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Application of Dynamic Programming and 
Other Mathematical Techniques to 
Pavement Management Systems 

KIERAN J. FEIGHAN, MOHAMED Y. SHAHIN, KUMARES c. SINHA, AND 

THOMAS D. WHITE 

This paper describes the application of improved mathematical 
techniques to the PAVER and Micro PA VER Pavement Man­
agement Systems. The use of stochastic dynamic programming 
to determine optimal strategies and related mean costs over 
specified life-cycle periods is outlined. The incorporation of 
simple simulation techniques to estimate the variance associ­
ated with these costs is described. The suitability of this approach 
for investigating the effects of deferred maintenance is pre­
sented. The use of outputs from these programs in subsequent 
prioritization and budget allocation modules is briefly dis­
cussed. An example that incorporates outputs from the dynamic 
programming and simulation programs is shown, and the validity 
of these outputs is discussed. 

There has been increased research interest recently in pre­
diction and optimization methods for Pavement Management 
Systems (PMS). This is a logical extension of earlier efforts 
directed primarily toward developing useful, reproducible 
condition survey techniques. Once confidence has been estab­
lished in the survey results, the data can be used in con junction 
with optimization methods to obtain more cost-effective use 
of management resources, which is the ultimate aim of most 
management systems. 

This paper describes the application of a set of mathematical 
tools to the PA VER and Micro PA VER PMS. Dynamic pro­
gramming is used in conjunction with a Markov-chain prob­
ability-based prediction model to obtain minimum cost main­
tenance strategies over a given life-cycle. Simulation methods , 
using a random number generator, are applied to determine 
the variance in the cost associated with these strategies. 

The suitability of using dynamic programming to monitor 
the effects of deferred maintenance is outlined, and the use 
of output from the programs in establishing budget priorities 
and allocations is briefly discussed. Dynamic programming 
has a simple and efficient structure that allows rapid execu­
tion, even at the microcomputer level. 
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The present research is part of an ongoing effort to improve 
the prediction and optimization capabilities of the PA VER 
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and Micro PA VER pavement management systems. The 
PA VER system has been well documented elsewhere (1). It 
is based on the Pavement Condition Index (PCT), an index 
with a range of 0 to 100, reflecting the current condition of 
a pavement section. 

Several Army installation databases were used in the devel­
opment of prediction models. There is a separate database 
for each installation. Generally, each pavement section for 
which information is stored in the database can be identified 
by location, pavement type, pavement use, and pavement 
rank. Large variation in the condition data is expected from 
section to section in a network, even when all sections are 
the same age . There is generally little or no specific traffic 
volume or structural information available on a section-by­
section basis. Obviously, it would be desirable to have this 
information , but at the moment this system must work with 
the available information. 

In order to reduce the variation in the data and increase 
confidence in the predicted performance over time, it is nec­
essary to group the data using common variable characteristics 
(2). Currently, the variables used to define groups, or "fam­
ilies" of data, are pavement surface type, pavement use , and 
pavement rank . It is possible that the primary source of pave­
ment distress may be subsequently included (3). These fam­
ilies are also used in the dynamic programming process. 

From a search of the available literature, it appears that 
very few PMSs currently in use have access to, or use , rela­
tionships between pavement condition and cost to repair and 
maintain the pavement in arriving at the most desirable and 
cost-effective solutions. However, this data is of critical 
importance in evaluating the tradeoffs between repairing now 
and repairing later, both at the project level and at the net­
work level. 

