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Dynamic Optimization Model for Bridge 
Management Systems 

YI JIANG AND KUMARES c. SINHA 

The systematic procedures of a bridge management system 
provide bridge managers with tools for making consistent and 
cost-effective decisions related to maintenance, rehabilitation, 
and replacement of bridges on a systemwide basis. An opti­
mization model was developed as part of an effort to develop 
a comprehensive bridge management system for the Indiana 
Department of Highways (IDOH). The techniques of dynamic 
programming, integer linear programming, and Markov chain 
were applied in the model. The use of dynamic programming, 
in combination with integer linear programming and Markov 
chain, provides bridge managers with an efficient tool for sys­
tem optimization and budget allocation in managing bridge 
systems. The model can be used to plan bridge maintenance, 
rehabilitation, and replacement activities for a given bridge 
budget and program period. The application of dynamic pro­
gramming assures that the results are optimal not only for a 
program period but also for the subperiods. 

The Federal Highway Administration (FHWA) has recently 
encouraged states to develop comprehensive bridge manage­
ment systems. Several states, including Pennsylvania, North 
Carolina, Virginia, Nebraska, and Kansas, have developed 
relatively comprehensive systems (1). All these systems, how­
ever, are based on priority ranking techniques for selecting 
bridge improvement projects; these techniques do not usually 
guarantee optimal solutions. Mathematical techniques of 
optimization have not yet been effectively used in bridge man­
agement systems. 

This paper describes an optimization model developed for 
a comprehensive bridge management system for the Indiana 
Department of Highways (IDOH). The model applies dynamic 
programming and integer linear programming to select proj­
ects, while the effectiveness or benefit of a bridge system is 
maximized subject to the constraints of available budgets over 
a given program period. Markov chain transition probabilities 
of bridge conditions are used in the model to predict or update 
bridge conditions at each stage of the dynamic programming. 

The use of dynamic programming, in combination with inte­
ger linear programming and Markov chain, makes it possible 
to manage efficiently a system with hundreds of bridges. The 
model can be used to plan bridge maintenance, rehabilitation, 
and replacement activities for given available budgets and 
program period. The application of dynamic programming 
assures that the results are optimal not only for a program 
period but also for the subperiods. 

School of Civil Engineering, Purdue University, West Lafayette, Ind. 
47907. 

PERFORMANCE CURVES AND MARKOV 
PREDICTION MODEL 

The performance curves and the Markov chain prediction 
model of bridge conditions were incorporated into the opti­
mization model. The detailed description of performance curves 
and the Markov prediction model can be found elsewhere (2). 
The following is a tlescriplion of lhe performance analysis that 
is relevant to the optimization model. 

There are about 5,400 state-owned bridges in Indiana. All 
of these bridges have been inspected every 2 years beginning 
in 1978. The inspection includes the rating of individual com­
ponents, such as deck, superstructure, and substructure, as 
well as of the overall bridge condition. According to the FHWA 
bridge rating system, condition ratings range from 0 to 9; 9 
is the rating of a new bridge (3). 

The objective of developing performance curves was to find 
the relationship between condition rating and bridge age. The 
performance curves of bridge components for concrete and 
steel bridges on interstate highways, as well as on noninter­
state highways, were developed separately. A third-order 
polynomial regression model was used to obtain performance 
function, as shown below. 

where Y;(t) is the condition rating of a bridge at age t, t; is 
the bridge age, and E; is the error term. 

Figure 1 presents an example of the performance curves, 
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FIGURE 1 Performance curve of deck condition of 
concrete bridges. 
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TABLE 1 CORRESPONDENCE OF CONDITION RATINGS , STATES, AND 
TRANSITION PROBABILITIES 

