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Data Combination and Updating Methods 
for Travel Surveys 

MOSHE BEN-AKIVA AND TAI<AYUKI MORIKAWA 

Data from a questionnaire survey that is the principal source 
of information on individual characteristics are subject to 
sampling errors and nonsampling biases. ln aggregate data, 
sampling errors are usually small because a large sample is 
more easily obtainable and the data are also fre.e from non
sampling biases. This paper devcJops a data combination and 
updating method that corrects survey data for nonresponse 
biases and reduces sampling errors by statistically combining 
survey data with aggregate data. This method is applied to 
the estimation of an origin-destination (0-D) table stratified 
by market segments. The 0-D matrix entries and parameters 
of a nonresponse bias model are estimated by the maximum 
likelihood estimation method. An application for an intercity 
rail corridor is presented. 

Questionnaire surveys are often used in transportation 
studies as a principal source of data. Most surveys obtain 
information from an individual in a face-to-face interview 
a telephone interview or a self-administered survey, in~ 
eluding mail-out/mail-in, hand-out/hand-in, and hand
out/mail-in surveys. Survey data have the two following 
major drawbacks: 

• High data collection costs and small budgets lead to 
small sample surveys and, consequently la(ge sampling 
errors. 

• Nonsampling errors, such as nonresponse bias, result 
in biased statistics. 

These drawbacks are often not present in data obtained 
by passive colJection methods, such as passenger counts or 
data from utility records. These methods do not require 
the active participation of individuals and therefore convey 
information only on groups of individuals. Hence this 
kind of data is called aggregate data." For example 
aggregate data in the form of on/off counts give only the 
numbers of passengers with a common origin or destina
tion. The passengers are "grouped" with respect to origins 
or destinations, and the on/off counts are the column 
sums and row sums of the 0-D table. Estimation of the 
cell entries must rely on additional data, such as on-board 
survey data, that trace each passenger's behavior. 
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A small sample survey can be combined with aggregate 
data to reduce the sampling errors and correct some of the 
biases in the survey data. The idea is very similar to the 
"mixed estimation problem" in econometrics (1). Ben
Akiva et al. (2) initiated the applications of these ideas to 
the analysis of survey data. The combined estimation 
method was employed by Hsu (3), who estimated a transit 
route-level 0-D table. The framework and the propositions 
of these methods are presented in Ben-Akiva ( 4) and are 
briefly reviewed in the next section. 

The purpose of the present research is to develop data 
combination and updating methods that include the cor
rection of survey errors in estimating 0-D tables of inter
city rail passengers. The survey error correction method 
proposed here is to combine starisiicaUy tht: survey data 
with aggregate data to obtain unbiased and more efficient 
estimates of unknown population parameters. The 0-D 
tables in this application are stratified by market segments 
defined by trip characteristics, such as trip purpose. Data 
sources to be combined are on-board travel surveys and 
monthly ticket sales. In this application the principal 
"parameters" to be estimated are celJ entries of 0-D 
matrices by market segment. Response rate parameters 
specific to both the market segments and the surveys are 
simultaneously estimated. In addition weekend factors 
and monthly seasonal adjustment factors are also esti
mated. 

REVIEW OF DATA COMBINATION AND 
UPDATING METHODS FOR 0-D TABLE 
ESTIMATION 

Estimation of 0-D tables is one of the most important 
elements in transportation planning studies. Common ap
proaches include the direct estimation of the 0-D tables 
by using, for instance the aggregate gravity model (5) or a 
simulation proceduTe based on a disaggregate destination 
choice model (6). However, these methods require large
scale surveys and complex model estimation and applica
tion procedures. 

If an 0-D table exists from a previous time or a prelim
inary estimate is available from a previous study, it can be 
updated or corrected using less expensive information, 
such as traffic counts. Here the concept of the mixed 
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estimation method is used; the unknown parameters to be 
estimated are the cell entries of the 0-D table. Survey data 
that provide initial estimates of the entries are referred to 
as "direct measurements" because they give "direct" infor
mation on the cell entries. Survey data may be collected 
by a passenger survey for transit or by a license plate 
survey for car travel. 

