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Schedule Delay and Departure Time 
Decisions with Heterogeneous Commuters 
RICHARD ARNOTT, ANDRE DE PALMA, AND ROBIN LINDSEY 

The dynamics of morning rush-hour traffic congestion have 
been studied extensively in recent years. In most theoretical 
work, however, commuters are assumed to have identical 
travel cost functions and to face the same arrival-time con­
straints at work. In this paper, we allow commuters to differ 
in their travel time costs, their starting time at work, and the 
costs incurred from early and late arrival. Early in the rush 
hour, the departure rate exceeds road capacity causing a 
queue to develop. Commuters order themselves systematically 
in the departure sequence to minimize their individual travel 
costs. The order in which different groups depart is not 
necessarily efficient. A time-varying congestion toll can be 
constructed to eliminate queueing and induce the optimal order 
of departure. Travel-cost savings from such congestion tolls 
and from road capacity investments are computed. Estimated 
benefits are generally biased if computed using average travel­
cost parameters and average work start times rather than 
actual distributions. Savings tend to be overestimated if com­
muters differ primarily in travel costs, but can be underesti~ 
mated for capacity investments when commuters differ pri­
marily in starting times at work. 

The trade-off between time spent commuting in the morn­
ing rush hour and the cost of arriving early or late at work 
has been studied extensively in recent years. With few 
exceptions, however, the theoretical work has been highly 
aggregative. Commuters are usually assumed to incur the 
same costs from travel and to face the same arrival-time 
constraints at work. For at least two reasons, the analysis 
needs to be generalized to allow for differences in 
commuters. 

First, empirical studies by Ott et al. {J), Small (2), and 
Moore et al. (3) have found that different socioeconomic 
and age groups differ in their commuting behavior. White­
collar workers as a group display greater variability in 
arrival time at work, and are more likely to arrive at the 
end of the rush hour than is the general population. 
Workers with children tend to arrive earlier and exhibit 
less variability in arrival time. Older workers and carpool­
ers also tend to arrive earlier, while the results for individ­
uals with long commutes are mixed. 
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Systematic differences between groups in commuting 
behavior can be attributed to differences in employer 
policies toward work hours, to family scheduling con­
straints, and to differences in the real or perceived cost of 
travel time. Professional and self-employed workers, for 
example, with high values of time but relatively flexible 
work hours, tend to travel on the tails of the rush hour to 
avoid the worst congestion. Carpoolers may depart earlier 
than single drivers to ensure that members with the earliest 
starting times arrive on schedule. 

To explain the distribution of rush-hour travel times 
and to predict the response of traffic to changes in the 
system, it is necessary to account for differences in the 
commuting population. 

A second reason for disaggregation is to provide a frame­
work that will allow more accurate cost-benefit analysis of 
congestion tolls, road investments, and other transport 
policies. Most studies have employed single values for the 
cost of travel time, the desired arrival time at work, and 
the costs of arrival either earlier or later than desired. But 
since commuters of different types tend to order them­
selves systematically in the departure sequence, calcula­
tions based on single representative values will generally 
be biased. A tolling scheme, for example, may pass a cost­
benefit testing using an aggregate model, but fail it after 
disaggregation, or vice versa. 

Despite the apparent need to treat heterogeneity of the 
commuting population, only two authors have done so in 
the theoretical literature. Henderson ( 4, ch. 8) considers 
two groups of commuters, with identical costs of travel 
and waiting time, but different values of noncommuting 
time. On the assumption that no one arrives late for work, 
Henderson shows that the group with the lower value of 
time departs first. Travel time for this group is lower, but 
waiting time is higher than for the other group. In a later 
work, Henderson (5) again considers two groups of com­
muters, this time differing in schedule delay costs and with 
equal unit costs for early and late arrival. The group with 
higher costs travels at the peak of the rush hour, the other 
group on the tails. 

Recently, Newell (6) provided a detailed analysis of the 
pattern of morning rush-hour departures when traffic flow 
is constrained by a bottleneck of constant capacity. Com­
muters are assumed to differ in their costs of travel time, 
their work start times, and their schedule delay costs (costs 
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of early and late arrival). In this paper, developed indepen­
dently of Newell's, the bottleneck framework is also 
adopted, and the focus is on differences between com­
muters in travel time and schedule delay parameters. The 
paper differs from Newell's in three respects. 

First, Newell treats continuous distributions of com­
muters differing in both work start time and commuting 
costs, whereas we assume discrete distributions differing 
either in work start time or in commuting costs, but not 
both simultaneously. Our approach is thus less general 
than Newell's, but allows us to derive explicitly the equi­
librium distribution of departure times. Second, we derive 
the socially optimal departure sequence of commuter 
groups and indicate how it differs from that in user equi­
librium. And third, we calculate the benefits from optimal 
time-varying congestion tolls and road capacity invest­
ments. We also determine the direction of bias when 
benefits are computed using average population parame­
ters rather than their actual distributions. 