R=9 R=8 R=7 R=6 R=5 R=4 R=3 

S=l S=2 S=3 S=4 S=5 S=6 S=7 

R=9 S=l PI,! P1,2 PI,3 PI,4 P1,& PI,6 p 1.7 

R=8 S=2 P 2, 1 P 2,2 P2,3 P 2,4 P2,& P 2,6 P2,1 

R=7 S=3 P 3,1 P3,2 P 3,3 P 3, 4 P3,& P3,6 P3,7 

R=6 S=4 P4,I P4,2 P4, 3 P4,4 P4,5 P4,6 P4,7 

R=5 S=5 P&,1 P&,2 P&, 3 P&,4 P&,5 P&,6 P&,1 

R=4 S=6 P6,1 P6,2 PB, 3 P6,4 P6,& P6,6 P6,7 

R=3 S=7 P7,I P1,2 P7,3 P7,4 P1,& P7,6 P1,1 

Note: R = Condition Rating 

S =State 

P. · = Transition Probability from State i to State j 
'·' 

representing the deterioration of concrete bridge decks on 
noninterstate highways over years. The Markov chain, as 
applied to bridge condition prediction, is based on the concept 
of defining states in terms of bridge condition ratings and 
obtaining the probabilities of bridge condition transiting from 
one state to another. These probabilities are represented in 
a matrix form called the transition probability matrix or, sim­
ply, transition matrix of the Markov chain. Knowing the pres­
ent state of bridge conditions, or the initial state, the future 
condition can be predicted through multiplications of the ini­
tial state vector and the transition matrix. 

Seven bridge condition ratings were defined as seven states, 
with each condition rating corresponding to one of the states . 
Thus , condition 9 was defined as state 1, rating 8 as state 2, 
and so on. Without repair or rehabilitation, the bridge con­
dition rating decreases as the bridge age increases. Therefore, 
there is a probability of condition transiting from one state, 
say i, to another state, j, during a 1-year period, which is 
denoted by P;J· Table 1 shows the correspondence of condition 
ratings, states, and transition probabilities. Because the low­
est recorded rating number in the database was 3, indicating 
that the bridges are usually repaired or replaced at a rating 
not less than 3, condition ratings less than 3 were not included 
in the transition matrix. 

An assumption was made that the bridge condition rating 
would not drop by more than 1 in a single year. Thus, the 
bridge condition would either stay in its current rating or move 
to the next lower rating in 1 year. The transition matrix has, 
therefore, the form: 

p(l) q(l) 0 0 0 0 0 
0 p(2) q(2) 0 0 0 0 
0 0 p(3) q(3) 0 0 0 

P= 0 0 0 p(4) q(4) 0 0 
0 0 0 0 p(5) q(S) 0 
0 0 0 0 0 p(6) q(6) 
0 0 0 0 0 0 1 

where q(i) = 1 - p(i). The correspondence between p(i) and 
P;,; and between q(i) and p;.;+ 1 can be seen in Table 1. There­
fore, p(l) is the transition probability from rating 9 (state 1) 
to rating 9, and q(l) from rating 9 to rating 8, and so on. 

It should be noted that the entry 1 in the last row of the 
matrix indicates that state 7 (rating 3) is an absorbing state. 
That is, state 7 does not transit to another state unless the 
bridge is repaired. 

By Markov chain, the state vector for any time, t, Q<,l• can 
be obtained by the multiplication of initial state vector Qco> 
and the transition probability matrix Praised to the power of 
t (4): 

Q(l) = Q(O) * p 

Q(2) = Q(!) * p = Q(O) * p 2 

Q(t) = Q(t - 1) * p = Q(O) * pt 
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Since the transition matrix can be estimated (2), the future 
condition of a bridge at any time t can be predicted. 

USE OF INTEGER LINEAR PROGRAMMING 

Zero-one integer linear programming (5) was used in this 
model. This technique is a well-defined procedure and can 
be used to maximize benefit or minimize cost, subject to a 
number of constraints. In developing the bridge management 
system, three major rehabilitation activities-deck recon­
struction, deck replacement, and bridge replacement-were 
considered. Each activity of a bridge was defined as a zero­
one decision variable. When the value of a decision variable 
is 1, the corresponding activity is selected; otherwise, routine 
maintenance is assumed for the bridge. The objective function 
of the integer linear programming was to maximize the sys­
tem's effectiveness in each year. 