Cost information for the PC/ is available from the results 
of an ongoing study into the relationship between PC/ and 
cost that is being carried out by Purdue University for the 
U.S. Army Constrnr.tinn F.neineering Research Laboratory 
(US./\ CER.L) (1). The ~!!!d;· !de~!!f!e~ !he(:~~!~! ~e'.'e !2! 
maintenance alternatives, including routine maintenance, on 
different surfaces as a function of surface condition. This 
information can be readily incorporated into the dynamic pro­
gramming framework. It is believed that there are no user 
cost models currently available for the Micro PA VER system 
because of the lack of confidence in the accuracy of the cost 
predictions. Consequently, an effectiveness/cost ratio approach 
is applied using only agency costs in the denominator. A 
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FIGURE 1 Diagram of state, state vector, and duty cycle. 

simple modification can incorporate user costs if realistic model 
relationships become available. 

MARKOV PREDICTION MODEL 

It is not possible to describe the functioning of the dynamic 
programming algorithm without first describing the prediction 
model, as the two function together. The following is an 
abbreviated description of the model that includes only the 
parts relevant to dynamic programming; a more detailed and 
comprehensive description has already been published else­
where (3, 5). Much of the terminology used in this description 
also is used in dynamic programming. 

All sections in a particular network are grouped into fam­
ilies on the basis of common characteristics. The PC/ range 
of 0 to 100 is divided into 10 states, each state being 10 PC/ 
points wide. A pavement is modeled to begin its life in near­
perfect condition and to deteriorate as it is subjected to a 
sequence of duty-cycles. A duty-cycle is defined as the effects 
of one year's weather and traffic. A state vector indicates the 
probability of a pavement section being in each of the 10 
states in any given year. Figure 1 shows the schematic rep­
resentation of state, state vector, and duty cycle for a partic­
ular family. All of the sections of a family are categorized as 
belonging to one of the ten states at any age. It is assumed 
that all of the pavement sections are in state 1 (PC/ = 90 to 
100) at an age of zero years. 

To model the way in which the pavement deteriorates with 
time, it is necessary to identify the Markov probability matrix. 
The assumption is made that the pavement condition will not 
drop by more than one state in a single year. Thus, the pave­
ment will either stay in its current state or move to the next 
lowest state in one year if it remains in the same family. The 
probability transition matrix has a diagonal structure, as shown 
in Figure 2. The entry of 1 in the last row of the transition 
matrix indicates a trapping state. The pavement condition 
cannot transit from this state unless repair is performed. 

The state vector for any duty cycle t, S(t), is obtained by 
multiplying the initial state vector S(O) by the transition matrix 
P raised to the power of t. Thus 

S(l) S(O)*P 
S(2) = S(l)*P = S(O)*P2 

S(t) = S(t- l)•P = S(O)*P' 

If the transition matrix probabilities can be estimated, the 
future condition of the road at any duty cycle (time) t can be 
predicted. 

The probabili ties are estimated using a non-linear program­
ming approach which has as its objective fun tion mi nimizing 
the absolute distance between the actual fami ly P I versus 
age data points and the expected (predicted) PC/ for the 
corresponding age generated by the Markov chain using the 
nine probability parameters. It has been found that this 
approach can accurately model the pavement deterioration 
over time. A sample curve fit generated by this program is 
hown in Figure 3. 

INTRODUCTION TO DYNAMIC 
PROGRAMMING 

Dynamic programming is an approach to optimization. It is 
not based on a single, well-defined procedure such as the 
simplex algorithm of linear programming. Rather, it seeks to 
take a single, complicated problem and break it down into a 
number of simpler more asi ly solvable problems. Obtaining 
solutions to the e problem · i gen .rally faster and require 
le computa tional effort than solving the original problem, 
while giving th ame fina l resu lt. 

The principle of optimality, the foundation of dynami pro­
gramming states that "every optimal policy con i t only of 
optimal subpo.licies ' (6). Instead of examining all pos ible 
combination of decisions, dynamic programming examine. a 
smalJ, carefu lly cho en sub et of the combination , rejecting 
those combi11ations that cannot possibly lead to an optimal 
solution. If performed correctly, the ub et examined i cer­
tain to contain the optimal solution. 

