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Direct Calculation of Maximum Curvature
and Strain in Asphalt Concete Layers of
Pavements from Load Deflection Basin
Measurements

Fnrnpnrcs W. JuNc

Deflection measurements under impulse load carried out with
the Falling Weight Deflectometer (FWD) are usually processed

by using elastic layer analysis programs, back-calculating layer
moduli from measured deflections, and then forward.com.
puting critical performance parameters such as stresses and
strains at locations under the load. Presented here is a direct,
and more reliable way, of computing the important value of
horizontal strain at the bottom of the asphaltic layer. The
measured deflections from an FWD test, the radius of load
distribution, and the thickness under the load are the only data
needed to calculate, first, the curvature, and then, the strains
in the top (asphaltic) layer ot'a pavement structure, in the
center under the load. Corresponding stresses can also be cal.
culated but additional information is needed, namely, the elas.
tic stiffness of the first layer, Poisson's ratio, and the load-
induced vertical stress. It is shown that strains and stresses in
the immediate vicinity of the load position as computed with
elastic layer analysis methods via back-calculated moduli are
not as reliable as this new proposed strain criterion. At this
time, the proposed new method of calculating strain directly
is derived, presented, and discussed as a theory, without exper-
imental field verification.

To determine the strength and predict the performance of
asphalt pavements from some kind of deflection measurement
has been the subject of major efforts in research for many
years. The Falling Weight Deflectometer (FWD) test is only
one of many methods to measure deflections of pavements;

however, it is a very recent one and it is widely accepted in
the U.S. The FWD test accurately measures a set of deflec-
tions of a deflection bowl under an impulse load of circular
distribution, simulating the transient load of a passing wheel
(1,2). In this method there is a choice of several levels of
impulse load, corresponding to variations in axle weight of
actual vehicles. Deflections are measured at various distances
from the load, including at the load axis itself. In operation,
the test equipment is fast, economical, and very simple to
use.

The state-of-the-art in processing data from FWD mea-
surements is as follows. Asphalt concrete pavements with
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known layer thicknesses are analyzed by using a set ofdeflec-
tions measured along the wheel path, typically in the center
underneath the circular loading plate and at six adjacent loca-
tions outside the plate, spaced over 1..5 to2m. These deflec-
tions (together with known layer thicknesses) are used to
back-calculate the elastic stiffness (Young's modulus) of all
pavement layers, including the subgrade, using certain com-
puter programs for elastic layer analysis, Once the elastic
stiffnesses are known, any stresses, strains, and deflections
can be computed by the same or similar compatible programs
in forward mode. This paper is concerned with the maximum
horizontal strains and stresses in the first, usually asphaltic
layer, of a multi-layered pavement structure. It is customary
to regard strains or stresses at certain locations under wheel
loads as critical. One of these locations is at the bottom of
the asphaltic layer underneath the load, where horizontal
stresses and/or strains are regarded as critical distress param-
eters, being related to fatigue strength (3, 4). ln this context
it can be shown that there is a more direct and simpler way
to calculate the horizontal strains and stresses, which can
supplement the aforementioned methods.

For reasons ofpure geometry, the horizontal strains in any
top layer of a pavement structure can be calculated directly
from measured deflections, based on the theory of elastic
plates, using the (partial) second derivatives or radii of cur-
vatures directly obtained from the deflection basin. This basin
is given by discrete values from the FWD testing. Through
these points of measurement a suitable curve must be fitted.
However, this approach is hampered by a lack of data points
in the immediate vicinity of the load axis. The critical maxi-
mum curvature is underneath the load, and the difficulty is

to find a sufficiently accurate value of it, representing the
deflection basin in the center under the circular co¡ltact pres-
sure area. From such a curvature value (and the given thick-
ness) the strains in the asphalt layer can be calculated without
knowing the modulus of elasticity or Poisson's ratio. The
thickness of the asphaltic layer underneath the load must be
known, but need not be so widely uniform as assumed in
elastic layer analysis methods. In turn, corresponding stresses
can be calculated from those strains, if additional information
is available, such as vertical stresses, elastic modulus of the
asphaltic layer, and Poisson's ratio.
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STRESSES AND STRAINS FOR CIRCULARLY
DISTRIBUTED LOADS

