Field Evaluation of Thermal Deformations in Undoweled PCC Pavement Slabs

M. Poblete, R. Salsilli, R. Valenzuela, A. Bull, and P. Spratz

This paper presents some of the results obtained in extensive research of the Chilean in-service network of PCC paved roads, in which measurements have been conducted in 21 test sections covering various conditions of climate, pavement structure, and age. In test slabs, simultaneous measurements were made of internal temperatures and absolute vertical displacements of slabs, as well as openings of transverse joints and faultings. The results show a "permanent" upward curling of slabs in all pavements sections included in the study, as modified by daily temperature variations. The curling is demonstrated in the field by the perceptible rocking of the slabs under the early morning traffic and by the systematic transverse cracking and corner breaks of some rather new pavements with no signs of pumping. Cracking seems to start from the surface downward and from the edges inward. Detailed evaluation of the internal stresses with the superimposed nonlinear effects of environmental and wheel loads, calibrated with these results, is underway.

About one-third of Chile's 6,700-km network of paved roads are Portland cement concrete, located mainly in the central and southern regions and carrying the heaviest traffic, especially along the Pan-American Highway.

Toward the end of the 1970s, an extensive reconstruction program of the most deteriorated sections of the network was started by the Highway Division of the Chilean Ministry of Public Works, and it is now almost complete. In order to define maintenance policies for these sections, a Maintenance Management System is being implemented (1). To this end, the Highway Division assigned the Universidad de Chile to model the structural deterioration of concrete pavements, which had been designed and constructed under general AASHTO guides and specifications. Therefore, monitoring the pavement for the effects of climate, traffic, and subgrade support was considered (2). Development and calibration of the predictive analytical model required implementation of survey and measurement methodologies which are now performed periodically at 21 locations along the concrete pavement network. In addition, these local surveys and measurements are expected to facilitate the calibration of mechanized equipment, such as a Lacroix-type deflectometer and a profilometer, which are used extensively by the Highway Division.

Ambient temperatures in the concrete paved roads are mild, with no big differences along the instrumented sections, and are free of frost conditions affecting the soil. Figure 1 shows the number of days with heavy rains (>5 mm/24 hr) increasing southward (3), from an average of less than 15 days in test section 1 to more than 120 in test section 21, mostly during the winter. Consequently, ambient humidity is far from saturation during the rest of the year, with strong evaporation conditions predominating.

After 3 years of periodic monitoring, local surveys and measurements have shown that an upward curling of the slabs prevails during most of the daily thermal cycle; part of this deformation is permanent, but the remainder varies daily in accordance with changes in the thermal condition. Identical effects have been reported from California by Hveem (4), Tremper and Spellman (5), and others. This condition of partial support exhibited by deformed slabs accelerates concrete fatigue, thus reducing the number of theoretically allowed loading cycles. Cracking occurring before the third year of service in some pavements subjected to heavy traffic could be explained by these findings.

In order to consider these effects in predictive deterioration models, calculations are in progress to evaluate internal stresses with finite-element techniques, fitting the measured deformations with those computed under equivalent conditions of edge restraints, support, and loading. This work constitutes the follow-up step of the research program and will be the subject of future research.

FIELD MEASUREMENTS AND RESULTS

Along the heavily trafficked central-south regions of Chile (shown in Figure 1), 21 test sections (TS) were selected to be monitored for the effects of weather conditions, pavement aging, and slab support stiffnesses. In Table 1, location and pavement structural characteristics for the 21 test sections are shown. The instrumentation designed and installed in each of the 21 test sections (6) allows the measurement of internal temperatures and absolute vertical displacements of slabs, as well as openings of transverse joints and faultings, using the elements shown in Figure 2. For deep reference bases (DRB), drilling was performed using percussion-rotation and compressed air, to cause the least alteration to subgrade soils; likewise, borehole reconstruction was performed to reproduce pavement conditions as closely as possible.

The diagram shown in Figure 3 illustrates the analog-digital data acquisition system used for the simultaneous measurement of temperatures, thermal displacements, and load deflections; values are processed in-situ by a portable PC. Signal monitoring allows qualification of the results, recording of results for further analysis, or repeating of measurements.
Once a measurement cycle has been completed, instruments, cables, and connectors are taken to the next test section, leaving only the reference bases in place with the LVDT housings enclosed by lids mounted flush with the pavement.