Dynamic programming has an advantage over almost all 
classical optimization techniques in that it will yield the abso-
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FIGURE 2 Probability transition matrix structure. 
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lute or global maxima or minima rather than local optima. 
Dynamic programming is aiso extremely powerful in that it 
can handle integrality, negativity , discreteness, and other con­
straints of variables. It also, by its nature, produces the opti­
mal solution to all its constituent subproblems. These solu­
tions may be of interest to the pavement manager, especially 
in time-varying problems such as pavement performance where 
the results of a 25 year life-cycle analysis will also contain the 
optimal results for all life-cycle lengths less than 25 years . 

The major drawback to dynamic programming is that it 
may not be possible to formulate the proposed problem in 
such a way as to effectively use dynamic programming. How­
ever, if it is possible to express the problem in an effective 
form, dynamic programming provides an outstanding optim­
ization tool. 

The basic components of dynamic programming are states, 
stages, decision variables, returns, and transformation or tran­
sition functions (6). A physical system is considered to pro­
gress through a series of consecutive stages. In pavement 
performance, each year is viewed as a stage. 

At each stage, the system must be fully describable by the 
state variables or state vector. In the present case, as described 
earlier, each state is a 10 PC! bracket for every pavement 
family, and the condition of the pavement in each section at 
any year (stage) can be defined as being in one of the ten 
states. 

At each stage, for every possible state , there must be a set 
of allowable decisions. The decisions being made in the dynamic 
programming model are the repair alternatives to be imple­
mented in each state at every stage. 

Finally, there is the transformation or transition function. 
If a process is in a given state and a feasible decision is made , 
there must be a function lhal llt:lennines to which state the 
process moves. In general, dynamic programming transfor­
mation functions can be deterministic or stochastic. In this 
particular case, the transition function is defined by the Mar­
kov probability matrix derived in the curve-fitting process 
described earlier and, hence, is a stochastic process. 

In summary, the problem set-up for this dynamic program­
ming formulation is 

MINIMIZE: Expected cost over a specified life cycle, sub­
ject to keeping all sections above a defined performance 
standard. The dynamic programming parameters are 

STATES: Each bracket of 10 PC! points in a family . 
STAGES: Each year in the analysis period. 
DECISION VARIABLES: Which maintenance treatment 

to apply. 
TRANSFORMATION FUNCTION: The Markov transi­

tion probability matrix defines the transformation. 
RETURN: Expected cost if a particular decision is made 

in each state at each stage. 

INPUTS REQUIRED FOR THE DYNAMIC 
PROGRAMMING ALGORITHM 

The inputs required for the dynamic programming algorithm 
are 

1. Markov Transition Probabilities for state i of matrix j 

pif; i l, .. ., 10 states 

j 1, . .. , m families 

2. Cost of applying treatment k to family j in state i 

cijk ; k = 1, .. ., n maintenance alternatives 

Routine maintenance is always designated as k = 1. The 
cost is entered on a dollar per square yard basis . 

3. Feasibility Indicator for alternative k when in state i of 
family j 

R1jk = 1 if maintenance alternative is feasible 

0 if maintenance alternative is infeasible 

4. Number of Years in the life-cycle analysis; N 
5. Interest Rate ; r 
6. 1niiatiun Ratt: ; f 
7. Rate of Increase in Funding ; q 
8. The associated benefit over one year of being in state i 

B1 = 95, 85, .. ., 5 for i = 1,2, .. ., 10 

The benefit is taken to be the area under the PC! curve 
over a period of 1 year. 

9. The minimum allowable state for each family; in other 
words. the lowest state to which a particular family will be 
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allowed to deteriorate before major maintenance is per­
formed . This state is designated by Si. 

10. The transformations that define the new family to move 
to if treatment k is applied in family j: (j,k) - (}1,1). 

OPERATION OF DYNAMIC PROGRAMMING 

The dynamic programming process starts at year N, the final 
year of the life-cycle analysis. In dynamic programming terms, 
this is stage 0. In effect, the life-cycle cost analysis is being 
performed over 0 years at this stage. 