For such a single load, well inside a (non-cracked) pavernent,
the second derivative or curvature of the deflection basin
under the load axis can be assumed to be a maximum, and
equal in all directions because of the circular contact pressure
area. The following equations apply:

Plate stiffness

-- ETFK:-
12(t - ¡Ê)

Bending moment

M=-KW"(l +rr)
Horizontal stress

S = 6MlH

Horizontal strain

e: S(1 - p)tE

where

K = bending stiffness of plate,
E = elastic stiffness of asphaltic layer(s),
¡1 : (total) thickness of asphaltic layer(s),
F = Poisson's ratio,
W : deflection as a function of distance,

Il/" : second derivative of deflection at zeÍo distance,
M = bending moment under the load at zero distance,
S = maximurn stress at bottom of asphaltic layer, and
¿ = maximurn strain at bottom of asphaltic layer.

Note: The second derivative is negative. Bending moments,
stresses and strains are equal in all directions.

Without a knowledge of the material properties of the first
layer (the modulus, E, and Poisson's ratio), the strain, e, can
still be calculated from pure geometrical conditio¡rs:

either

e = W"H/2

or

e = Ht(zR)

The stress is then

S:eûl[(l-p.Xl +s,/s)]
where

R : radius of curvature in mm, and
S, : vertical stress in MPa.

At this stage, in order to calculate corresponding stresses
from strains, additional information is required, namely the
elastic stiffness (E) of the first asphaltic or concrete layer,
the Poisson's ratio of this layer, and the vertical stress (S") at
the particular point. This vertical component of stress rnust
be obtained by an elastic layer analysis program; however, a
simple version based on equivalent layer thickness would be
sufficient for an estimate of such stress.

The equations quoted above are based on the concept of
regarding the asphaltic layer as an elastic plate. This plate,
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as a free body, deforms or deflects under two forces, the
applied wheel load or falling weight impulse load acting more
or less concentrated from above, and the corresponding reac-
tions of soil pressure from the layers underneath, acting onto
the plate from below in a more distributed fashion (Figure
1a). For a given load, the deflection bowl, its depth and large-
ness, depends on the stiffness of the plate and the relative
stiffness or strength of the base or soil layers underneath.

Equations 5, 6, and 7 constitute a direct calculation of hor-
izontal strain and stress in the A.C. layer. However-and
this is the difficult part-it is now necessary to find an expres-
sion for the curvature or second derivative from an accurate
deflection function.

CURVATURE CALCULATION INSIDE THE
CONTACT PRESSURE AREA

The maximum value of the second derivative (W") or cur-
vature (1/,1?) of the asphaltic layer, for a circular, uniformly
distributed load þ), is located in the center of this circular
contact pressure area. The value, W", can be derived in
accordance with elastic plate theory. For the derivation, the
following general assumptions should be noted:

1. Single tire loads and impulse loads from the FWD test
are uniformly distributed over a circular area.

2. The resultant load per unit area on the circular part of
the asphaltic layer "plate" has a paraboloidal distribution, for
the following reason. Within the loaded area, frorn -a to
+d, the tire or plate contact pressure ¡nust be combined with
the soil pressure acting from below, resulting in a reduced
diagram of parabolically distributed load as shown in Figure
2. The resultant area load (i.e., load per unit area) on the
asphaltic layer plate in this region is actually assumed to be
distributed in the form of a square paraboloid. (The derivation
of the exact solution for this case from the differential equa-
tion of circular plates is not presented here.) The result for
maximum curvature is:

w,(o) = -2(Yt: 
Y.) 

- 
a2(9Pn-!P) 

(s)

where

W'(0) = second derivative in the center, in 1/mm;
Yr = maximum deflection in the center, in mm;
Y" = deflection at the edge of the loaded area, in mm;
a = radius of the loaded area, in mm;
p = circular contact pressure from load, in MPa;

po = resultant pressure in the center, in MPa;
po : resultant pressure at the edge, at a, in MPa;
K = plate stiffness (Equation 1); and
r = distance from the cerìter, in mm.

