such
relationships may be looked upon as the "equations of state"
of the traffic fluid.

Three relationships are required. The first relationship is
inherent in the definitions of traffic volume, speed, and
density:

Q=kv
where

Q:Q@,t):traffic
time /,
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(1)

volume (veh/hr) at location x and

k : k(x,t) : vehicular density (veh/mi) at location ¡ and
time t, and

v : v(x,t) : space-mean speed (milhr) at location -r and
time r. (Proof that this is the harmonic mea¡i of the
ttcnnftt cneedc ic nrnril¡lcrl elcpr¡¡hprp ll\ \

A second relationship, the continuity of vehicles, was pointed
out by Lighthill and Whitham (2):

aklôt+ôQlôx:S(x,t)

where

ôlôt and ð/ðx indicate partial differentiation with respect to
time / and with respect to location along the road x, respec-
tively, and S(x,r) : source strength of vehicles from ramps,
parking lots, etc., which may be negative (veh/mi-hr).

Equations L and2 are fundamental. All traffic models that
deal with volume, speed, and density must incorporate them
or equivalent relationships.

At least four possibilities for the third relationship have
been proposed, as follows:

Deterministic Speed-Density Hypothesis

The deterministic speed-density traffic formulation states that
the average traffic speed is a function of traffic density.
[Greenshields (3) was the first to hypothesize that average
traffic speed is a deterministic function of density, but innu-
merable investigators have followed his lead. A summary is
provided elsewhere (a). The most recent authoritative work
to adopt this approach is the Highway Capacity Manual (5),
in its treatment of freeways.]

v : v(k) (3)

The traffic-free speed is v(0); v(k¡"*) : 0, where 4"* is the
so-called "jam density" of vehicles; and max[k.v(ft)] is the
roadway capacity. The precise dependence of u upon k is not
important to the arguments in this paper. u(k) need not be
single-valued except at k = ki^ and k = 0.

Equilibrium Speed-Density Hypothesis

The equilibrium speed-density formulation states that there
is an equilibrium speed, which is a function of density, to
which actual speeds relax. [The author's experience is that
the equilibrium speed-density hypothesis is accepted by traffic
researchers but has never been specifically proposed in the
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literature. It is a logical implication of the work of Prigogine
and Herman (ó), who postulated that there is an equilibrium
distribution of traffic speeds to which traffic relaxes.]

avlôt+vôvlôx:tF(¿)-vllT (4)

The terms on the left of the equal sign give the acceleration
of traffic with respect to the moving traffic stream; F(k) is

the equilibrium speed, and T is the so-called relaxation time
(the parameter which controls how quickly traffic returns to
its equilibrium speed). Actual free speed, maximum flow, and

density at v : 0 are variable depending upon the boundary
conditions.

Payne's Hypothesis

To overcome the tendency to spontaneously lock up in the
deterministic and equilibrium speed-density hypotheses, Payne

added an anticipation term (Z 8):

ôvlðt + v ôvlôx: [r(/c) - v)lT - (glT)ôklôx (5)

The anticipation constant is g. The net effect of Payne's

addition is to cause traffic to accelerate when ôklðt is nega-

tive-i.e., when the traffic anticipates lower density ahead.

Otherwise, Payne's formulation is quite similar to the equi-

librium speed-density hypothesis.

Ross's Hypothesis

In a recent paper (9), Ross claims that the three traffic for-
mulations listed above are all grossly unrealistic. He proposes

that the third defining equation is

ôvlôt + vôvlðx:lF - vllT (6)

where F is the free speed on the roadway and is explicitly not
dependent on È. Roadway capacity and jam density are
accounted for by separate constraints; jam density flow is

constrained to be incompressible.

INTEGRATION STEP SIZE

No matter which of the four traffic formulations is used, inte-
gration is frequently necessary. The simplest integration method
is to step along the roadway using the chosen model to eval-
uate the volume, density, and speed at points a distance DX
apart and to repeat that process every DT hours. The speed
of the integration process is inversely proportional to the size

of. DX and DT; it is therefore important to make DX and
DZ as large as possible without compromising the accuracy
of the integration. We investigate what restrictions there should
be on DX and DT to ensure accurate integration.