The queueing model on which our analysis is based was 
introduced by Vickrey ( 7) and extended by Hendrickson 
and Kocur (8), Fargier (9), and Arnott et al. (JO). In the 
next section we review the main results of the model for 
identical commuters. In later sections, commuters are 
allowed to differ in their costs of travel time and schedule 
delay, differences in the relative costs of early and late 
arrival are considered, the assumption of homogeneous 
cost parameters is restored and focus is on differences in 
starting times at work, and conclusions are drawn. 

REVIEW OF THE MODEL WITH IDENTICAL 
COMMUTERS 

The precise assumptions and notation employed here fol­
low our earlier model (JO). N identical commuters travel 
each morning from home in the suburbs to work down­
town. There is a single road along which each individual 
commutes in his own car. Travel is uncongested except at 
a single bottleneck (a bridge, tunnel, intersection, etc.) 
which at most s cars can traverse per unit of time. If the 
arrival rate at the bottleneck exceeds s, a queue develops. 
Travel time is 

T(t) = Tf + T'(t) (1) 

where T f is travel time in the absence of a queue, T"(t) is 
waiting time at the bottleneck, and t is departure time 
from home. Without loss of generality, we set T f = 0, so 
that an individual reaches the queue at the bottleneck as 
soon as he leaves home, and arrives at work upon exiting 
the bottleneck. The length of the queue, D(t), is 

D(t) = f 1 

r(T) dT - s(t - t) (2) 

where t denotes the time at which the queue was last 
zero and r(t) the departure rate. Waiting time at the 
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bottleneck is 

T"(t) = D(t)/ s (3) 

Individuals are assumed to have a common starting 
time at work t*. Their travel cost is given by the linear 
function 

C(t) = aT'(t) + ,B(time early) 
+ "Y(time late) 

(4) 

where for individuals who arrive early (before t*), time 
late = 0, and for those who arrive late (after t*), time early 
= 0. The parameter a measures the (vehicle operating and 
opportunity of time) costs of time spent in transit. ,B 
measures the cost of arriving an extra minute early at work 
and "Y the cost of arriving an extra minute late. (These 
costs may be nonlinear, or exhibit discontinuities; we 
follow common practice in assuming linearity.) To assure 
that the equilibrium departure rate is finite we assume 
a > ,B. For convenience, we define 1/ = "Yl/J to be the 
relative unit cost of late arrival to early arrival. 

Finally, tn is defined to be the departure time for arrival 
at t*, determined implicitly by the condition 

(5) 

Henceforth, we take "depart early" to mean arrive early 
and "depart late" to mean arrive late. 

User Equilibrium 

In choosing when to leave home, individuals face a trade­
off between travel time and schedule delay. Individuals 
are assumed to have full information about the departure 
time distribution. Equilibrium obtains when no one can 
reduce costs by altering departure time. With identical 
individuals this means that costs are constant over the 
rush hour. 

The equilibrium is depicted in Figure 1. Queue length 
is measured by the vertical distance between the cumula­
tive departures and cumulative arrivals schedules. Travel 
time is measured by the horizontal distance. From the 
beginning of the rush hour at tq until tn, the queue builds 
up at a constant rate. Once past tn the queue dissipates, 
again at a constant rate, reaching zero at the end of the 
rush hour at lq ·· 

Over the interval [tq, tn], the equal cost condition implies 
from equation 4 that 

C(t) = aT'(t) + ,B[t* - t - T"(t)] (6) 

is constant. Differentiating equation 6 and using equations 
2 and 3, the departure rate for individuals departing early 
is found to be 

,Bs as 
r(t) = ri = s + -- = -­

a - ,B a - ,B 
(7) 



58 

-0 
..... 
Q) 
.0 
E 
::J 
z 

Cumulative Departures 

(slope~S) 
a + y 

Cumulative 

(slope 
I 
I 
I 
I 
I 
I 
I 

' ' ' Cumulative Arrival~ 
(slopes) : 

' I 
I 
I 
I 
I 
I 
I 
I 

B 

'F 
o~---r----+--------+----+----i~ 

tq t' tn r 
Time 

Total Travel Time= Area OABO 
Total Time Early = Area OEFO 
Total Time Late = Area BECB 

FIGURE 1 Cumulative arrivals and departures, queue 
length, total travel time, total time early, and total time late 
in user equilibrium. 

where the superscript e denotes user equilibrium and the 
subscript E early arrivals. By similar reasoning, the late 
departure rate is 

'YS as 
r(t) = rl. = s - -- = --

a+ 'Y a+'Y 
(8) 

where the subscript L denotes late arrivals. Equating the 
costs of the first and the late individuals to depart, 

(3(t* - lq) = 'Y(lq' - t*) (9) 

Since the bottleneck operates at capacity throughout the 
rush hour, 

lq' = lq + N/s (10) 

Combining equations 9 and 10, one obtains the following: 

11 N t = t* - --­
q l+11s 

I * 1 N t=t+---
q l+11s 

(lla, 11 b) 

Finally, using equations 5 and 7 and defining o = 
f3'Y /((3 + 'Y) one obtains 

o N 
ln = t* - - -

a s 
(12) 

Aggregate travel time and schedule delay are identified 
in Figure 1. Aggregate travel time costs (TTC), schedule 
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delay costs (SDC), and travel costs (TC) are 

o N 2 

T TC" = SDCe = - -
2 s 

TCe = TTCe + SDCe = o N2 
s 

(13) 

(14) 

It is noteworthy that neither the timing of departures nor 
aggregate costs depend on the unit cost of travel time, a. 