A better understanding of the curvature function or second
derivative, W", within the circular contact pressul'e area can
be achieved by studying W" as a function of distance, ¡:

w(0)= -z(Y'\-Y') -*u

(1)

(2)

(3)

(4)

(s)

(6)

(7)

x (a, - 6Ò - P-:--!e (aa - 15f) (9)
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a/ pavom€nt load and delormalion

b/ measured delloclion, yr to yn (not )6 )

FIGURE I Deflection basin geometry.

x2

n = Oo* {Png¡$

FIGURE 2 Load distribution between -aand ta.

Equation 9 is plotted for a typical example as illustrated in
Figure 3. Note, the maximum curvature is at r = 0, namely
5.422*10-6(llmm). The first term of Equation 8, by itself,
would lead to a value of. 4.764*L0-6 (l/mm), which can be
interpreted as an average within a distance, r, of about 100
mm. This slightly lower value of average curvature agrees

fairly well with values obtained from manual curvature cal-
culations using simulated Chevron deflection output, as shown
below. Thus, the first term of Equation 8 or 9 constitutes an
approximate calculation of curvature compatible \ryith elastic
layer analysis programs, â smaller value than the actual max-
imum. This first term would be an exact solution for a hypo-
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second term = f(r,a,p,K)

first term =

S0 i00 a= 150 mm

FIGURE 3 Radial curvature in the asphattic layer.
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thetical case in which the soil pressure, q, and the contact
pressure, p, were removed, and the plate were loaded via a
circular ring of radius, a.

Unfortunately the deflection, Yo, cannot be measured, but
must be calculated by interpolation using the other measured
deflections. The ensuing error is positive, i.e., in the direction
of higher values, being closer to the theoretical maximum
(tables 1 and 2). Further, the deflection basin consists of two
different parts, i.e., oftwo curves not continuous in all deriv-
atives, The inner part (-a to +ø) has been accurately derived,
resulting in Equation 9. The outer part only is empirically
given by the measurements of outside sensors.

The curve-fitting function chosen is a reciprocal polynomial
(Z) (Figure 1). It is used only to calculate the very influential
and important value of the deflection, Yo, at the edge of the
loaded area (i.e., at x : a) by interpolation.

The curve-fitting and interpolation procedure to compute
an approximate substitute for the theoretical value of Y"
becomes more reliable, thus leading to less erratic results,
when the first outside sensor (Yr) is as close to the circular
disk as possible and when the center point deflection is included
as part of the curve (as illustrated in Figure lb and 1c), in

2(y I ya)

a2

TABLE 1 COMPARISON OF STRAIN R IVITH CHEVRON/ELSYMs

DESCRIPTION
CURVATURES* L0-6

1/run

STR.E IN

'r L0-6

DIRECT ELSYMs/ DIRECT

CHEVRON

ELSYM5/CHEVRON

bottom average

Typical 3-Iayer case
a = l-50 mm, H = 100 mm

Typical 4-layer case
a = 150 rün, H = 100 mm

Overload case, 2.5x
a = 150 mm, H = l-00 mm

Deep strength 140 mm
on weak soil

Reduced area a = L02 mm
high pressure 400 psi

Wider area, a=203 mrn

normal pressure

Typical 3-1ayer case
average deflection

Very soft layer in-
serted under asphalt

-5.160

-5 .426

-t4.46

-4.334

-26.97

-8 .753

-5.066

-8.438

-4.80

-5.28

-13.8

-4 .53

-26,75

-8. 66

-5.18

-8.74

258 .0

2'tt.3

642 .6

302.'7

r.198 . 9

389.0

253.3

42r .9

r.70.4 193

185.7 255

423.0 520

2'18.2 218

'786.4 860

243 ,2 341

208.2 204

383.8 38s

Note:In t.he Last column, "average" means the average of the absoLu¿e value
of the top and bottom stlains of the first layer from the output
listing of CHEVRON or ELSYMS. These vaLues in the last colunn ought to
be close tö or equaJ. to H/2 times the curvature vaLues in the second
column. This identity check wouLd estabLish consistency within the
CHEVRON or ELSYMs programs themselves, not invoLving the STRAINR model-.
Note that the check fails except in the case of a very soft inserted
layer in the Last line.
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TABLE 2 CURVATURE BY SECOND DIFFERENCES VERSUS EQUATION 8

CASE

(see also Table 1)

SECOND DIFFERENCES EQUATION B

[1/mm¡ *19-e [1,/mm¡ *16-e

L/ Typical 3-1ayer case

2/ A-Layer case, example

3,/ Overl-oad case, 2,5 x

4/ Deep strength, weak soil
5,/ Reduced area, high pr.
6/ vfide area, normal pr.
7,/ 3-layer case, av. def 1.