Besides the information on every cell entry, aggregate 
data are also available. For example, data on the column 
sums and row sums of an 0-D matrix are available. On/off 
counts at bus stops or traffic counts at the cordon line 
provide such data. This type of information is called 
' indirect measurement" because it provides "indirect" in
formation on the cell entries. 

Given these two types of information, several estimation 
methods are proposed in the literature. These methods 
attempt to maximize the "goodness' of fit (or equiva
lently, to minimize the ' badness" of fit) between the direct 
and indirect measurements. These methods also include 
nonstatistical approaches, such as entropy maximization 
(7) or information minimization (8). 

The methods that have been applied most widely to the 
estimation of 0-D tables are described next. 

Iterative Proportional Fitting (IPF) 

The Iterative Proportional Fitting (IPF) method is the 
easiest procedure to apply and has been used in many 
fields. In the transportation literature it has been referred 
to as biproportional fitting (9), Furness or Fratar procedure 
(10), Kruithofs algorithm (I 1), and Bregman's balancing 
method (12). 

The IPF estimators are proportional to the initial matrix 
entries with a constant of proportionality for every row 
and every column. These multiplicative factors modify the 
initial entries to be consistent with t11e observed row and 
column sums. This method is computationally advanta
geous but cannot be extended appropriately to a case with 
stochastic indirect measurements. 

Constrained Generalized Least Squares (CGLS) 

The Constrained Generalized Least Squares (CGLS) esti
mation method is presented in Theil ( 13) and was used to 
estimate 0-D tables by McNeil (14) and Hendrickson and 
McNeil (15). This method is based on the assumption that 
an initial matrix is equal to its corresponding true value 
plus a random disturbance. The disturbances usually are 
assumed to be normally distributed with mean zero. In 
other words, the initial matrix is assumed to be an unbiased 
estimator of the true matrix. This is a restrictive assump
tion because the direct measurements may have distinctive 
bias patterns that vary among 0-D pairs. 

The true matrix is estimated by the generalized least 
squares method subject to the equality constraints of the 
estimated and observed row and column sums (indirect 
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measurements). The CGLS estimator is biased for small 
cell entries because of the nonnegativity constraints on the 
cell entries. 

Constrained Maximum Likelihood Estimation (CMLE) 

Although the Maximum Likelihood Estimation (MLE) 
method requires specific assumptions on the distribution 
of tbe observed values, it is very flexible in the sense that 
any type of distribution or model specification js feasible. 
In general, direct measurements are assumed to be inde
pendently distributed. In other words, each cell entry 
observation is colJected by an independent sampling 
process. 

UsualJy, the indirect measurements are assumed to be 
nonstochastic. In this case, the problem becomes the con
strained maximum likelihood estimation (CMLE). Lan
dau, Hauer, and Geva (16); Geva, Hauer, and Landau 
(17); and Ben-Akiva, Macke, and Hsu (18) applied the 
CMLE to 0-D table estimation. 

The GLS and MLE methods can also be applied with 
stochastic indirect measurements. If statistical indepen
dence can be assumed between direct and indirect mea
surements, the likelihood function to be maximized is 
simply the product of the likelihood of the direct and 
indirect measurements. TJ1e 0-D table estimation method 
proposed in this paper is in this category, which seems 
most flexible. Maximum likelihood estimators are consis
tent and asymptotically efficient (13). 

Geva, Hauer, and Landau (17) also mention that a 
Bayesian approach could be applied to the 0 -D matrix 
estimation if reasonable prior distributions are specified. 
They suggest estimators that are found by maximizing the 
likelihood of the posterior distribution. 