INTRODUCTION TO DYNAMIC 
PROGRAMMING 

Dynamic programming is a particular approach to optimiza­
tion. It is not a specific algorithm in the sense that Simplex 
algorithm is a well-defined set of rules for solving a linear 
programming problem. Dynamic programming is a way of 
looking at a problem that may contain a large number of 
interrelated decision variables so that the problem is regarded 
as if it consisted of a sequence of problems, each requiring 
the determination of only one (or a few) variables (6). 

The dynamic programming approach substitutes n single 
variable problems for solving one n variable problem, so that 
it usually requires much less computational effort. The prin­
ciple that makes the transformation of an n variable problem 
ton single variable problems possible is known as the principle 
of optimality, which is stated as "everv optimal oolicv consists 
only of optimal subpolicies" (6). . . · . 

An important advantage of dynamic programming is that 
it determines absolute (global) maxima or minima rather than 
relative (local) optima. Also, dynamic programming can eas­
ily handle integrality and nonnegativity of decision variables. 
Furthermore, the principle of optimality assures that dynamic 
programming results not only in the optimal solution of a 
problem but also in the optimal solutions of subproblems. For 
example, for a 10-year program period, dynamic program­
ming gives the optimal project selections for the entire 10-
year period, as well as the optimal project selections for any 
period less than 10 years. These optimal solutions of the sub­
periods are often of interest to bridge managers. 

The key elements of dynamic programming are stages, states, 
decision, and return (6). A bridge system can be considered 
to progress through a series of consecutive stages; each year 
is viewed as a stage. At each stage, the system is described 
by states, such as bridge condition and available budget. Deci­
sions (project selections) are made at each stage by optimizing 
the returns (system benefit). The bridge conditions are pre­
dicted and updated by Markov chain technique, and the sys­
tem proceeds to the next stage. 

A major limitation of dynamic programming is that if there 
are too many state variables and decision nriables, then there 
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are computational problems relating to the storage of infor­
mation as well as the time it takes to perform the computation. 

THE OPTIMIZATION MODEL 

The proposed optimization model for the Indiana Bridge 
Management System requires that it handle about 1,000 bridges, 
with about 3,000 decision variables, if only three improvement 
alternatives are considered (deck reconstruction, deck 
replacement, and bridge replacement). Furthermore, each 
bridge has a number of associated factors, such as condition 
rating, traffic safety index, community impact index, and so 
on. Because of the size of the problem, it was not possible 
to use only dynamic programming to optimize such a large 
system. Therefore, integer linear programming was used in 
combination with dynamic programming to optimize the proj­
ect selections on a statewide basis. 

The dynamic programming divides the federal and state 
budgets of each year into several possible spending portions, 
and the integer linear programming selects projects by max­
imizing yearly system effectiveness subject to different budget 
spendings. The dynamic programming chooses the optimal 
spending policy, which maximizes the system effectiveness 
over a program period by comparing the values of effective­
ness of these spendings resulting from the integer linear 
programming. 

In terms of dynamic programming, each year of the pro­
gram period is a stage. The federal and state budgets are state 
variables. Each activity of a bridge is a decision variable of 
the dynamic programming as well as of the integer linear 
programming. The effectiveness of the entire system is used 
as the return of the dynamic system. 

At each stage, a decision must be made about the optimal 
solution from stage 1 to the current stage. When a decision 
is made, a return (or reward) is obtained and the system 
undergoes a transformation to the next stage. The bridge 
conditions are updated for the next stage by the Markov tran­
sition probabilities obtained through the performance model 
described by Jiang et al. (2). Figure 2 is a flowchart of the 
optimization model that illustrates the optimization process. 
For a given program period, the objective of the model is to 
maximize the effectiveness of the entire system. The formu­
lation of the model, along with the definition of system effec­
tiveness, is discussed as follows. 

FORMULATION 

The effectiveness of a bridge improvement activity was defined 
as follows: 

E; = ADT; * M;(a) * (1 + Csafe;) • (1 + Cimpc;) 

where 

E; = effectiveness gained by bridge i if activity a is 
chosen; 

a = improvement activity; 
a = 1, deck reconstruction; 
a = 2, deck replacement; 
a = 3, bridge replacement; 

ADT; = average daily traffic on bridge i; and 
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FIGURE 2 Flowchart of the optimization model. 