The data presented herein were gathered during summer 1986, winter 1986, and summer 1987, over a continuous 24-hr cycle. Accuracy of the measurements by their frequency is shown in Table 2.

Typical internal slab temperatures, recorded during 24 hr on a sunny summer day, are plotted in Figure 4 by depth of measurement. Minimum mean temperature occurs early in the morning, whereas maximum mean temperature occurs typically between 3 p.m. and 5 p.m. The temperature range on the slab surface becomes 4 times higher than the temperature range at the slab bottom, and the temperature distribution never becomes linear with depth or constant in slab thickness.

Therefore, thermal gradients exist within the slab during the 24-hr period. Negative gradients—when the slab surface is cooler than the bottom—tend to predominate from late afternoon to late morning through the night (Fig. 4) and during the whole year. Accumulated hours at various thermal gradients are presented in Figure 5; the histogram is the result of semiempirical modeling calibrated through actual field measurements (7). Positive gradients, though higher in absolute value, exist for only a few hours on a sunny summer day.

As a consequence of daily variations in thermal gradients, pavement slabs undergo continuous deformations, as may be derived from the isograms in Figure 6, which were obtained on a summer day in 1985 by precise measurements (to ±0.01 mm) of nine topographical reference bases installed in a slab. These isograms show the upward concave shape of the slab for the early morning negative gradient (Figure 7a), and a nearly cylindrical shape of longitudinal axis during the afternoon hours with positive gradient and high mean temperature, when the rotation of the slab's transverse edges is prevented by the locked joints (Figure 7c). Such behavior is typical and was observed in all instances of high mean temperatures. Rotation is not prevented at the longitudinal joint where two slabs belonging to adjacent lanes and paved at different dates are linked together through steel tie bars.

Horizontal slab movements measured at transverse joints near the slab outer edge are shown in Figure 8, for five moments of a complete cycle during a sunny summer day. Sections remain plane at all times, but rotate with the gradient. With negative gradients the joint can be completely open if the mean temperature is low enough, whereas the bottom edges can be compressed if the mean temperature is high. For positive gradients and high enough mean temperatures, the joint can close, thus preventing any rotation (locked joints).

On cloudy winter days the temperatures are low and very stable, as are the gradients, and hence the edges do not rotate significantly. However, the joints stay open and there is little or no compression at the lower edges. Note that the absolute value of joint openings at given temperatures is not equal for all pavements, but depends on conditions such as the level of maximum temperature in the fresh concrete, drying shrinkage (5), or swelling due to seasonal moisture absorption (8).

Figure 9 illustrates joint opening variation in the mean plane, divided by the mean length of the slabs adjacent to the instrumented joint. A linear relationship with the mean temperature for winter and summer was obtained. On sunny summer
The slab remains curled upward when the thermal gradient becomes minimal, as was observed at points DRB 4 and 5, respectively. This allows observation of the following details:

- Vertical movements of slab corners and edges (DRB points 2, 5, and 3) oscillating all day following thermal gradient variation become minimal when this gradient becomes maximum or positive. When the gradient is negative, the corners and edges stay uplifted and the slab then presents a perceptible upward curling that matches the previous results obtained from topographical levelings.
- The slab remains curled upward when the thermal gradient becomes null, as was observed at 10 a.m. (warming) of the summer day cycle (Figure 10).
- Behavior of the central point, DRB 4, is always contrary to the behavior of the corners and the edges. Therefore, when
STEEL CAP
LVDT CONNECTION TO A/D

CONCRETE SLAB
SOFT FLEXIBLE STOPPERS

0.08 m

PVC CASING

19 mm STEEL PLAIN REBAR

COMPACTED
#16 CLEAN SAND

3.5 m

0.35 m

SAND-CEMENT GROUTING

DEEP REFERENCE BASE (DRB)

FAULTING & JOINT OPENINGS MEASUREMENTS

AIR TEMPER. TO A/D

TRANVERSE JOINT REF. BASE (JRB)

SHOULDER

0.20 m

LAY OUT OF INSTRUMENTATION AT EACH TEST SECTION

TRB: Topographical Reference Bases

TRAFFIC

DRB

JRB

TH.S.