The Social Optimum 

The social optimum is determined by minimizing the sum 
of travel time and schedule delay costs. To eliminate 
queueing while minimizing schedule delay costs, the de­
parture rate is maintained at s throughout the rush hour. 
The time of first departure is chosen so that the first and 
last commuters incur equal costs, since otherwise costs 
could be reduced by moving an individual from the begin­
ning of the rush hour to the end, or vice versa. Since this 
condition is also true of user equilibrium, the timing of 
the rush hour and the arrival distribution are the same as 
in equilibrium. 

Denoting variables corresponding to the social optimum 
with a superscript o, aggregate costs are given by 

TTC 0 = 0 

0 N2 
SDC 0 = TC0 = - -

2 s 

Total costs are half their value in user equilibrium. 

(15) 

(16) 

INDIVIDUALS WITH DIFFERENT a AND (3, BUT 
THE SAME 'YI fJ 

Characterization of User Equilibrium and Social 
Optimum 

In this section, we allow the unit costs of travel time and 
schedule delay to differ across commuters. We assume that 
commuters have the same relative cost of late arrival and 
desired arrival time, 11 = 'Y/f3. 

Let there be G groups of commuters indexed in order 
of decreasing relative cost of travel time, a/ (3, so that 

(17) 

Let N; be the number of individuals in group i and N the 
number in all groups. 

User Equilibrium 

The equilibrium departure rate is described by the follow­
ing theorem. 
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Theorem 1. In user equilibrium, a fraction 11/(1 + 11) of 
each group departs early, with the remainder departing 
late. Group 1 is the first to depart early, then group 2 and 
so on to group G. Members of group G who do not depart 
early are the first to depart late, followed by the remainder 
of group G - 1 and so on until everyone has departed. 

Theorem 1 is proved in Amott et al. (11). (Proofs and 
derivations of the major results in this paper are contained 
in the earlier paper, which is available upon request.) Since 
the fraction of commuters in the homogeneous case who 
depart early is also 11/( 1 + 17), the rush hour begins and 
ends at the same time as with identical commuters. Indi­
viduals with the highest cost of travel time relative to 
schedule delay travel furthest out on the tails of the rush 
hour, as in Henderson's (5) model. 

An example of equilibrium with four groups is shown 
in Figure 2. Group 1, with the lowest relative cost of travel 
time, travels at the beginning and end of the rush hour. 
Group 2 travels on adjacent time intervals, and so on. 
Group j follows group i in the departure sequence at time 
tij. Individuals arrive on time (at t*) along the locus Ot* 
with slope -s. To the left of Ot*, individuals arrive early; 
to the right, they arrive late. The equilibrium travel costs 
incurred by each group are shown by the equal-cost con­
tours labeled Ci . . . C4 • To the left of Ot*, the slope of C; 
is {3;s/(a ; - {3;); to the right, it is -"f ;S/(a ; + "f;). The upper 
envelope of the equilibrium cost curves describes what can 
be called the travel equilibrium frontier (TEF). Commuters 
in each group select departure times that minimize their 
costs on the TEF. Group 2, for example, departs between 
!12 and l23 and again between l32 and 121. 

The Social Optimum 

As is the case with identical individuals, the social opti­
mum involves no queueing. To minimize schedule delay 
costs, the group with the largest value of a travels closest 
to t*, with a fraction 11/(l + 11) departing early and the 
rest late. The group with the second highest value of a 
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Departure Time 

FIGURE 2 Equilibrium with four groups of commuters with 
different a and fl and the same -y/fl. 
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departs on adjacent time intervals with the same propor­
tions early and late, and so on for the remaining groups. 

The rush hour thus begins and ends at the same time as 
with identical individuals, and the same time as in user 
equilibrium. However, the order in which groups depart 
differs from equilibrium unless the ranking of groups 
according to a is the reverse of the ranking according to 
a/{3, that is, /31 < /32 < ... < f3G· This is true if a 1 = a2 = 
.. . a G, but is not true in general. Thus, schedule delay 
costs are not necessarily minimized in equilibrium. 

The social optimum can be brought about with a time­
varying toll. A toll with four groups is drawn in Figure 3, 
where it is assumed that /32 < {3 1 < {3 3 < {34 , so that groups 
1 and 2 are reversed in the departure sequence relative to 
equilibrium. The equal-cost contour of group i rises with 
slope {J; for departures before t* and falls with slope -'Y; 

for departures after t*. In equilibrium, group i departs 
early while the toll is increasing at rate {3; and late while 
the toll is decreasing at rate "f; . The toll changes at a rate 
that just offsets any incentive to queue. Since commuters 
in a given group prefer their existing departure times to 
departure at any other times, the toll induces commuters 
to self-select into the socially efficient departure time 
intervals. 