The first step is to calculate the routine maintenance cost 
for each state in every family in year N. Routine maintenance 
is not feasible if (1) R;ik = 0, or (2) Si ;;::: i for family j. For 
all feasible states, the cost of routine maintenance is obtained 
from c:J1.N = cu1 , and these values are stored. If routine main­
tenance is not feasible, a very large value is added to the cost 
to ensure that it will not be chosen as the cheapest alternative. 

All other feasible alternative costs are also calculated for 
all states in each family from c;ik ,N c;ik· The optimum repair 
strategy for each state i of each family j in year N is then 
given by: 

Cij,N = Min(cij1,N• C;ik,N) for all i, j, k 

In general, the decision process can be described for year 
N - n, or equivalently for stage n. As before, the feasibility 
of routine maintenance is examined. If routine maintenance 
is found to be feasible, the following expression is used to 
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calculate the total present worth in the year N - n of applying 
routine maintenance when the analysis period is n years long: 

Cij1,N - n = ciil + [p;jlc.J.N-n + I 

(i) (ii) 

+ (1 - p;i1)C:-1 ,i ,N-n+ll * 1/(1 + i*) 

T~is exp~ession has two parts: the part indicated by (i) is 
t~e .immediate cost of routine maintenance in year n, while 
(n) 1s the total expected cost in the remaining N - n years as 
a consequence of applying routine maintenance in yearn. As 
shown in Figure 4, this expected cost is obtained by identifying 
the probability that the condition will remain in a given state 
multiplying this probability by the expected cost of that state' 
and then finding the associated probability of dropping a stat~ 
if routine maintenance is applied and multiplying this by the 
expected cost of the lower state. This sum is then discounted 
by the effective interest rate, i*, to bring the total into present 
worth dollars in the year N - n. The effective interest rate is 
calculated using the interest rate, inflation rate, and rate of 
increase in funding inputs. 

Similarly, the cost of all other feasible maintenance alter­
natives can be calculated. The expression used is 

C;ik,N - n = C;ik + [P1i'1C;i'.N-n + 1 

+ (1 - P1i'i)c;i' .N-n+1l * 11(1 + i') 
This expression differs from the routine maintenance equa­

tion in that it is known that the pavement condition will return 
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FIGURE 4 Calculation of expected cost in yearn. 
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to state 1 after the repair alternative is carried out. The family 
that the pavement moves to, j 1 , as a result of having this 
alternative performed is defined in the input transformation 
matrix. For example, if a thin overlay is performed on an AC 
pavement section, that section will move to the thin overlay 
family for performance prediction after the overlay is placed. 

The optimal cost is then given by 

with the associated optimal maintenance alternative to be 
performed for this (i, j) family/state combination in year 
N - n being the choice of k that minimizes the above 
expression. 

This backward recursion is performed for every successive 
year of the analysis period until the analysis for year 0, or 
stage N, is reached. 

DYNAMIC PROGRAMMING OUTPUT 

The output from the dynamic programming program consists 
of (1) a file containing the optimal maintenance alternative 
in every year for every family/state combination, (2) the dis­
counted present-worth costs expected to accrue over the life­
cycle specified if the optimal decisions are implemented, (3) 
the expected effectiveness accrued as a result of following the 
optimal decisions calculated for every family/state combina­
tion , and (4) the effectiveness/cost ratio calculated for every 
family/state combination. 

Thus, after the family/state combination for a particular 
section has been defined, the optimal maintenance alternative 
and associated cost and effectiveness can be readily obtained. 
As the intention of the research is to produce updated pro­
grams for both the PA VER and Micro PA VER systems, it 
was imperative that all of the programs be executable on a 
microcomputer. The dynamic programming program executes 
extremely quickly at this level. 