TRB:

Generator
220 V, 50 Hz
Rectifier

Display

On line Storage

FLOWCHART OF THE DATA ACQUISITION SYSTEM

FIGURE 2 Instrumentation devices in the test sections.

FIGURE 3 Schematic layout of instrumentation used.
corners and edges are supported, due to some strong positive
gradient, the slab center rises; so does DRB point 3 in some
cases, causing the nearly cylindrical shape illustrated in Figure
7c.
• Maximum deflections under load, determined at DRB
points 2, 5, and 3, show a behavior that is very similar to that
due to thermal gradient, and there is a proportionality between
the magnitudes of deflection and edge lifting.
• Deflections in winter may not at any time during the day
reach such low values as may be derived from Figure 11. This
would indicate that the condition of partial support at the
center of the slab may last the whole day, as it occurred in
the case presented here.

The deformation at the corner point DRB 1 of the adjoining
slab is similar to the behavior at point DRB 2, though gen-
erally of different magnitude, as it appears from Table 3,
which summarizes all data obtained for the 21 test sections.
To analyze this apparent anomaly in homogeneous pavement
sections, deformations were normalized by using a standard
orthogonal 3.50-m × 4.50-m slab as a reference. In Figure
12, all pairs of points DRB 1 to DRB 2 of normalized max-
imum deformations are plotted against each other. Having
eliminated the geometric difference for every deformation,
the discrepancy that still persists has to be explained by the
interlock created in the joint crack with some preferential
inclination to one side.

A different behavior is observed at the opposite corner in
the same slab. Figure 13 shows the marked symmetry that
exists in the upliftings of points DRB 2 and 5 in opposite
corners, thus illustrating the reduced restriction imposed by
the tie bars built in the longitudinal construction joints between
two-lane pavements. In the special case of four-lane dual-
carriageway represented by test sections 2 and 11, some
rocking of the instrumented outer lane would be produced
by the central lane during intense cooling after a hot summer
day.

TABLE 2 LIST OF MEASUREMENTS CARRIED OUT IN ALL TEST SECTIONS

<table>
<thead>
<tr>
<th>Measure</th>
<th>Accuracy</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatures</td>
<td>± 0.20 °C</td>
<td>every 5 min</td>
</tr>
<tr>
<td>Displacements</td>
<td>± 0.01 mm</td>
<td>every 5 min</td>
</tr>
<tr>
<td>Deflections</td>
<td>± 0.01 mm</td>
<td>every 1 hour</td>
</tr>
<tr>
<td>J. Openings</td>
<td>± 0.05 mm</td>
<td>every 2 hour</td>
</tr>
<tr>
<td>Faultings</td>
<td>± 0.10 mm</td>
<td>once a day</td>
</tr>
</tbody>
</table>

FIGURE 5 Histogram of modeled thermal gradients for typical test sections.

FIGURE 4 Internal temperature distribution every 2 hr during a measurement cycle.

FIGURE 3 Internal temperature distribution every 2 hr during a measurement cycle.
From Table 3 it can also be seen that the upward-curling deformation occurs with greater or less significance in all pavements, and it occurs in the south at magnitudes similar to those in the north, in spite of climatic differences. Furthermore, the duration of this phenomenon covers the main part of the day, at least 14 hr in summer and the whole day during winter.

Figures 14, 15, and 16 show the relationships between slab deformation and thermal gradients for different geographical locations, as well as relationships with pavement age and base types. The behavior of the corners and of the whole transverse edge during the morning warming is different than the behavior during the evening cooling. This is due to the lower rotation restriction existing at joints when they stay more open (low mean temperature in the early morning). As surface temperature increases, the slab edges go down, and the joints get compressed and tend to lock up. In the afternoon, surface cooling reverses the process, but in a different way because the thermal inertia of concrete causes a very slow decompression in the slabs. In this case, the upward curling remains restricted while the gradient is decreasing. This phenomenon occurs in the three cases with respect to summer and is representative of all 21 test sections (10). In winter, owing to low mean temperatures, the open joints do not restrict the deformation; therefore both branches tend to coincide on a single straight line.