Cost-Benefit Analysis and Aggregation Bias 

Since further calculation in the general case is tedious we 
shall focus, with little sacrifice of insight, on two groups. 
Suppose there are N1 members of group 1 and N2 of group 
2, with N = N1 + N1 and a.2//32 < a.1//31. Let .h = N2/N 
denote the fraction of commuters who are in group 2, and 
define a,= a.2/ai, {3, = /32//31, and o; = f3m/({3; + "(;). To 
fix ideas it may be helpful to think of white-collar workers 
comprising group 1 and blue-collar workers group 2. 

Total costs in equilibrium are as follows: 

SDC" = 1 ~2 

[l + ({3, - l)fn ( 18) 

Note: Groups 1 and 2 reversed in departure sequence 
relative to user equilibrium. Slope of toll as labelled. 

0 
I-

Departure and Arrival Time 

FIGURE 3 Optimal time-varying toll for groups of 
commuters with different a and fl and the same 'Yffl. 
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o Ni 
TTC' = 1-;- [l - 2(1 - a,)/z 

+ (1 + {3, - 2a,)f~] 

N2 
TC' = o1 - [l + (a, - l)/z + ((3, - a,)Jn 

s 

(19) 

(20) 

Note that total travel time costs depend on the relative 
unit costs of travel time for the two groups, (3,, whereas 
with homogeneous commuters TTC' is independent of 
unit travel time costs, (3. 

In the social optimum there is no queueing. If (3, > 1, 
group 2 travels in the middle of the rush hour, just as in 
equilibrium, and with the same arrival time distribution. 
If {3, < 1, the optimal order of departure is reversed, and 
group 2 travels on the tails. Total costs in the social 
optimum are 

SDC0 = TC0 

~ ~
2 

[l + ((3, - l)f~] if {3,?:: 1 (2la) 

= 
~ ~

1 

[1 - 20 - {3,)Jz + o - {3,)Jn 

if{3,:sl (2lb) 

Expression 21 a for {3,?:: 1 is identical to equation 18, while 
expression 21 b for {3, :s 1 obtains by interchanging sub­
scripts in 21a. 

To measure the bias introduced by treating commuters 
as identical, we use for the aggregate specification popu­
lation-weighted average values of a and (3: 

(Although this is not the only way that aggregate parame­
ters might be determined, it is probably the most natural.) 
Using equations 13 and 14, the aggregate model yields the 
following values: 

SDC' = TTC' = sbc0 = TC0 

o N2 = -2. - [l - (1 - {3,)fz] 
2 s 

A N2 
TC'= 01 - [l - (1 - {3,)fz] 

s 

TTC0 = 0 

Tolls 

(24) 

(25) 

(26) 

To determine the direction of aggregation bias in estimat­
ing the benefits from tolls, there are two cases to consider: 
{3,?:: 1 and {3, < I. When {3,?:: 1, the optimal and equilib­
rium departure sequences coincide, so that toll benefits 
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are simply travel time costs in equilibrium. Aggrega­
tion bias is computed by subtracting equation 19 from 
equation 24: 

TTC' - TTC' 4: (1 + {3,)/2 - a, (27) 

where 4: means identical in sign. Combining equation 27 
with the restriction a, < {3, one obtains Figure 4. Aggrega­
tion leads to underestimation of toll benefits when a, > 
(I + {3,)/2, and overestimation otheIWise. To see why, note 
that since group 2 travels at the peak of the rush hour it 
bears a disproportionate fraction of travel time costs. If 
a 2 > ai, the unit costs of travel time are underestimated 
in the aggregate model. This bias may be sufficient to 
outweigh the fact that total travel time is nevertheless 
overestimated with the aggregate model. 

In the second case with a, < 1, it is clear from Figure 4 
that travel-time cost savings from tolls are always overes­
timated with the aggregate model. However, tolls yield 
additional benefits by reducing schedule delay costs, so 
that a priori the direction of bias is unclear. 

Road Investment 

Much of the literature in urban transportation is concerned 
with the optimal capacity of the road network. Benefits 
are usually calculated on the assumption that road users 
are identical. The question arises whether aggregation cre­
ates a bias toward over- or underinvestment in capacity. 
Now since total costs in both the equilibrium and social 
optimum are inversely proportional to capacity, the mar­
ginal benefit from capacity expansion is proportional to 
total costs. Aggregation thus leads to overinvestment if 
calculated total costs exceed actual costs, and vice versa. 

Subtracting equation 20 from equation 25, one finds for 
the user equilibrium that 

(28) 

Since {3, ?:: a, by assumption, total costs are overestimated 
with the aggregate model. Similarly, by subtracting equa­
tion 21 from equation 24 one can show that in the social 
optimum, total costs are overestimated unless {3, = I. Thus, 
aggregation introduces a bias towards excessive road 
investment. 