DEVELOPMENT OF AN 0-D TABLE ESTIMATOR 
WITH SURVEY ERROR CORRECTION 

In the previous section the concepts of direct and indirect 
measurements were introduced. A maximum likelihood 
estimator is obtained by statistically combining both types 
of measurements. Direct measurements are often micro
level items and can be obtained only through survey data. 
Survey data, however, are subject to nonsampling errors 
(19,20). Most types of indirect measurements are obtained 
from other types of data collection methods and are usually 
free from nonresponse bias. The survey error correction 
method proposed here is part of an estimator in which 
survey data are statistically combined with aggregate data 
to obtain unbiased and efficient estimates of unknown 
population parameters. 

Although the data combination methods described can 
be used to correct any kind of survey errors, the develop
ment in this paper is focused on the nonresponse bias that 
dominates all other types of errors in travel surveys. Note 
that tl1is assumption simplifies the following presentation 
of the framework but does not imply a loss of generality. 
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0-D trip tables stratified by market segments are often 
necessary because different market segments respond dif
ferently to changes in levels of transportation services. On
board surveys can provide direct estimates of 0-D tables 
by market segment for a transit service. However, in small 
samples these direct measurements have large sampling 
errors and may be subject to large biases due mainly to 
nonresponse. Ticket sales data, which are usually available 
for an intercity rail passenger service, provide an esHmate 
of the aggregate 0 -D table that is free from nonresponse 
bias. The statistical combination of passenger survey data 
with ticket sales data can, therefore, be used to yield 
unbiased and more precise estimates of 0-D tables strati
fied by market segments. 

In this application the principal unknown parameters 
are the number of passengers belonging to a certain market 
segment and traveling between an 0-D pair during a 
specific time period. 

Notation 

TIJ~· = mean value of daily trips from origin i to desti
nation j made by members of market segment k. These 
are the principal unknown parameters to be estimated. 

Puk., = response rate to survey s by individuals in market 
segment k traveling from i to j. These also are unknown 
parameters. 

tuh = observed number of trips from i to j by market 
segment kin survey s. These are the direct measurements. 

rum = number of tickets sold for trips from i to j during 
month m. These are the indirect measurements. 

Distributional Assumptions 

Individuals in a market segment make trips according to 
an identical and independent Poisson process with param
eter Tuk· Namely, a random variable N1p,, which represents 
the number of trips by market segment k from i toj during 
a randomly selected day, is the outcome of a Poisson 
process with parameter Tuk, as follows: 

(1) 

Individual response to an on-board survey is the out
come of a BemouJJi trial. Individuals in a market segment 
have the same response rate, P111.:., to surveys. Under this 
assumption, the direct measurement, tuks, given N,1k, is a 
binomial random variable with parameters Nuk and P/ik. 
as follows: 

(2) 

The compound distribution of l 1jk given T IJk is found by 
deriving the marginal distribution of l lJks· From Equations 
1 and 2 it can be shown that t11kJ has a Poisson distribution 
with parameter PiJks T;jk, as follows: 

(3) 
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The number of trips made in a day is statistically inde
pendent of the number made on any other day. Also, the 
number of trips is statistically independent among market 
segments. 

This assumption implies that the indirect measure
ments, rum. are also Poisson random variables because the 
sum of independent Poisson variables is Poisson distrib
uted. Since rum is aggregated through market segments and 
days of the month, it is given by 

(4) 

where dm denotes the number of days in month m. 
The survey data and the monthly ticket sales data are 

statistically independent. This assumption is valid if the 
survey data are collected on very few days in the month. 
The overall likelihood function is then a product of the 
likelihood of the suJ\ley data and that of ticket sales data. 

Response Rate Specification 

In the preceding equations, the response rates PIJh• are 
also unknown parameters. The number of these parame
ters can be reduced by expressing the response rate as a 
parametric function of the passenger's socioeconomic 
characteristics and the survey administration method. In 
this applicaHon, because of the on-board survey adminis
tration, the trip length is expected to affect the survey 
response rate. Assuming that a market segment is homo
geneous with respect to the response rate, the following is 
a reasonable specification: 

Puks = ----- - --
! + exp(a1.:., - bksd1)) 

where 

du = travel time from i to j; and 
ak,, bks = unknown parameters. 