Continuity of vehicles (equation 2) imposes some funda-
mental constraints on the integration of all four traffic for-
mulations. Equation 2 ca¡ be rewritten in terms of finite
differences:

Dk, : S, DT - (Q, - Q,-,) (DTIDX)

where Dk, is the change in density at location i between times
DT apart, S, is the traffic source strength at location i, and

Q, is the volume at location i.
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The integration error will tsually be small compared to k,
if DÈ, is small compared to k. Divide both sides of equation
7 by k,:

Dkrlki = 6Jk) DT - (r, - v,-,)(DTIDX) (8)

where v, is the volume at location i.
If both terms on the right are individually small, Dk,lk,will

automatically be small. (Dkrl4 will also be small if the two
right-side terms nearly cancel one another, but an integration
scheme that relies on two large terms nearly cancelling one
another would be impossible to implement.) Specifically:

DT << kitsi (9)

DXTDT >> F (10)

where Fis the free speed on the roadway.
Since the source/sink volume is S,'DX, not S,, restriction 9

can be rewritten:

DXIDT )) Source volume/k, (1 1)

Inequalities 10 and 11 must both be satisfied if the inte-
gration is to give relatively accurate results. Inequality 10

means that the time step, DT, must be small enough and the
space step, DX, large enough so that vehicles cannot cross

an appreciable fraction the space step in one time step. In-
equality 1.1 means that the time step must be small enough
and the space step large enough that source/sink flows do not
appreciably alter the number of vehicles in any space step
during a time step. These conclusions are based entirely on
equation 2 and, therefore, apply to all traffic formulations.

Since the third equation of the deterministic traffic for-
mulation does not involve differentiation, it has no effect on
the size of. DX or DTin the deterministic model. Restrictions
10 and 11 are the only restrictions on DX and DT in the
deterministic formulation.

In the equilibrium, Payne, and Ross formulations, the third
equation of state does involve partial differentiation and,
therefore, has an effect on the allowable sizes of DX and DT.
The third equations in these formulations are similar enough
to one another for the convergence properties under numer-
ical integration of all three formulations to be analyzed at the
same time. Consider the third equation of state from Payne's
formulation converted to finite difference form:

Dv,: lF(k,) - v,l(DTIT) - v,(v, - v,-r) (DTIDX) (12)

- (gtT)(k, - kt)@TtDX)
There are no fixed values of DX and DT which guarantee
that Dv, will be small compared to v,; we must settle for the
weaker condition that Dv, be small compared to the free
speed, F. Again, each term individually must be small (com-
pared to F).

The condition on the first term is

I t¡'(/c,) - v,1@TtT) | << F
which is always satisfied if

DT<<T
Since a term with similar convergence properties occurs in
the equilibrium and Ross formulations, restriction 14 applies
equally to the equilibrium, Payne, and Ross formulations.

The second term in equation 12 is automatically small com-

(13)

(14)

(7)
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TABLE 1 CONDITIONS ON INTEGRATION STEP SIZES DX AND DT FOR THREE TRAFFIC
SIMULATION PROGRAMS

Restriction KRONOS (Deterministic) FREFLO (Payne) RFLO (Ross)

TO. DXIDT >> F
II, DXIDT >>

source/k
14. DT << T
16. DXIDT >>

I kt"^lr F

NorE: Restriction number refers to inequality number in the text. "??" means the restriction is not satisfied; "?>"
means the restriction is marginally satisfied.

68 mi/hr ?? 63 mtlhr
68/mi/hr ?> 20 mi/hr

Not applicable
Not applicable

630 mi/hr >> 63 mi/hr
630 mi/hr >> 20 mi/hr

0.0001ó7 hr << 0.001875 hr
630 mi/hr >> 68 mi/hr

200 mi/hr ?> 63 mi/hr
200 mi/hr >> 20 mi/hr

0.0005 hr << 0.0060 hr
Not applicable

pared to F if restriction L0 is satisfied; no new restriction is

needed.
The third term, the anticipation term, appears in Payne's

formulation only.

I /-tr\tt. t. \/^'ilrìv\ I ¿¿ F
| (õ/ r ,r\Àr tui-1l lu t t ez\ / |

Condition (15) is guaranteed if

DXIDT >) I k¡^ lT F

11 s\

(16)

Restriction (16) applies to the Payne formulation only.
How well are these restrictions on DX and DT obeyed in

practice? KRONOS (10) is the only recent simulation pro-

gram to use the deterministic speed-density formulation.
FREFLO (11) is the only simulation program to use the Payne

formulation. RFLO, now under development at the Federal

Highway Administration, uses the Ross formulation. (No
example of a simulation using the equilibrium speed-density
formulation could be found.)