Numerical Examples 

Some idea of the magnitude of aggregation bias can be 
obtained from the numerical examples in Table 1. Five 
sets of values for ((3,, a,) are listed, corresponding to the 
five points labeled in Figure 4. Only the relative magni­
tudes of the table entries are meaningful. For simplicity, it 
is assumed that N 1 = N2• 

From the percentage figure in column 8 of Table 1, one 
can see that toll benefits are neither consistently over­
estimated nor underestimated under aggregation. In ex-
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ample 1, (3, < 1, and it is optimal for group 1 to travel in 
the middle of the rush hour, rather than group 2 as occurs 
in user equilibrium. The reduction in schedule delay costs 
from imposing an optimal toll (columns 4-7) exceeds the 
overestimate of travel time costs (the percentage figure in 
column 5). Aggregation thus leads to underestimation of 
toll benefits. In example 2, (3, < 1, and there is no reorder-

ing of departure times, hence no reduction in schedule 
delay costs. But this time, travel time costs are underesti­
mated, so that aggregation again leads to underestimation 
of toll benefits. In the remaining three examples, schedule 
delay costs are unaffected by tolls, whereas aggregation 
leads to overestimation of travel time costs. Toll benefits 
are thus also overestimated. 

'­
C\I 

<:l 

2 
CJ Excluded by assumption since a,>/3, 

Points labelled (1 )-(5) 
considered in Table 1. 

~ 1 ------------------- ------------------ ... (4) 
<:l : : 
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• TTce > TTce 
I I 
I I 
I I 

0.5 ------- ... -------------- - --- · (5) 
: (1) (3) : 
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I 
I 
I 
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2 

FIGURE 4 Aggregation bias in calculation of travel time costs 
with two groups of commuters with different a and fJ and the same 
'Y/fJ. 

TABLE I EXACT AND AGGREGATE CALCULATIONS OF SCHEDULE DELAY, TRAVEL TIME, AND TOTAL COSTS 
IN USER EQUILIBRIUM AND SOCIAL OPTIMUM WITH TWO COMMUTER GROUPS OF EQUAL SIZE DIFFERING IN 
a AND {3, BUT WITH THE SAME -y/{3 

Example ~r a Calculation SDCe TT Ce TCe TC 0 =SDC 0 TCe-TC 0 

r 

1 2 3 4 5 6 7 8 

Exact 0.4375 0.3125 0.7500 0.3125 0.4375 
1 o.5 0.5 

Aggreg/Exact 85. 7% 120% 100% 120% 85.7% 

Exact 0.6250 0.8750 1.5000 0.6250 0.8750 
2 2.0 2. 0 

Aggreg/Exact 120% 85.7% 100% 120% 85.7% 

Exact 0.5000 0.3750 0.8750 0.5000 0.3750 
3 1. 0 0.5 

Aggreg/Exact 100% 133% 1 14 i. 100% 133% 

Exact 0.6250 0.6250 1.2500 0.6250 0.6250 
4 2.0 1. 0 

Aggreg/Exact 120% 120% 120% 120% 120% 

Exact 0.6250 o.sooo 1.1250 o.62so o.5000 
5 2.0 o.s 

Aggreg/Exact 120% 150% 133% 120% 150% 
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The aggregation bias in road investment can be deter­
mined from the values of total costs in equilibrium and 
the social optimum, shown respectively in columns 6 and 
7. Consistent with the general results discussed above, total 
costs in the user equilibrium and the social optimum are 
never underestimated and are usually overestimated. In 
example 5, equilibrium costs are overestimated by 33 
percent. With constant marginal construction costs, this 
would lead to overconstruction of road capacity by a factor 
( l.33)112

, or about 15 percent. 

INDIVIDUALS DIFFERING WITH RESPECT 
TO 'YlfJ 

User EquiJibrium and Social Optimum 

In this section we allow the relative cost oflate arrival T/ = 
"Y/f3 to differ across commuters. For simplicity, a, {3 and 
t* are assumed to be the same for everyone. Let there be 
G groups of commuters, indexed in order of decreasing 11 

so that 

T/1 > 112 > • · · 11G (29) 

As before, N; is the number of commuters in group i, and 
N the number in all groups. 

User Equilibrium 

User equilibrium is described by the following theorem. 

Theorem 2. In user equilibrium, groups of commuters 
with the highest 11 depart late, in strict sequence of decreas­
ing 71, with group G the last to depart. Groups with lower 
11 depart early. The order of departure of these groups is 
indeterminate. At most, one group departs both early and 
late. 

Proof 

Let CG and CG-I be cost curves for groups G and G - 1 
respectively, as shown in Figure 5. Since 11G > 11G - 1, CG 

has the same slope as CG-i for early departure but is flatter 
for late departure. In equilibrium, the right-hand branch 
of CG must intersect the abscissa to the right of Ca-1; 
otherwise members of group G - 1 could reduce their 
travel costs by switching to departure times chosen by 
group G. Since CG cannot lie everywhere above CG-i. the 
cost curves must intersect. Since cost curves for groups 
G - 2, G - 3, etc., are progressively steeper than c0 _ 1 

for late departure, group G must depart last, group 
G - 1 second last, and so on while individuals are depart­
ing late. 

For individuals traveling early, the order of departure is 
indeterminate since all groups have the same cost curves. 
QED. 