Furthermore, from Figures 14 and 15, it may be seen that the slabs require a certain positive gradient in order to reach the condition of full support. This would prove the existence of a thermal-independent cause of upward curling. Its origin could be the moisture differential through the slab thickness, since the upper portion is nearly always drier than the bottom. On the other hand, excessively high fresh concrete temperatures that are frequent on hot summer days undoubtedly contribute to a larger shrinkage and to more open joints. Consequently there is less restriction on the slabs' transverse edges and greater freedom to rotate and to uplift, regardless of the thermal gradients. Similar effects are clearly experienced early each autumn when the pavement reaches its maximum dryness.

This upward curling was also found in an older pavement, but as shown in Figure 16, it is almost negligible when compared to the other ones. The difference is assumed to be related in some way to the modern use of membrane-forming curing compounds under prevailing environmental conditions of high evaporation, as compared with the old practice of polyethylene film coverings or dikes for pond curing wherein temperature can be regulated (9).
CONCLUSIONS

The instrumentation as well as the measurement methodology presented herein have proven to be efficient for quantifying, with a high degree of accuracy and repeatability, the absolute movements and deformations that can occur in concrete pavement slabs.

In all the pavement sections included in this study, the generalized prevailing upward curling of the slabs, causing considerable lack of support at slab edges, has been verified. This condition is reversed only during the hours of high solar radiation.

In order to obtain the effective support of slab edges, a significant positive thermal gradient has to be generated in the concrete slab to overcome a "permanent" upward curling that occurs independently of the thermal one.

Under conditions where positive gradients are higher than the "support initiation gradient," the slabs normally are expanded and rotation at their transverse edges is restricted (Figure 7c); thus a cylindrical shape is imposed on the slab with its longitudinal edges supported. The traditional downward curling may appear only if the transverse edges are free to rotate (Figure 7b), something that seldom occurs when the mean temperatures in the pavement remain low enough during a sunny day.