SIMULATION AND DYNAMIC PROGRAMMING 

The dynamic programming algorithm calculates the least-cost 
strategy on a probabilistic basis by using the probabilities of 
being in various states multiplied by the cost of being in those 
states. Consequently, the minimum expected cost over an N­
year life cycle is obtained. This is a valid and useful parameter 
to use in decision making; but, if possible, it is desirable to 
obtain also an estimate of the likely variation in this expected 
cost. This can be of use to decision makers in looking at worst 
case and best case scenarios, as well as in deciding how much 
confidence there is in the mean estimate of cost. 

It is not possible to estimate this variation through dynamic 
programming directly, but by use of simple simulation tech­
niques the variation in cost can be esnmated. Simulauon m 
essence uses repeated deterministic runs to simulate a con­
tinuous, probabilistic situation. In the present case , the per­
formance of the pavement over time is simulated using the 
pavement state definition and a random number generator. 
By performing many simulation runs, a good idea is obtained 
of the mean and variance of the expected cost of maintaining 
the pavement. The mechanics of the simulation process are 
outlined below. 

TRANSPORTA TION RESEARCH RECORD 1200 

It is assumed that a pavement is in a given state in a given 
year, and that there are two possible states that the pavement 
can go to the following year for a particular maintenance 
action. This assumption is consistent with the Markov assump­
tions used earlier in performance prediction and in dynamic 
programming. As an example, assume that the pavement is 
now in state 3 and routine maintenance is applied. 

There are two possible states for the pavement to be in the 
following year, state 3 and state 4. The probability of remain­
ing in state 3 is given by the Markov transition probability , 
p(3), and the probability of transiting to state 4 is given by 
1 - p(3). For clarity, assume that p(3) = 0.65, thus 1 - p(3) 
= 0.35. 

The random number generator is used to generate a random 
number, RAND, between 0 and 1. The decision mechanism 
outlined below is then used. 

If RAND < 0.65, then pavement stays in state 3. 
If RAND > 0.65 , then pavement moves to state 4. 

In this \vay, the performance of the pavement (in terms of 
which state it is in) can be tracked over time. If the cost of 
being in each state is known, the total cost over time for each 
simulation run can be obtained . This value can be used to 
estimate the mean and variance of the total minimum expected 
cost. 

RANDOM NUMBER GENERATOR 

All the research (including computer programs) performed 
in this study was done on microcomputers, as this is the envi­
ronment of choice for most pavement management systems 
today. Unfortunately, most random number generators have 
been designed for larger, mainframe computers and use the 
larger word length capabilities of those machines. A portable 
random number generator that can overcome the problem of 
limited integer arithmetic capabilities by using floating point 
arithmetic was located (1). This was the generator used for 
performing simulations in this study. 

Most random number generators are based on the linear 
congruential method, which can yield problems if the param­
eters are chosen unwisely. The generator used here is based 
on the subtractive method, which does not contain the same 
element of risk . The random number generator returns uni­
form deviates in the range of zero to one. Any number in this 
range is as likely to be chosen as any other. The range of zero 
to one is used, as this is the same as the possible range of 
possible Markov probability values . This approach makes the 
algorithm programming very simple as well. A flowchart of 
the simulation program is shown in Figure 5. 

PRIUiU'i'iZATIUN 

By combining the simulation output with the dynamic pro­
gramming output, the optimal maintenance alternatives, their 
associated cost and effectiveness, and a confidence limit on 
the expected cost are all readily obtained. Obviously, this is 
of critical importance in moving to the next step of network 
optimization, the prioritization of sections on a cost-effec­
tiveness or weighted cost-effectiveness basis and the subse-
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INPUTS 
1. NUMBER OF SIMULATION RUNS. 
2. NUMBER OF YEARS IN LIFE CYCLE 
3. NUMBER OF POSSIBLE FAMILIES. 
4. STATE/FAMILY COMBINATIONS TO BE EXAMINED. 
5. EFFECTIVE INTEREST RATE. 
6. MARKOV PROBABILITY DATA FILE. 
7. REPAIR COST DATA FILE. 
8. TRANSFORMATION DATA FILE 
9. OPTIMAL MAINTENANCE DECISION FILE 

DD CALCULATIONS FDR SPECIFIED 
NUMBER OF SIMULATIONS. 