Q) 
::J 
Q) 
::J 
a -0 
.s:::. 
Oi 
c 
Q) 
_J 
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Groups G, G-1 and part 
of group G-2 depart late 

0 

I' 

Departure Time 

FIGURE 5 Equilibrium with groups of commuters with 
different "Y/fJ. 

According to theorem 2, individuals with the lowest 
relative cost of late arrival depart last, which is common 
sense. 

The Social Optimum 

The social optimum is intuitive. To prevent queueing, the 
departure rate is held at s throughout the rush hour. To 
minimize schedule delay costs, groups depart in strict 
sequence of decreasing 11 during late departure, just as in 
equilibrium. 

The timing of the rush hour also turns out to be the 
same as in equilibrium, as was the case with commuters 
varying in a and fl. Similarly, a time-varying toll can be 
constructed to decentralize the social optimum. Since 
schedule delay costs are minimized in the user equilibrium, 
toll benefits equal travel time saved. 

Cost-Benefit Analysis and Aggregation Bias 

At this point we again simplify by restricting attention to 
two groups. (The two-group case incorporates the solution 
for any number of groups when no more than two groups 
depart late.) Group 1 will largely comprise blue-collar 
workers, with relatively high penalties for late arrival at 
work. Group 2 will consist predominantly of white-collar 
workers. There are two cases to consider: 

l. Group 2 is sufficiently small that all members depart 
late, as well as part of group l, 

2. Group 2 is sufficiently large that none of group 
departs late. 
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Case 1 

Case l applies when 

h < 1/(1 + 112) 

Aggregate costs are 

01 N 2 

SDC' = TTC' = SDC0 = TC 0 = - - [l - µi] 
2 s 

N2 
TC'= 01 - [1 - µi] 

s 

where 

o; = fJ'Y;/((:J + 'Y;) 

(30) 

(31) 

(32) 

(33) 

(34) 

As is true of identical commuters, travel time costs and 
schedule delay costs are equal in equilibrium. Since dµi/dh 
> 0 for values of h satisfying equation 30, travel costs 
decrease monotonically with the proportion of commuters 
in group 2. Thus, in case 1, increasing the proportion of 
commuters with flexible work hours (i.e., converting group 
1 workers to group 2) reduces total commuting costs. 

Case2 

The solution for case 2 is the same as for identical com­
muters with 11 = 112. Thus 

(36) 

where 

(37) 

To measure aggregation bias we again use a population­
weighted average value: 

The aggregate specification yields 

• ~ • • 01 N
2 

SDC' = TTC' = SDC0 = TC0 = - - [1 - ii] (39) 
2 s 

• N2 
TC'= 01 s [I -ii] (40) 
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where 

(41) 

Tolls 

Because schedule delay costs at the social optimum are 
the same as in equilibrium, toll benefits equal travel time 
saved. Given equations 31, 35, and 39, the ratio of esti­
mated to actual toll benefits in case 1 is 

TTC' 1 - ii 
- - =--
TTC· 1 - µ; 

(42) 

It is straightforward to show that ii < µ 1 and ii < µ 2, so 
that toll benefits are overestimated under aggregation. 

Road Investment 

The marginal benefit from capacity expansion is propor­
tional to total costs. Given equations 32, 36, and 40, the 
ratio of estimated to actual total costs is 

TC•= 1 - ii> I 
TC' 1 - µ; 

(43) 

Hence, aggregation introduces a bias toward excessive road 
investment. This accords with the results shown earlier 
("Individuals with Different a and (:J, but the Same 'Ylf3") . 

INDIVIDUALS WITH DIFFERENT t* 

User Equilibrium and Social Optimum 

Suppose now that commuters differ only with respect to 
t*. One interpretation is that individuals differ in their 
starting time at work. An alternative interpretation is that 
individuals have the same work hours, but work at differ­
ent distances from the bottleneck. Those with further to 
travel wish to pass through the bottleneck earlier. 

Hendrickson and Kocur (8) address this problem under 
the assumption that the cumulative desired arrival time 
distribution, W(t), crosses the cumulative arrivals schedule 
once, as shown in Figure 6. The equilibrium departure 
time distribution is the same as if all individuals desired 
to arrive at the crossing time t* = w-1[11N/(I + 11)]. Travel 
time costs are the same as with identical desired arrival 
times, while schedule delay costs are smaller. The arrival 
time distribution is socially optimal. 

In this section, we extend Hendrickson and Kocur's 
analysis to discrete groups of commuters, allow for multi­
ple crossings of the desired and actual arrival time distri­
butions, and perform cost-benefit analysis. Groups can be 
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thought of as teams of workers in industry or government 
departments with the same work hours. 