It is assumed that the maximum average speed, F, is about

63 mi/hr. It is further assumed that typical source/sink flows

- 100 veh/hr and worst case (smallest) traffic densities - 5

veh/mi, implying source flow/k - 20 mi/hr.
In the KRONOS program, the space step, DX, defaults to

100 feet and the time step, DI, defaults to L second, yielding
DXIDT : 68 milhr. Table 1 shows how these values relate

to restrictions L0, 11, L4, and L6.

In the FREFLO program, the space step, DX, is the link
length; DX = 0.t mi can be postulated. DT is one-tenth of
the travel time on the shortest link (0.00017 hours, with our
assumptions), automatically making DXIDT ten times F. The

relaxation time, T, is proportional to DX and inversely pro-
portional to the roadway capacity; for capacity : 2000 veh/

lane-mi, I : 0.001875 hr. The anticipation constant, g, is
proportional to DX and the roadway capacity; in these con-

ditions, C : 0.028 mi3/hr. Jam density is 143 veh/lane-mi-
say,286 veh/mi on a twolane roadway. The term I ki^ lTF
evaluates to 68 mi/hr. (The similarity to DXIDT in the
KRONOS program is coincidental.) Table 1 shows how these

values relate to the applicable restrictions.
In the RFLO program, DX : 0.L mi; DT : 0.0005 hr :

1.8 sec; (DXIDT: 200 mi/hr); Z : 0.0060 hr. Table 1 relates

these values to the applicable restrictions.
It is obvious from inspecting Table 1 that the KRONOS

program does not satisfy restriction 10. This implies poor
representation of density where it is changing rapidly. KRONOS
is marginal with respect to restriction L1, implying that its
representation of low-density traffic with comparatively large

source/sink volumes is theoretically unsound' (Note, how-

ever, that the author's experience is that, although one wants

the one-step change in any computed quantity to be less than
IÙVo or so, integration steps that can, in theory, allow changes

of 20 or 30Vo to work very well in practice. This is due to the
fact that 20 or 30Vo changes only appear at such abrupt dis-

continuities that they rarely occur in real traffic.)
RFLO, with DX|DT iess than four times the free traffic

speed, is marginal with respect to restriction 10. Problems in
the representation of density have not been detected in prac-

tice, but the possibility should be noted.
FREFLO satisfies all conditions well. In fact, the time step,

DT, could probably be doubled or tripled in FREFLO without
noticeable loss in accuracy.

MTNIMUM EXECUTION TIME

Although the accuracy of the numerical integrations increases

as DX becomes larger, precision increases as DX becomes

smaller. If one wisheS to simulate the effects of very small
geometric features (such as an intersection wherein opposite
streets are misaligned by, for example, 20 ft), one must make
DX small (for example, 5 ft). Restrictions 10 and Ll both
require that DTbe made small proportionately as DXis made

small. Since the number of space steps simulated is inversely
proportional to DX and the number of time steps is inversely
proportional to DT, the total computation time must be

inversely proportional to the square of. DX.
This conclusion-that minimum computation time is inversely

proportional to the square of the length of the smallest feature
simulated-applies to all four traffic formulations.

RELAXATION TIME: T

The three non-deterministic traffic formulations all use a

quantity called the relaxation time, which has been symbol-
ized by T here. The original formulation of the equilibrium
speed-density hypothesis (equation 4) allows that T is prob-
ably a function of average traffic speed (v), but determining
that functional dependence was beyond the scope of the orig-
inal paper, which opted for the simplifying assumption that
I is independent of v. The question now is, What is a good
functional form for relaxation time, T(v)?

A small value for T means that the average traffic speed,

v, relaxes to its equilibrium value quickly-that is, traffic
acceleration is inversely proportional to Z. Since a good deal
is known about the acceleration of traffic as a function of
speed, a functional form for T(v) can be deduced.

The average power used to accelerate vehicles is

P : m'v.acceleration (t7)
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where m is the average mass of vehicles. I is inversely pro-
portional to the acceleration:

T: c(mv + b)lP (18)

where c is a constant to be determined, and where å is a small
number added to account for the fact that accelerations at
y = 0 are not infinite (i.e., T # 0) but rather are limited by
pavement friction and driver discomfort.

P is not the engine power used, but rather the power used
to accelerate the vehicle after rolling and wind resistance have
been overcome. The wind and rolling resistance are approx-
imated by constant forces, so that the power used is linear in
v. The dependence of T on y is therefore approximated by

T(r) : (c, * c, v)l(I - c, v) (1e)

The three c's can be roughly estimated. We note that, when
traffic is traveling at its maximum possible speed, it cannot
accelerate further-i.e., 7-+ * as y -> u_"*. Estimates are
that the average maximum speed of the North American traffic
stream is in the range 95 to 100 mi/hr and the average speed
on level freeways is 63 mi/hr. A rough estimate of c, is there-
fore0.67lF, where Fis the free, desired speed on the road.