DD CALCULATIONS FDR EVERY 
STATE/FAMILY COMBINATION 

DO FOR EVERY YEAR IN 
LIFE CYCLE ANALYSIS. 

LOCATE OPTIMAL MAINTENANCE OPTION 
FOR FAMILY/STATE COMBINATION 

FIND COST OF OPTION AND DISCOUNT 
TO PRESENT WORTH, STORING VALUE. 

USE TRANSFORMATION MATRIX 
TO DEFINE NEW FAMILY. 

LOCATE RELATED MARKOV 
PROBABILITY VALUE. 

GENERATE RANDOM NUMBER AND 
COMPARE WITH MARKOV VALUE. 

OBTAIN NEW FAMILY/STATE 
COMBINATION 

CALCULATE TOTAL COST AND STORE VALUE 

CALCULATE MEAN AND VARIANCE FOR EVERY 
STATE/FAMILY COMBINATION 

FIGURE 5 Simulation flowchart. 
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quent budget allocation procedure. It is at this stage that 
budgetary constraints in each year are addressed. When the 
cost values obtained are guaranteed to be optimal, as is the 
case for dynamic programming, the prioritization methodol­
ogy used can be made very simple and rapidly executable . 

This consideration is, again, of utmost importance in the 
present case, where the environment in which the programs 
are to operate is a microcomputer one, with its attendant 
limited computing capabilities. The detailed discussion of 
prioritization and budget allocation procedures to be used are 
beyond the scope of this paper and will be fully discussed in 
the future, but it is believed that workable algorithms have 
been formulated that take full advantage of the dynamic pro­
gramming outputs . Figure 6 shows the flowchart describing 
the direction of the overall research, from raw database infor­
mation to annual budget allocation work plans. 

Another advantage of dynamic programming is the ability to 
identify the effects of deferred maintenance on the optimal 
treatment cost over a given life-cycle length. The methodology 
of investigating the effect of deferring the optimal treatment 
for D years is as follows. 

A constraint is imposed in the dynamic programming algo­
rithm that will allow only routine maintenance to be chosen 
in the last D years of the life cycle . This is effectively the 
impact that deferred maintenance has, as almost inevitably 
some type of routine maintenance will be needed to hold the 
pavement until sufficient funds for the recommended treat­
ment are forthcoming. The dynamic programming program 
is then run again as before, and the optimal treatments and 
costs noted. 
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PAVER DATABASE RAW DATA 

INPUT1 Common Ch•ractarlstic& to classify &action• 
into fami lie• <surface type, traffic, primary source 
of' distresal. 
OUTPUT1 Families of' pavement a11ctions with PCI 
versus Age data. 

I 
MARKOV PREDICTION PROCESS 

INPUT: Families with PCI versus Age data. 
OUTPUT: Markov Transition Probabilities for each 
fa.mily a.nd ma.intenance alternative. 

I 
DYNAMIC PROGRAMMING PROGRAM 

INPUT: Markov Transition Probabilities, costs by 
state and family for each alternative, planning 
horizon, interest rates, performance standards by 
family, b1mefi t by state. 
OUTPUT: Optimal maintenance decision (on the basis 
of minimized cost er maximized SIC ratio> fer each 
state of each family; associated cost and benefit. 

I 
PRIORITIZATION PROGRAM 

INPUT: B/C ratio for each section, weights by 
family <and possibly by state>, Actual Budget, 
any necessary (user-defined) sections that rnust 
be repaired, even if sub-optimal. 
OUTPUT: Ranked list of sections that can be 
repaired within budget limitations. 