Let N; be the number of commuters with desired arrival 
time tj, i = l ... G, with 

(44) 

Let W(t) be the cumulative desired arrival time 
distribution: 

W(t) = "[,N;H(t - ti) (45) 

-0 

Qi 
.0 
E 
:::J 
z 

I 

N -------------------------------r-- --
C B 

' ' 

a~~~~_,__.;.._~~~~~~~+-~~~---~~~ 

tq 

Time 

Total Travel Time~ Area OABO 
Total Time Early =Area OEFO 
Total Time Late = Area BECB 

t•=w-1 (-TJ-N) tq· 
1+l') 

FIGURE 6 Equilibrium with a distribution of desired arrival 
times that crosses the cumulative arrivals schedule once. 
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where H(x) is the Heaviside function: H(x) = l if x ~ 0, 0 
otherwise. It is assumed that desired arrival times are 
sufficiently close that the bottleneck operates at capacity 
throughout the rush hour, implying 

lq· - lq = N/s (46) 

User Equilibrium 

The user equilibrium is described by the following 
theorem. 

Theorem 3. Suppose that commuters differ only in de­
sired arrival time. Let the cumulative desired arrival time 
distribution be W(t). Then the equilibrium departure rate 
is given by 

'(I) ~ { :: as .<(I - I,) + D(I) .. w[1 + D.~') l 
t E [tq , lq•] (47) 

where D(tq) = 0, D(lq·) = 0, and where rf, and r[ are 
defined in equations 7 and 8. 

The intuition behind the theorem is that if at time t 
cumulative departures exceed cumulative desired arrivals, 
then the individual departing at t arrives early. If the 
individual and those departing just before and after him, 
who also arrive early, are content with their departure 
times then the departure rate must be rf, just as with 
identical commuters. Similarly, when cumulative depar­
tures are less than cumulative desired arrivals, the depar­
ture rate must be r[. 

An example of equilibrium with three groups, in which 
the cumulative desired arrivals schedule W(t) crosses the 
cumulative actual arrivals schedule three times, is shown 
in Figure 7, !,,,; denotes the departure time for which an 

lq ln,1 tn,2 112 Ii 12 23 tn,3 tj !' q 

Time 

FIGURE 7 Equilibrium with three groups of commuters with different 
desired arrival times, 
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individual arrives at tt. From tq until tn,i cumulative 
arrivals exceed cumulative desired arrivals and the depar­
ture rate is r,f. Between tn.i and t23, cumulative arrivals fall 
short of desired arrivals and the departure rate is r;, and 
so on. All of group 2 arrives late, while some members of 
groups 1 and 3 are early and some late. The queue peaks 
at ln,1 and tn. 3 , and reaches a local minimum at t23 • 

We have assumed that groups depart in strict sequence. 
If the equilibrium cost curves of two or more groups 
coincide, however, the order of departure is indeterminate. 
In Figure 7, for example, the equilibrium cost curves of 
groups 1 and 2, C1 and C2 , coincide during the time 
interval [tn,2 , t23]. Members of the two groups may depart 
at any time during this interval. 

The Social Optimum 

Since groups differ only in t* it is clear that departure in 
strict sequence by group is optimal, although not neces­
sarily the unique optimum. Both the timing of the rush 
hour and the indeterminacy in the order of departure are 
the same as in the user equilibrium. To see this, note that 
if two individuals in different groups are both arriving 
early or both late, they can be interchanged in the depar­
ture sequence without affecting total schedule delay costs. 
This is the same condition under which indeterminacy 
arises in equilibrium. 

Two Groups 

We now turn to a more thorough investigation of equilib­
rium with two groups. There are three cases to consider. 
In case 1, group 2 is sufficiently small that all members 
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travel late and the timing of the rush hour is the same as 
if everyone belonged to group 1. Total travel time costs 
are the same as with identical commuters, but schedule 
delay costs are smaller. 

In case 2, group 1 is sufficiently small that all members 
travel early and the timing of the rush hour is the same as 
if everyone belonged to group 2. Again, travel time costs 
are the same as with identical commuters while schedule 
delay costs are smaller. 

In case 3, shown in Figure 8, the queue has a double 
peak, with group 1 traveling around the first peak and 
group 2 around the second. (As earlier it is assumed that 
ti and ti are sufficiently close that the rush hours for the 
two groups are connected.) The equilibrium cost curves of 
the two groups, Ci and C2, intersect only at t 12 , so that all 
of group 1 departs before group 2. Both travel time costs 
and schedule delay costs are smaller than with homoge­
neous commuters. 

Cost-Benefit Analysis and Aggregation Bias 

From the preceding discussion it is clear that if t* is 
assumed to be the same for everyone, then schedule delay 
costs are overestimated, whether the actual queue is single­
or double-peaked. Travel time costs are calculated cor­
rectly if the queue is single-peaked, but overestimated if it 
is double-peaked. 

Tolls 

Since the timing of the rush hour and order of departure 
in user equilibrium are socially optimal, toll benefits equal 
travel time costs in equilibrium. Aggregation introduces 

0,._~....,.~~~+F"---+-~-;-~~~~...;.-~~~~--l,_... 
tq tn, i t1 ti 2 tn,2 

Time 

Total Travel Time = Area OABCDO 
Total Time Early = Area OEFO + HJIH 
Total Time Late = Area EGHE + JKDJ 

FIGURE 8 Equilibrium for two groups of commuters with 
different desired arrival times and a double-peaked queue. 
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no bias in calculated toll benefits when the queue is single­
peaked because travel time costs are the same as with 
identical commuters. But toll benefits are overestimated 
when there is a double peak. 