8/ Soft 2nd layer inserted

-4. B0

-5.28
-13.78
-4.53

-26.'75
-8.66
-5.182
-8 .'7 44

-5.475
-6.018

-15.535
-4 . 603

-28 .93r
-9.'722
-5.562
-B.875

^ (Y, - Y")2 + a2

z(Yt - Y")

where

spite of the fact that it belongs to the inner part which is

rnathematically different. Nevertheless, a useful solution has

been established which has been verified as follows:
The first term ofboth Equations 8 and 9, using the accurate

value of Y", leads to practically the same curvatures as obtaitred
by using the method of second differences, for the same data
from Chevron or ELSYMS simulation examples.

Comparative computations show that the exact calculation
of curvature by Equation 8 results in larger values (up to 15

percent) than the second differences from Chevron or ELSYMS.
These results from second differences compare much better
with the first term of Equations 8 or 9, omitting the second
term. Thus there is a valid argument to dispense with this
term which requires additional information about the asphal-
tic layer. Thus, the following Equation 10 can be used to
calculate the minimum radius of curvature, R:

culations (based on Equation 11) with those from a corre-
sponding case calculated by the Chevron program. For run-
ning the small program of the proposed method, calculated
Chevron deflections were selected as input, simulating fea-
sibly-spaced FWD measurements, in the center and at four
other points outside the circular load area. In addition to these
measurements, the following data are needed to run the new
program:

Radius of load areai a = 150 mm; layer thickness: H : 100

mm

The deflections chosen from the Chevron example output,
used as simulated input into the new program, are as follows:

at 0.0 m 0.4903 mm

at 0.2 m 0.3951 mm

at 0.3 m 0.3394 mm

at 0.4 m 0.2949 mm

at 0.5 m 0.2585 mm

The following values were calculated by the proposed method:

Deflection at the edge of the loaded arcal. Y = 0.4293 mm
(the actual Chevron value is 0.4305, an inevitable error in
curve-fitting and interpolation)
Radius of curvature at the center: R : - 184.3 m
Second derivative at center: W" = -5.43 * 10-ó (limm)
Strain at bottom of asphaltic layer: e : +271 * 10-6

More information was needed to run the Chevron program,
namely:

Load: 40.01 kN, tire pressure: 566.00 kPa, load radius: 150

mm
Layer values:

(1) Modulus: 3000 MPa,
100 mm

(2) Modulus: 500 MPa,

Poisson's ratio: 0.35, Thickness:

Poisson's ratio: 0.35, Thickness:
200 mm

(3) Modulus: 80 MPa, Poisson's ratio: 0.35, Thickness:
infinite

(10)

: maximum deflection in the center, in mm;
: deflection at the edge of the load disk, in mm;
: radius of the circular loading area, in mm; and
: radius of curvature, in mm.

Note that the first term in the numerator is very small and
can be set to zero; then 1/R l¡ecomes exactly the first term of
the second derivative, W", in Equations 8 and 9.

A small computer program can be written to calculate cur-
vatures and strains of the asphaltic layer, based on Equation
10, using a substitute value of Y. found by interpolation of
the deflection basin function shown in Figure 1, which is curve-

fitted from relevant FWD measurements.
Alternatively, one can take into account the second term

of Equation 9. This solution could ultimately be useful in
conjunction with a simplified elastic layer analysis program
based on Odemark, using the concept of equivalent layer
thickness.

EXAMPLE

The following example illustrates one of the verification tests

of the proposed method, comparing the new proposed cal-

Yl
Yn

a

R
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direct melhod ând manual

Note: (1) = surface course, (2) = base course, (3) =
subgrade.