The remaining two parameters, cl and cr, can be chosen
by noting that-in simulations with I held constant -T 

:
0.030 hr produces realistic traffic performance at speeds
approaching the free speed (F), and T : 0.0053 hr produces
signal discharge flows that represent about 2.1 seconds of lost
time per green.

We conclude that the relaxation time, T(u), can be approx-
imately represented by

r : (0.00s3 + 0.0047 vtfl hrt(L - 0.67 vtF) (20)

At least three assumptions have been made in the above
derivation:

1. The effects of traffic mix, roadway grade, and driving
conditions on Z(u) are represented by making the constants
which multiply v inversely proportional to F.

2. Deceleration behaves essentially the same as
acceleration.

3. Traffic speed will never approach F10.67.

These assumptions are mathematically convenient and not
obviously wrong. The argument applies equally to the equi-
librium, Payne, and Ross traffic formulations.

Extensive simulations with the Ross formulation indicate
that there are no startling differences between the T(v) vari-
able as described above and I : constant-only subtle dif-
ferences in the acceleration of traffic back to its desired speed
upon leaving a bottleneck. The details of such accelerations
have never been an important traffic issue. It is the author's
conclusion that setting the relaxation time T : constant is
adequate for most traffic purposes using the Ross formulation.
This conclusion has not been tested for the equilibrium or
Payne formulations.

..LOST TIME'' AT SIGNALS

The relaxation time, l, affects all aspects of traffic behavior
in the three formulations where it is used. Its most obvious
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effect is on "lost time" at signals. Because signal lost time is
well known (12), this dependence can be used to estimate an
appropriate value for I.

Consider a traffic signal with, for example, 0.01 hours of
red alternating with 0.01 hours of green (cycle length
0.02 hr = 72sec). It is straightforward to use any ofthe traffic
formulations to simulate such a traffic condition. The results
of one such simulation with the Ross model are shown in
Figure 1.

When the simulation of Figure L is extended for a long
time, a standing queue forms at the signal and the downstream
flow stabilizes at 933 veh/hr. This implies an effective green
time of 93312000 : 0.466 hrs/hr or 33.6 sec/cycle. Lost time
is: (36 sec of actual green per cycle) - (33.6 sec of effective
green per cycle) : 2.4 seclcycle.

Similar simulations can be repeated using different values
of relaxation time and noting the resulting lost times. The
relationship between relaxation time and lost time in the Ross
formulation is shown in Figure 2. Figure 2 applies to the Ross
formulation only.

SUMMARY

This paper has discussed five related topics. The conclusions
are:

1. Three equations of state are required to describe the
traffic fluid. The first is volume = speed . density, and the
second is the continuity of vehicles. There are at least four
options for the third equation: the deterministic speed-density
model, the equilibrium speed-density model, the payne modei,
and the Ross model.

2. Two restrictions on the space step DXand time step DZ
apply to numerical integrations of all four models. There is
an additional restriction on DT that applies to the last three
models and a special restriction on the anticipation term in
the Payne model.

3. The time required to perform numerical integrations of
all four models is inversely proportional to the square of the
length of the smallest feature represented.

4. A general form for the relaxation time in the three non-
deterministic models is derived. It appears, on the basis of
experience with the Ross model, that although a dependence
upon speed is "correct," setting the relaxation time constant
is adequate for most traffic purposes.

5. The relationship between relaxation time and lost time
at signals in the Ross model is linear.
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FIGURE I Density, speed, and volume as represented by the Ross traflÏc
formulation at a trafÏic signal with actual green = 36 sec/cycle, actual red = 36

sec/cycle. Demand volume rises from 800 to 950 veh/hr. TrafïÎc flows from right to
left. Distance is in units of 0.1 mi (13 mi total). Time runs from 0.00 to 0.10 hr
(five cycles), back to front. Jam density of vehicles is 143 veh/lane-mi. Free speed is

63 mi/hr.

Rel8xElbn Tlm€, T (hr.)

FIGURE 2 Signal lost time as a function of relaxation time,
l, in the Ross model. Free speed = 63 mi/hr. Cycle length =
0.02 hr with 50Vo actual green. Lost times less than the
integration step size (1.8 sec) are not observed.
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