(5) 

Equation 5 employs a logistic form that bounds the 
response rate between 0 and 1. 

Under the preceding assumption, the likelihood func
tion can now be written as a function of the data and the 
unknown parameters. The function is composed of two 
parts: direct measurements and indirect measurements. 
The estimated values are obtained by applying a numerical 
maximization algorithm. 

CASE STUDY: DATA, MARKET SEGMENTATION, 
LIKELIHOOD FUNCTION, AND ESTIMATION 
TECHNIQUE 

The 0-D table estimation method just described is 
applied to the estimation of intercity rail passenger 0-D 
tables of the Los Angeles-San Diego (LOSSAN) corridor. 
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Data 

The Orange County Transportation Commission (OCTC) 
conducted on-board surveys on the following days in July 
1984: IO (Tuesday), 11(Wednesday),13 (Friday), and 15 
(Sunday). The survey administration method and explor
atory data analyses are well documented by OCTC (21). 
Amtrak also carried out an on-board survey in December 
of the same year. Although the questionnaire used in the 
survey is available, the administration method and exact 
date on which it was performed are unknown. 

In the OCTC surveys, four out of eight trains were 
chosen in each direction on each day to conduct the 
survey. Since the combinations of those four trains differ 
from day to day and 0-D flows dramatically fluctuate 
according to the combination of tr'ains survey data on any 
particular day do not necessarily mirror the daily ridership. 
Therefore, the OCTC three weekday surveys are combined 
into a single data set. 

Accordingly the following three surveys are considered: 

• survey I-combined three weekday surveys by OCTC 
• survey 2-survey conducted on Sunday by OCTC 
• survey 3-Amtrak survey 

Besides the on-board survey data, monthly ticket sales 
data from October 1981 through September 1985 are 
available. These provide the indirect measurements. 

Market Segmentation 

The specification of the market segmentation scheme 
should also depend on statistical considerations. These 
include a requirement of a minimal number of observa
tions per cell and an a priori expectation with respect to 
response rate pattern. Namely, all members of a market 
segment must have approximately the same response rate 
and mean value of the number of trips by 0-D pair. In 
terms of using the results for impact studies of policy 
changes, for example, it is desirable for a market segment 
to have homogeneous elasticities to the services. 

The market segmentation scheme employed in this case 
study relies on trip purpose and the size of the traveling 
party as follows: 

• market segment I-commuting trips 
• market segment 2-other business-related trips 
• market segment 3-personal trips traveling alone 
• market segment 4-personal trips with a traveling 

party numbering two or more 

Note: school trips are included as personal trips. 
Since the Amtrak survey does not ask for the party size, 

it provides only an aggregate measurement of market 
segments 3 and 4. In other words, it provides indirect 
measurements of market segments 3 and 4. 
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Likelihood Function 

In addition to the principal and the bias parameters, the 
model includes weekend and seasonality adjustment fac
tors. The weekend factors are the ratio of a weekday to a 
weekend day value and are specific to market segment. 
Ridership also drastically fluctuates by season, and its 
fluctuation pattern depends on the 0-D pair. Hence all 
th.e 0-D pairs are categorized into the following three O
D groups, and monthly seasonality factors are defined 
specific to each group: 

• 0-D group 1-0-D pairs with either the origin or the 
destination at Anaheim (the location of Disneyland) 

• 0-D group 2-0-D pairs with either the origin or the 
destination at San Clemente (a popular summer resort) 

• 0-D group 3-all the other 0-D pairs 
Reflecting the specification of the response rate and the 

weekend and seasonality factors the model described be
low is obtained. 

tub - Poisson [ 1 p( 
1 

_ b d) Cum, wk,TUk] +ex aks ks I) 