Using these input values for the Chevron program, the
deflections were calculated every 50 mm. Then the finite dif-
ference method was used to manually compute the second
derivatives between X : 0 and 150 mm.

The results fluctuate somewhat inconsistently, and the aver-
age was found to be -5.37, with a slightly smaller value at
X : 0 of -5.28. This compares fairly well with the computed
value of - 5.43 of the output listed above, being slightly larger
and therefore closer to the theoretical maximum.

Figure 4 shows a comparison of the corresponding strain
calculations. The strain diagram from the direct Chevron
printout is slightly curved at the topt it also exhibits a small
net compressive strain. The strains of the direct output ( + 185.7
* 10-ó and -246.0 * 10-o) are smaller, especially at the
bottom ( + ), and the steeper slope of this strain diagram seems
to be inconsistent with the second derivative, manually com-
puted from the same output (-5.37). At least the slope of
the printed-out strain diagram of Chevron should concur with
the manually calculated curvature from the same printout
(calculated by second differences).

With the strain calculated in the printout above, the stress
at the bottom of the asphalt layer can be computed by means
of Equation 7. Setting S : 0, the result would be:

S = 0.000271 * 3000/0.65 = 1.25 MPa (tensile stress)

The vertical stress, S, under the load is not zero but rather
is negative, a fraction of the vertical contact pressure. Let us
estimate the ratio of Sv/S to be -0.5; the value of the last
term in the bracket of Equation 7 is then reduced to 0.5 *

0.35 = 0.175, and the factor e * E must be divided by 0.825
instead of 0.65. The result is:

S = 0.000271 * 3000/0,825 = 0.99 MPa
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The corresponding value printed out from Chevron is only
S = 0.6975 MPa

The example illustrates that curvatures or seconcl deriva-
tives (1/R or W") can be calculated with great confidence and
sufficient accuracy. The strain cornputed either as e : W" *
Hl2, or as e = Hl2R is certainly more reliable than the incon-
sistent output of the Chevron program. The stress, on the
other hand, is dependent not only on layer material constants
(ð and p), but also on the vertical stress component, which
can be significant in the vicinity of the applied load.

Note: In the last column of Table 1, "average" means the
average of the absolute value of the top and bottom strains
of the first layer from the output listing of Chevron or ELSYMS.
These values in the last column ought to be close to or equal
to Hl2 times the curvature values in the second I .rlumn. This
identity check would establish consistency within the Chevron
or ELSYMS programs themselves, not involving the new direct
method. Note that the check fails except in the case of a very
soft inserted layer (Table 1).

TESTING OF THE PROPOSED NEW METHOD

Many different cases have been calculated by the Chevron or
the ELSYMS program to verify the new proposed method.
The results are listed in Tables 1 and 2. In both tables cur-
vatures were first calculated manually from densely spaced
deflection printouts from selected cases computed by elastic
layer analysis (Chevron or ELSYMS). The second differences
of the deflections were divided by the square of the selected
space increments (50 or 25 mm). These manually calculated
curvature values are listed under "Chevron/ELSYM5" in Ta-
ble 1, and under "second differences" in Table 2.Then, another
set of deflection printouts was selected in order to simulate
FWD measurements, namely the deflection in the center and
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some deflections outside the circular disk. These were used
to calculate curvatures in accordance with Equation 10 for
Table 1., and Equation 8 for Table 2. The second term of
Equation 8 required the use of further printout values of
vertical pressures.

With regard to Table 1., it should be noted that there is a
fair agreement between rnanually calculated curvatures and
those calculated by the proposed direct method, listed under
"direct". However, the horizontal strains at the bottom of
the asphaltic layer do not agree (Table i, second and third
column from the right). Naturally, agreement cannot be
expected because the elastic layer analysis programs assume
full friction between the asphaltic and granular base layer,
whereas the proposed direct method assumes zero friction.
However, the slopes of the deflection diagrams ought to agree,
concordant with the agreement in curvature.