I 
I PROJECT LEVEL ANALYSIS l 

FIGURE 6 Overall research flowchart. 

As expected, deferred maintenance generally has the great­
est impact in the middle and lower states where the preferred 
options are high cost, and the effect of transiting to a lower 
state with the consequent increased surface preparation costs 
is considerable. It is extremely useful to be able to obtain 
deferred maintenance costs, as the effect of lowering budgets 
in the present on future long-term costs is readily demon­
strable to decision makers and can be used to justify increased 
budgets in early years. 

The ability to play what-if games using dynamic program­
ming and deferred maintenance scenarios is obviously crucial 
in this whole area of budget justification. The ease and speed 
of calculation and recalculation that the dynamic program­
ming ·approach offers is a major factor in its intended incor­
poration into the PA VER <1nci Micro Paver systems. 

ILLUSTRATIVE EXAMPLE OF DYNAMIC 
PROGRAMMING 

A brief example follows to illustrate the operation of the 
program. Performance curves were developed for the Fort 
Eustis base in Virginia based on PC/ condition surveys per­
formed there. Families were defined on the basis of branch 

use and surface type. For the branch use of roadway, four 
families were defined: asphalt concrete, surface treated, thin 
overlay, and structural overlay. 

Four maintenance alternatives were considered: routine 
maintenance, surface treatment, thin overlay, and structural 
overlay. Dollar cost as a function of PC/ was defined for both 
initial repair cost and subsequent routine maintenance cost 
in research carried out for USA-CERL by Purdue University 
( 4). Markov probability calculations for each family were 
performed, and the probability transition matrices obtained. 

The dynamic programming program was then run on a 
Compaq 286 microcomputer with an 80287 math coprocessor. 
An effective interest rate of 5 percent was used, and a life­
cycle analysis of 25 years was specified. A minimum allowable 
state of seven (PC! of 30 to 40) was specified. In other words, 
!f !hi'> c0!'.~!ti0!'. 0! thl'> ::''1Vf"!T'!P!'lf ~prfinn faJk f() hP.fWP.P.n ~() 

and 40, it must be repaired . It is of course very possible that 
the section will be chosen for repair at a greater PC!. The 
program took 35 seconds to produce the entire output for 
every year of the 25 years. 

The simulation program was also run using the decisions 
output from the dynamic programming program. For every 
family/state combination, a total of 4 * 7 = 28 combinations 
in all, 25 simulations of a 25-year life cycle were performed, 



Feighan et al. 

and the cost associated with each simulation was computed. 
The mean and variance for each set of 25 simulations were 
computed. 

In theory, if an infinite number of simulation runs were 
performed instead of the 25 actually run, the mean obtained 
would be the same as that given for year one of each family/ 
state combination by dynamic programming. To verify the 
validity of the dynamic programming results, the dp mean 
and the simulated mean should be within 2.5 standard devia­
tions of one another at the 95 percent confidence level. To 
perform all of the above calculations and calculate the mean 
and variance for each family/state combination took 28 sec­
onds on the microcomputer equipment described earlier. 

ANALYSIS OF EXAMPLE RESULTS 

The dynamic programming results are shown in Table 1 for 
a 25-year life-cycle analysis using a discount rate of 5 percent. 
The optimal decisions corresponding to the numbers shown 
are: 

1. Routine Maintenance 
2. Surface Treatment 
3. Thin Overlay 

In this case, for 5 percent interest and the actual repair 
costs identified in the Purdue study ( 4), the structural overlay 
was not chosen as the most cost-effective solution at any PC/ 
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level considered. This is in agreement with the deterministic 
life-cycle analysis carried out by Purdue in the same study. 