Road Investment 

The marginal benefit from capacity expansion is found to 
be 

I dTC•jdsl = o(N/s)2 

with a single-peaked queue (48) 

ld~~· 1 = o(~r {l +[I - (1
2

: 11)/if} 
with a double-peaked queue (49) 

Equation 48 for the single peak is the same as with 
identical commuters because the difference in schedule 
delay costs with identical and nonidentical commuters is 
independent of capacity. 

When the rush hour is double-peaked, however, the 
marginal benefits of capacity expansion are greater than 

TABLE 2 SUMMARY OF RESULTS 

Characteristics of Us er 
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with identical commuters unlessh = 1/(1 + 7J). The reason 
is that as capacity is expanded, the queue left by group 1 
when group 2 begins to depart becomes smaller, leading 
to a more than proportionate decrease in overall travel 
time costs. This outweighs the fact that total travel costs 
are smaller with identical work start times, except if h = 
1/(1 + 7/) when the two factors balance. 

CONCLUDING REMARKS 

We have analyzed the departure time decisions of morning 
commuters who differ in one of three respects: (1) travel 
time and schedule delay costs, (2) relative costs of early 
and late arrival, (3) desired arrival time. The principal 
results of the analysis are summarized in Table 2. In 
equilibrium, groups of commuters order themselves sys­
tematically in the departure sequence. Early in the rush 
hour the departure rate exceeds capacity, causing a queue 
to develop and increasing travel time costs. The timing of 
the rush hour is optimal in each of the above groups (1, 2, 
and 3) (although this is not true in general). Schedule delay 
costs need not be minimized in case 2, however, because 

Ag g regation Bi as 1 

Equilibrium (Two Gr o u ps) 

Variable Order of Shape of Timing of Schedule Toll Capac i ty 
Paramet e rs Departure Queue Rush Hour Del a y Costs Benefits Expan s ion 

Benef i ts 

None N/A Single- Optimal Minimized N/A N/A 
(Homo- peaked 
geneous 
commuters) 

High CI I f3 groups Single- Optimal Generally not + or - + 
CI and f3 travel on peaked minimized 
( y I f3 shoulders with 
fixed) convex 

shoulders 

Smallest y I f3 Single- Optimal Minimized + + 
y I f3 groups travel peaked 

( CI and f3 last with 
fixed) convex 

right-
hand 
shoulder 

In order of Single Optimal Minimized 0 or + 0 or -
t* increasing t *' or 

pOS$ibly inde- multiple 
terminate over peaked 
limited periods 

Aggregation bias refers to the error when a population of nonidentical c o mmuters is 
treated as being homogeneous. 

+ means the value calculated under aggregation is too large, 
- means it is too small, and 0 means no bias 

N/A: Not Applicable 
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the order in which commuters depart in user equilibrium 
is not necessarily optimal. 

Cost-benefit studies of congestion tolls and of invest­
ments in road capacity often ignore heterogeneity of the 
commuting population. To measure the aggregation bias 
in computing benefits we used population-weighted aver­
age parameter values. We showed that aggregation usually 
leads to overestimation of benefits, although underesti­
mation is possible. The direction and magnitude of bias 
depend on which parameters vary across commuters, and 
by how much. 

There are several directions in which the analysis could 
be fruitfully extended. 

Empirical Determination of Parameter Distributions 

The results of this paper, as well as those of Newell (6), 
indicate that the qualitative characteristics of the departure 
time distribution are sensitive to the travel time and sched­
ule delay costs of different commuter groups and to the 
proportion of commuters in each group. Further empirical 
work in the spirit of Small (2, 12) will be necessary before 
accurate cost-benefit calculations are possible, although 
the difficulty of obtaining adequate data may prove an 
obstacle. 

Algorithms 

For practical cost-benefit applications it will be necessary 
to divide the population into several groups and to allow 
all parameters to vary at once. Networks of roads and 
performance models more realistic than the idealized bot­
tleneck should also be considered. To solve for user equi­
librium in this more complex setup and to investigate the 
effects of smoothly varying or coarse (step-function) 
congestion tolls, an algorithmic approach will be necessary 
because analytical methods are intractable. 

Welfare Considerations 

Congestion tolls, road investments, and other transport or 
workplace policies affect the distribution of welfare. Be­
cause the cost of travel time varies with income and 
because socioeconomic groups differ in the flexibility of 
their work hours, the benefits of congestion relief tend to 
fall unequally. For example, both theoretical (13, 14) and 
empirical (12, 15) studies have concluded that the inci­
dence of congestion tolls is probably regressive and that 
distributional effects can be significant compared to effi­
ciency gains. In an earlier draft of this paper (11), we 
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showed, using the bottleneck model with two commuter 
groups, that congestion tolls and road investments both 
tend to favor commuters with high values of travel time 
relative to schedule delay. Since such commuters are likely 
to be white-collar workers with above-average incomes, 
this finding is consistent with earlier findings that policies 
to reduce congestion tend to have regressive welfare effects. 
Clearly, the analysis needs to be done at a greater level of 
disaggregation and under more realistic assumptions. 
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