In order to test this, the last column of Table 1 contains
the average of the absolute values of strains from top and
bottom, printed out by Chevron or ELSYM5. It shows
improvement, but most of these average strains from printouts
are still too low. It seems that the elastic layer analysis pro-
grams suffer from the phenomenon of quasi-singularity, which
results in underestimating the maximum horizontal strain in
the first top layer. The assumption of full friction aggravates
the situation. The assumption of zero friction in the proposed
direct method may not be quite correct either, however, it
may still be closer to reality to overestimate the tensile strain
in this way because it may counteract neglecting the second
term in Equation 8. Ivith regard to Table 2, for the region
under the distributed load, from - a to + a, the curvature or
second derivative has been independently derived by solving
the differential equation of elastic circular plates, resulting in
Equations 8 and 9. Using Equation 8, we can calculate max-
imum curyatures and compare them with corresponding results
from using the second differences of the deflections printed
out by Chevron or ELSYM5. Eight cases, the same as in
Table L, have been calculated and compared in this way, and
are listed in Table 2. The comparison shows that the manual
calculations of curvature from printouts fall short of the the-
oretical maxima. This proves the advantage of assuming zero
friction in the proposed direct method.

The curvatures calculated by Equation 9 are higher, and
the corresponding strains are again higher than the ones printed
out by Chevron or ELSYM5.

These verification tests reveal that loads on pavements,
distributed over a relatively small circular area, constitute a
point of quasi-singularity of the asphaltic "plate." This is the
main reason why elastic layer analysis programs cannot catch
the true maxima of strain and curvature and why they compute
horizontal strains and stresses under the load axis (close to
the load) too low.

Better results might be expected by finite element tech-
niques with densely spaced grids around the contact pressure
area.

CONCLUSIONS AND RECOMMENDATIONS

For single loads on asphalt pavements, which can be assumed
to be distributed over a circular area, the curvature of the
asphaltic layer and the horizontal strain at the bottom of this
layer can be calculated directly from some measured values
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of the deflection basin near the center. Other values needed
are the radius of the contact pressure area, and the thickness
of the asphaltic layer at the load position. Because no other
information is needed (about layer materials and thicknesses
of lower base layers), the horizontal strain calculated in this
particular way is a very potent parameter for pavement design.

The bottom strain in the asphalt layer so calculated is larger
than the strain from elastic layer analysis, where full friction
between asphaltic and granular layers is assumed, which causes
tensile stresses at the top of the granular base..

Contrary to the proposed calculation of strain (based on
pure geometry), the corresponding horizontal stresses are
affected by the usual uncertainties of determining material
parameters such as elastic stiffness, and Poisson's ratio.

The direct calculation of curvature and strain by this new
approach has been verified against more detailed computa-
tions and output from Chevron or ELSYMS programs. The
second derivatives of the deflections in the center, the max-
imum curvatures, were found to agree fairly well, but the
corresponding printed-out strains were found to be incon-
sistent with Chevron's or ELSYMS's own deflections and cur-
vatures. The slopes of printed-out strain diagrams from Chev-
ron and ELSYMS did not concur (as they should have) with
the manually computed curvatures from the same runs of the
programs; thus, the maximum horizontal strains were much
too low. The new method has also been verified through an
independently derived formula, based on a solution of the
differential equation of elastic plates for the region under the
circular load. The variability or function of curvature within
the loaded area has been studied and discussed: Chevron and
ELSYMS deflection print-outs, via second differences, seem

to closely approximate an average cul'vature between the max-
imum value at the load axis and the much lower value at a

distance from the axis about equal to the layer thickness. This
average curvature is somewhat smaller than the maximum
curvature in the center, but sufficiently close to it (Figure 3).

Since the strain parameter is generally conceived to be cor-
related to the fatigue strength of asphaltic pavement layers,
routinely processing data from Falling Weight Deflectometer
tests by this new strain criterion is recommended, in addition
to other current FWD processing methods.

There is as yet no immediate verification by field experi-
ments of the new method proposed here. Theoretical deri-
vation within an accepted theory of structural analysis and
comparison with elastic layer analysis methods can only go so

far. Thus carrying out experiments with various sizes of FWD
disks and various types and sizes of tires which may not have
exactly circular contact pressure areas is suggested. Can we
use an equivalent radius for noncircular pressure areas, and
what would that radius be? Can we use a similar approach
for dual tires? If field experiments should prove too "rough"
with respect to quality control, this might be an area for
laboratory tests.
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