(6) 

and 

r;p - Poisson [cum( Em~ Tuk +Fm f wkTUk)] (7) 

where 

T IJk = mean value of daily trips from i to j by market 
segment k (principal unknown parameter)· 

tu,,,·= number of respondents of market segment k 
traveling from i to j in survey s (direct mea
surement); 

ru1 = number of tickets sold for trips from i to j in 
/th monthly ticket sales data (indirect mea
surement), I= 1, ... , 48 (i.e., four years); 

ab, bk,· = unknown response rate parameters; 
wk = weekend factor of market segment k-that is, 

weekend/weekday ratio; 
wks = wk: if survey s is conducted on weekend, 1: 

otherwise 
Cum = seasonality factor of 0-D pairs (i, j) in month 

m; 
Em = the number of weekdays in month m; and 
Fm = the number of weekend days in month m. 

Note: m,. and m, denote the month of survey s and the /th 
ticket sales data, respectively. 

The likelihood function to be maximized is given by 

L = IT IT IT IT Pr(l;jks) x IT n n Pr(ru1) (8) 
s i j k I i J 

ESTIMATION RESULTS 

In discussing the estimation results, it is useful to sum
marize first the unknown parameters. The 341 parameters 
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are composed of: 

288 Tijk's: since LOSSAN corridor has 9 stations, one 
0-D table has 72 cells (9 x 8) and there are 4 market 
segments ( 4 x 72 = 288); 

8 ak,'s: 4 market segments times 2 surveys (OCTC and 
Amtrak); 

8 b1cs's: ditto; 
4 wk's: 4 market segments; and 
33 Cijm's: 3 0-D groups times 11 months because the 

parameters' values for December are normalized to one. 

The estimation results of the principal parameters, T!Jk's, 
and the other parameters are shown in Tables I through 
6. Most of the parameters have large /-statistics. 

Figures 1 and 2 compare the response rates. They show 
that all the response rates except for market segment 1 in 
the OCTC survey have upward slopes. Upward slopes 
mean that passengers traveling longer respond to the sur
vey more, which, intuitively, is reasonable. The reason 
that market segment 1 in the OCTC survey shows the 
downward slope seems as follows. The observed commut
ing trip distribution in the OCTC surveys is quite different 
from the distribution in the Amtrak survey. According to 
the OCTC surveys, the majority of the commuting trips 
cover a short distance-for instance, between Los Angeles 
and Fullerton. The Amtrak survey, however, indicates that 
there are more long-distance commuting trips, such as 

TABLE 1 PRINCIPAL PARAMETERS FOR MARKET 
SEGMENT 1-COMMUTING TRIPS 

LAX FUL ANA SNA SNC SNT OSD DEL SAN 

LAX 0 20.1 0.7 13.6 16.7 o.o 11.8 15.7 29.4 

(15) (2.7) (14) (13) (2.6) (6.9) (6.7) (6.7) 

FUL 20, 9 0 o.o {),0' 3.0 0.1 2.1 4. 5 1. 3 

( 15) (0.3) (0.6) (5.5) (l.3) (3.8) (5.0) (2.3) 

ANA 0,3 O.O 0 o.o 0.6 0. 1 0.6 1.9 0.8 

(l.6) (0.3) . (0.2) (2.7) (l.6) (2.6) (4.r:) (2,0) 

SNA 10.9 0.0 0.0 0 0.5 o.o 1.4 0.8 0.9 

(10) (1.2) (0.6) (2.1) (0.2) (7.3) (2.6) (2.2) 

SNC 20,5 8.5 0.7 2.2 0 o.o 0.6 1. 4 o.o 

(13) (9.3) (3.1) (7.5) (l.4) (2.7) (12) (0,1) 

SNT 0.0 0.0 C.O 0.0 0.0 0 o.o o.o 0.0 

(1.6) (0.7) (1.3) (0,6) (0.4) (0.6) (0,2) (0.5) 

OSD 14, 1 4,4 2.9 8.0 1. 1 o.o 0 o.o o.o 

(7.6) (7.4) (6.0) (11) (4.7) (1.4) ( 2.0) ( 2. 2) 