In view of the foregoing, upward curling with partial support localized in the central zone of the slab, and minimum collaboration of contiguous slabs owing to a relatively more
FIGURE 10 Continuous slab displacements and load deflections during a summer day cycle, for an 81-kN moving load.
FIGURE 11 Continuous slab displacements and load deflections during a winter day cycle, for an 81-kN moving load.
<table>
<thead>
<tr>
<th>Test Section</th>
<th>Slab Length (m)</th>
<th>Slab Constr. Season</th>
<th>Measure Season</th>
<th>Thermal Cond.</th>
<th>Max. Uplift of Corners*</th>
<th>Accumulated hours</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L₁</td>
<td>L₂</td>
<td></td>
<td>Mean T. Grad.</td>
<td>ERB 1</td>
<td>ERB 2</td>
</tr>
<tr>
<td>Longotoma</td>
<td>1</td>
<td>4.56 4.06</td>
<td>Spr. ’83</td>
<td>Sun. ’86</td>
<td>22.5</td>
<td>-0.03</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.54 5.15</td>
<td>Spr. ’81</td>
<td>Win. ’86</td>
<td>12.0</td>
<td>-0.04</td>
</tr>
<tr>
<td>Lampa</td>
<td>3</td>
<td>3.50 3.49</td>
<td>Win. ’84</td>
<td>Aut. ’86</td>
<td>9.0</td>
<td>-0.02</td>
</tr>
<tr>
<td>Lo Vasquez</td>
<td>4</td>
<td>3.44 3.53</td>
<td>Sum. ’85</td>
<td>Sun. ’86</td>
<td>23.0</td>
<td>-0.05</td>
</tr>
<tr>
<td>Talagante</td>
<td>5</td>
<td>5.00 4.05</td>
<td>Win. ’75</td>
<td>Aut. ’86</td>
<td>12.0</td>
<td>0.00</td>
</tr>
<tr>
<td>Paine</td>
<td>6</td>
<td>4.64 4.57</td>
<td>Aut. ’83</td>
<td>Sun. ’86</td>
<td>7.0</td>
<td>-0.03</td>
</tr>
<tr>
<td>Graneros</td>
<td>7</td>
<td>4.50 4.48</td>
<td>Aut. ’83</td>
<td>Sun. ’86</td>
<td>23.5</td>
<td>-0.06</td>
</tr>
<tr>
<td>San Fernando</td>
<td>8</td>
<td>3.97 3.92</td>
<td>Sum. ’83</td>
<td>Sun. ’86</td>
<td>25.0</td>
<td>-0.04</td>
</tr>
<tr>
<td>San Rafael</td>
<td>9</td>
<td>4.23 3.77</td>
<td>Aut. ’83</td>
<td>Sun. ’86</td>
<td>25.5</td>
<td>-0.06</td>
</tr>
<tr>
<td>Cocharcas</td>
<td>10</td>
<td>4.56 4.52</td>
<td>Aut. ’82</td>
<td>Sun. ’86</td>
<td>25.5</td>
<td>0.00</td>
</tr>
<tr>
<td>Concepcion</td>
<td>11</td>
<td>3.42 3.39</td>
<td>Win. ’84</td>
<td>Sun. ’86</td>
<td>13.0</td>
<td>-0.01</td>
</tr>
<tr>
<td>Cabrero</td>
<td>12</td>
<td>3.50 3.52</td>
<td>Aut. ’84</td>
<td>Sum. ’87</td>
<td>23.5</td>
<td>-0.04</td>
</tr>
<tr>
<td>Laja</td>
<td>13</td>
<td>4.52 4.62</td>
<td>Win. ’82</td>
<td>Sun. ’86</td>
<td>9.3</td>
<td>-0.02</td>
</tr>
<tr>
<td>C. Esperanza</td>
<td>14</td>
<td>4.42 4.70</td>
<td>Aut. ’79</td>
<td>Sun. ’86</td>
<td>10.0</td>
<td>-0.01</td>
</tr>
<tr>
<td>Victoria</td>
<td>15</td>
<td>4.00 4.02</td>
<td>Aut. ’84</td>
<td>Sun. ’86</td>
<td>9.5</td>
<td>-0.01</td>
</tr>
<tr>
<td>Temuco</td>
<td>16</td>
<td>4.35 4.47</td>
<td>Aut. ’81</td>
<td>Sun. ’86</td>
<td>11.5</td>
<td>0.00</td>
</tr>
<tr>
<td>Gorbea</td>
<td>17</td>
<td>4.47 4.49</td>
<td>Aut. ’83</td>
<td>Sun. ’86</td>
<td>9.0</td>
<td>-0.02</td>
</tr>
<tr>
<td>Lancoche</td>
<td>18</td>
<td>4.03 3.84</td>
<td>Spr. ’84</td>
<td>Sun. ’86</td>
<td>4.5</td>
<td>-0.02</td>
</tr>
<tr>
<td>Marquina</td>
<td>19</td>
<td>4.35 4.44</td>
<td>Aut. ’83</td>
<td>Sun. ’86</td>
<td>2.8</td>
<td>-0.03</td>
</tr>
<tr>
<td>Mafil</td>
<td>20</td>
<td>4.48 4.55</td>
<td>Spr. ’83</td>
<td>Sun. ’86</td>
<td>5.1</td>
<td>-0.02</td>
</tr>
<tr>
<td>Rio Bueno</td>
<td>21</td>
<td>4.50 4.48</td>
<td>Sun. ’83</td>
<td>Sun. ’86</td>
<td>3.2</td>
<td>-0.04</td>
</tr>
</tbody>
</table>

*Winter data are relative to the day minimum and do not represent the total corner uplift.
pronounced opening of the joints, appear to be the prevailing unfavorable boundary conditions of the pavement slabs, which differs from the full support assumption usually considered in the engineering design of concrete pavements (11, 12). Conversely, the situation represented by the downward “cylindrical” shape is considered comparatively less detrimental.

These findings satisfactorily explain the distress that is being observed in some newer pavements where there are no signs of pumping, and whose cracking usually develops transversely at the middle of the slab, starting from the longitudinal edge. In addition, it has been verified through boreholes at the test section slabs that cracks start from the surface and move downward.

Detailed evaluation of the internal stresses with the superimposed nonlinear effects of environmental and wheel loads, calibrated with these results, is under way.
ACKNOWLEDGMENTS

The authors thank the Highway Division of the Ministry of Public Works for its permission to publish the results presented here. Special acknowledgments are given to the Concrete Pavement Group at the Institute of Research and Testing of Materials, IDIEM, for their constant assistance and support.

REFERENCES

9. “Curing Concrete” and “Volume Changes of Concrete.” In Design and Control of Concrete Mixtures. PCA, 1984.

Publication of this paper sponsored by Committee on Rigid Pavement Design.