The overall pattern of optimal decisions is reasonable, with 
routine maintenance being chosen in the upper states, surface 
treatment in the middle-to-upper states, and thin overlays in 
the middle to lower states. The cost of repair for surface 
treated sections (family 2) and sections with thin overlays 
(family 3) is the same in this case, as the optimal decisions 
are the same, and the costs of surface treatment or thin overlay 
were found to be a function of condition only, not of section 
surface type before treatment. This is not the case in family 
1 (AC pavements), nor is it the case in most of the data 
obtained in the Purdue study. 

Table 2 shows the results obtained from the 25 simulation 
runs. As can be seen, the mean values obtained are reasonably 
close to those found through dynamic programming and shown 
in Table 1. In fact, establishing a 95-percent confidence inter­
val about the dynamic programming means (2.5 standard 
deviations on either side) shows that for all but one case, the 
family l/state 1 combination, the simulated mean is well within 
the confidence limits. These bounds are also illustrated in 
Table 2. 

To obtain the optimal treatment for any section in the net­
work, all that is necessary is to decide what state and family 
the section is currently in, and look up the optimal treatment 
for that family/state combination in Table 1. The minimum 
allowable state and/or interest rates used can be varied to 
determine their effect on the optimal decisions reached through 
dynamic programming. 

TABLE 1 DYNAMIC PROGRAMMING RESULTS 
FOR 25-YEAR ANALYSIS 

FAMILY STATE OPTIMAL OPTIMAL 
DECISION COST 

FAMILY 1 1 1 0.48 
2 1 3.73 
3 2 4.59 
4 2 4.96 
5 3 b.2b 
b 3 7.51 
7 3 9.43 

FAMILY 2 1 1 2.39 
2 1 3.41 
3 2 4.35 
4 2 5.59 
5 3 8.bl 
b 3 10.51 
7 3 12.08 

FAMILY 3 1 1 1.07 
2 1 3.38 
3 2 4.35 
4 2 5.59 
5 3 8.bl 
b 3 10.51 
7 3 12.08 

FAMILY 4 1 1 0.58 
2 1 2.97 
3 1 3.89 
4 2 4.35 
5 3 5.47 
b 3 b.57 
7 3 8.49 
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TABLE 2 SIMULATION RESULTS AND CONFIDENCE 
LIMITS ON EXPECTED COST OF OPTIMAL TREATMENTS 

BI l'IUL.ATI ON 
FAl'IILY 

FMILY 

FAMILY 2 

FAMILY 3 

FAMILY 4 

FUTURE DEVELOPMENTS 
AND CONCLUSIONS 

1 

STATE 

1 
2 
3 
4 
5 
6 
7 

1 
2 
3 
4 
5 
6 
7 

1 
2 
3 
4 
5 
6 
7 

1 
2 
3 
4 
5 
6 
7 

l'IEAN 

0.29 
3.78 
4.10 
4.96 
6.16 
7.59 
9. :52 

2.19 
3.34 
4.42 
5. '52 
8.65 
10. '51 
12.31 

0.88 
3.41 
3.89 
5.72 
B. 72 
10.83 
11.99 

0.45 
3.14 
4.08 
4.46 
5.33 
6.42 
8.50 

The methodology for integrating the outputs from the pro· 
grams described herein into prioritization and budget allo­
cation modules will be outlined in the future, at which stage 
a complete optimization and prioritization package from raw 
data to allocated budget at the network level will be opera­
tional. Currently, there is research ongoing to validate the 
dynamic programming results over a wide range of input val­
ues for several different databases by comparing results obtained 
with a deterministic life-cycle analysis approach. Results from 
this research will be available in the near future. 

The application of dynamic programming as an optimiza­
tion tool in PMS has great potential for obtaining outputs 
considerably faster without loss of accuracy. In combination 
with simple simulation techniques and a probability-based 
prediction model, it offers the decision maker a simple and 
rapid method of performing life-cycle analysis, obtaining 
expected costs and confidence limits of those costs for net­
works of almost any size at the microcomputer level. 
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VARIANCE UPPER LOWER 
BOUND BOUND 

0.12 0.65 0.31 
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