DEL 31.5 5.2 5.2 3.8 2.5 o.o o.o 0 0. 0 

(10) (5.2) (7.4) (7.1) (5.8) (1.7) (0.3) ( 2. 8) 

SAN 70.0 2.9 2.8 1.6 0.4 0.0 ·O.O 0.7 0 

(11) (2.2) (3.7) (3.1) (1.6) (0.3) (l.9) (5,3) 

t-statistic• in parentheses 
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TABLE 2 PRINCIPAL PARAMETERS FOR MARKET 
SEGMENT 2-0THER BUSINESS-RELATED TRIPS 

LAX 

FUL 

ANA 

SNA 

SNC 

SNT 

OSD 

DEL 

SAN 

LAX 

0 

26.7 

( 11) 

5.5 

FUL ANA SNA SNC 

21.4 3.8 9.9 7.8 

(13) (3.8) (5.0) (5.4) 

0 o.o o.o 1.2 

(0.2) (1.3) (2.1) 

0. 1 0 o.o o.o 

SNT OSD DEL SAN 

0.1 7,9 13.2 2l.2 

(1.7) (6.6) (9.7) (15) 

o.o 1. 2 1. 7 3.6 

(0.6) (2.9) (4.2) (4,7) 

o.o 0.9 1.9 2.1 

(3,7) (1.8) (0.8) (0,2) (0.3) (2.9) (3.2) (4,0) 

9 . 6 o.o o.o 0 2.0 0.0 2.2 1.1 2.7 

(5,0) (2.2) (0.6) (3.4) (0.5) (3.9) (2.5) (3.2) 

14.3 2.4 6.2 o.o 0 o.o o. 7 o. 6 1. 9 

(6,9) (3.3) (15) (0.4) (9.1) (1.7) (2.1) (2.5) 

o.o o.o 0.1 o.o 0.0 0 0.0 0.0 0.0 

(1.7) (0.6) (2.0) (0.5) (5.8) (0.7) (1.8) (0,5) 

13. 0 3. 5 o. 2 6.9 o.o o.o 0 o.o o.o 

(8.1) (5.4) (1.0) (4.7) (0.2) (1.6) (0.9) (l.8) 

24.7 4.8 2 . . 6 6.4 l. 9 0.2 0.9 0 o.o 

(12) (5.7) (5.5) (5.3) (2.31 (2.9) (3.0) (l.91 

28.0 2.9 3.0 6.3 1. 8 0. 1 o.o o.o 0 

(13) (4.7) (4.7) (7.1) (2.8) (2.1) (2.0) (2.2) 

t -s t at istics in parentheses 

TABLE 3 PRINCIPAL PARAMETERS FOR MARKET 
SEGMENT 3-PERSONAL TRIPS: PARTY SIZE 1 

LAX FUL ANA SNA SNC SNT OSD DEL SAN 

LAX 0 82.9 14.3 52.3 51.4 2.9 61.7 68.5 131.0 

(42) (20) (41) (34) (23) (38) (37) (31) 

FUL 62.8 0 0.2 o.o 21.2 2.4 20 . 7 19.7 38.9 

(24) (16) (2.6) (27) (24) (36) (31) (23) 

ANA 10.1 0.2 0 0.2 4. 2 0.3 8.6 8.1 14.8 

(11) (7.0) (14) (19) (5.2) (27) (16) 112) 

SNA 50.9 1.8 0.2 0 7.2 2.1 23.5 23.6 48.1 

(34) (41) (16) (13) (35) (42) (40) (38) 

SNC 44.5 20.7 0.0 12.2 0 o.o 5.2 12.5 21.0 

(36) (24) (0.8) (31) (1.8) (19) (42) 131) 

SNT 2.5 2.4 0.2 0.7 0.0 0 0.2 0.3 0.5 

(38! !26) (4.9) (7.5) (1.4) (25) (8.3) (9.6) 

OSD 64.5 20.9 7.9 32.4 7.9 0.4 0 3.6 24.3 

(33) (34) (15) (30) (24) (29) (48) (57) 

DEL 53.5 23.3 4.2 28.0 11.9 0.6 2.4 0 21. 9 

(24) (25) (8.8) (31) (24) (14) (10) 156) 

SAN 124.7 59,9 20.7 58,4 19.6 1.2 21.6 21.7 0 

(23) (33) (29) (43) (33) (20) (54) (55) 

t-statistics in parentheses 
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TABLE 4 PRINCIPAL PARAMETERS FOR MARKET 
SEGMENT 4-PERSONAL TRIPS: PARTY SIZE 2+ 

LAX FUL ANA SNA SNC SNT OSD DEL SAN 

LAX 0 4.0 4.3 3.0 4.8 0.5 9.0 13.1 62.9 

(5.3) (7.6) (3.9) (4.7) (4.7) (7.1) (9.5) (17) 

FUL 15.2 0 o.o 1. 5 5.0 0.6 4.4 6.3 40.0 

( 7. 1) (1.4) (39) (6.1) (7.3) (6.8) (6.7) (20) 

ANA 7.6 o.o 0 0.0 0.8 0.1 0.6 0.5 14.7 

(8.5) (1.3) (0.4) (4.4) (1.3) 12.1) (1.8) (13) 

SNA 10. l o. 0 o. 0 0 5.0 0.2 O.J 2, 4 17. 8 

(7.2) (0.8) (0.2) (8.5) (9.0) (1.3) (4.5) 115) 

SNC 5.5 1. 2 1.2 0.6 0 o.o 0.8 0.6 5.1 

(5.9) 13.1) (4.5) (2.8) (0.4) (2.9) (3.0) (8.3) 

SNT o.o 0.1 o.o 0.5 o.o 0 0.0 0.1 0.2 

(1.7) (2 . 1) 10 . 3) 15.1) 10.7) (0.6) (2.4) (4.2) 

OSD 11. 8 2.0 1.3 2.2 1. 8 o.o 0 o.o o.o 

(8.2) (3.5) (3.1) (3.7) (5.1) (2.9) (1.4) (2.5) 

DEL 19.1 2.2 3. 3 O. 8 1. 7 o.o o.o 0 o.o 

(11) (3.2) (6.9) (1.9) (5.5) (1.8) (0.6) (3. 8) 

SAN 45 . 4 14.0 7. 1 7.9 6.6 0.1 o. 3 o.o 0 

(13) (8.8) (9.5) (8.5) (11) (2.3) (3.6) (2.6) 

t-etatietics ln parentheses 

TABLE 5 RESPONSE RA TE 
PARAMETERS 

Response Rate Parameters -- exp(ate) 

m.s. 1 

m.s. 2 

m. s. 3 

m. s. 4 

OCTC Surveys Amtrak Survey 

0. 00 ( 1. 0) 

7.71 (5.5) 

34.6 (11.1) 

0.94 (3.8) 

1.59 (2.8) 

7.60 12.01 

23.2 (4.9) 

~ (0. 6) 

Response Rate Parameters -- exp(bta) 

m. s. 1 

m.s. 2 

m. s. 3 

m.s. 4 

OCTC Surveys Amtrak Survey 

0.22 (6.4) 

1.86 (13.0) 

1.39 (55.9) 

1.09 (20.8) 

2.14 15.3) 

2. 71 15. 9) 

1. 90 120. 3) 

0.00 10.61 

t-statistics in parentheses 

TABLE 6 WEEKEND AND SEASONAL 
ADJUSTMENT FACTORS 

Wee kend Factors -- wt 

m. s . 1 0.10 19.5) 

m.s. 0.23 (10.1) 

m.s. 3 1.79 125.5) 

1.76 124.5) 

Monthly Seasonal Adjustment Factors -- CiJ• 

0-D Group l 0-D Group 2 0-D Group 3 

Jan 

Feb 

Mar 

Apr 

May 

Jun 

Jul 

Aug 

Sep 

Oc t 

Nov 

o. 91 178) 

o. 98 I 80) 

1.48 (87) 

1.55 188) 

1. 63 ( 89) 

1.99 193) 

1. 96 ( 93) 

2.31 (94) 

1.51 187) 

0.64 (72) 

0.90 (77) 

t- s tatistics in parentheses 

0.94 138) 

1.13 140) 

1.34 (41) 

1.89 (44) 

4.11 149) 

7.58 (51) 

7.04 (51) 

6.58 (50) 

2. 52 ( 46) 

1.52 (43) 

o. 95 I 38) 

0.99 (426) 

0.95 (423) 

1.15 (443) 

1.22 (447) 

1.33 ( 456) 

1.29 (454) 

1.35 1459) 

1.53 (468) 

1.05 (433) 

0.91 (413) 

1.03 (432) 
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from Los Angeles to San Diego, than short-distance ones. 
This discrepancy seems to have resulted from the choice 
of surveyed trains and passengers' definition of "comm.ut
ing." Whatever the reason may be the MLE ascribed this 
discrepancy to the response rates in order to fit the data. 

Figure 2 shows that there were no responses from market 
· segment 4 in the Amtrak survey. This is because the 

Amtrak survey provides only the aggregate number of 
passengers with regard to market segments 3 and 4. 

The estimates of the weekend factors look reasonable. 
They show that on weekends the numbers of commuters 
and business passengers are 10 percent to 23 percent of 
weekdays, respectively. Also, on a weekend day there are 
about 1.8 times as many personal trips as on a weekday. 

Monthly seasonal factors show considerably different 
seasonal fluctuation patterns among 0-D groups. The 
factor of 0-D group 2 (either origin or destination is San 
Clemente, a summer resort) takes as much as 7 .6 in June, 
which means that in June 7 .6 times as many people as in 
December travel to or from San Clemente. The users of 
San Clemente station, however, are only a very small 
portion of all the patrons (in fact, only one out of eight 
trains stops at that station daily). 0-D group I (either 
origin or destination is Anaheim, the Disneyland station) 
also shows higher factors in summer than does 0-D group 
3 (all the other 0-D pairs). 
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FIGURE 1 Response patterns: unrestricted model-OCfC survey. 
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CONCLUSION 

This paper proposes a correction method for survey errors 
by combining different data sources. Although reducing 
the survey errors by improving the survey administration 
or by repeating the survey may reduce the nonresponse 
problem, it is sometimes inefficient in terms of cost and 
time. Utilization of other available data sources that are 
inexpensive to collect seems to be an attractive and prac
tical approach. The proposed method statistically com
bines survey data with aggregate data to obtain unbiased 
and more efficient estimates. 

Although this paper focuses on the nonresponse bias, 
the proposed method can correct various other types of 
survey errors. lt can also be used to update a database by 
treating the old database as direct measurements and 
combining it with up-to-date indirect measurements. 

In practice, this methodology enables the utilization of 
any kind of information, and as much of it as possible. 
Conversely, it can always be used to improve future data 
collection methods by designing "optimal" combinations 
of data collection efforts. 

The models described in the last section of this paper 
are based on some assumptions that should be investigated 
further. The robustness of the Poisson assumption needs 
to be tested by employing other distributions, such as the 
Normal. Secondly, alternative market segmentation 
schemes should be attempted. Market segmentation that 
properly reflects the trip generation and response behavior 
assumptions is required for the model. 

The idea of statistically combining data from different 
sources can be applied in other contexts. For example, 
parameters of disaggregate and aggregate travel demand 
models can be estimated by using both survey and external 
counts or census data. A model transferred from one 
region to another is often subject to a transfer bias that 
can be corrected by combining data from both regions 
(22). Another application is the reweighting of survey data 
using the latest regional demographic data. 
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