M;(a) = f11:!,.b11 + f21:!,.b12 + f31:!,.b 13 , representing the average 
area under performance curves of components 
of bridge i obtained by activity a, where f/s are 
the frequencies of the corresponding component 
being repaired in activity a, l:!,.b1/s are the areas 
of the component gained by activity a, with j = 
1, 2, and 3 corresponding to deck, superstruc­
ture, and substructure, respectively. Figure 3 
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FIGURE 3 Area of performance curve obtained by 
rehabilitation. 
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shows an example of l:!,.b 11-that is, the area 
obtained under the performance curve of deck 
condition. 
transformed coefficient of the traffic safety con­
dition (primarily based on bridge geometrics) of 
bridge i, as shown in Figure 4. The safety index 
ranges from 1 to 10, with 10 being the index of 
"perfect" safety condition. 
transformed coefficient of community impact of 
bridge i in terms of detour length, as shown in 
Figure 5. 

Considering that budgets can be carried over from year to 
year, the mathematical model for maximizing the overall 
effectiveness of various activities over a program period T 
was formulated as follows: 

(1) 

Subject to the following constraints: 
Available federal budget, 

(2) 

Available state budget, 

I~ [ ~ ~ xi,t (a) * c,(a) * (1 - F;) J "" Cas (3) 
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One activity cannot be undertaken more than once on one 
bridge in T years, 

T 

2: Xja),,:; 1 (4) 
r=l 

Constraints in Equations 5 to 9 correspond to an integer linear 
programming: 

Maximize system effectiveness of year t, 

max L ,Z: [X;,,(£1) • E; * d;(I)] 
; 

Spending constraint of year t for federal budget , 

L L [Xja) * c,(a) * F;] ,,:; ll1F 

Spending constraint of year t for state budget, 

L L [Xja) * C;(a) * (1 - rJ] ,,:; ll1s 
I a 

(5) 

(6) 

(7) 

No more than one activity can be chosen on one bridge in 
year t , 

3 

2: Xja),,:; 1 (8) 
n=l 

Decision variable, 

X;, 1 = 0 or 1 (9) 

Update bridge conditions by Markov chain transition prob­
abilities if bridge i is not selected in year t, 

R;,1+ I = R;,1 * p;(R,t) + (R;,1 - 1) * (1 - P;(R,t)) (10) 

Improvement of bridge condition if bridge i is selected in 
year t for activity a, 

R;,1+ 1 = R; ,1 + !:i.R;(a) 

where 

X; ,1(a) = 1, if bridge i is chosen for aclivily a; 
= 0, otherwise; 

(11) 

d,(t) = the absolute tangent value on performance curve 
of bridge i at time t, as shown in Figure 6; 

C8 F = total available federal budget for the program 
period ; 

C85 = total available state budget for the program period; 
F; = federal budget share of bridge i; 

1 - F; = state budget share of bridge i; 
c;(a) = estimated cost of bridge i, activity a; 

lliF = spending limit of federal budget in year t; 
1115 = spending limit of state budget in year t; 
R; ,1 = condition rating of bridge i in year t; 

p;(R ,t) = Markov condition transition probability of bridge 
i with condition rating R in year t; and 

!:i.R;(a) = condition rating gained by bridge i for activity a. 

SOLUTION TECHNIQUE 

Equations 1 through 11 constitute a dynamic programming 
that includes an integer linear programming (Equations 5 to 
9) as part of the constraints. The model's objective is to obtain 
optimal budget allocations and corresponding project selec-
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FIGURE 6 Slope of performance curve. 

tions over T years so that the system effectiveness can be 
maximized. For example, suppose that T equals 2 years and 
the available budgets for both year 1 and year 2 are $100 
million. If the possible spendings for year 1 are $50 , $60, 
$70, $80, $90, and $100 million, then the possible spendings 
for year 2 could be $150, $140, $130, $120, $110, and $100 
million, respectively. That is, the remaining budget for year 
1 can be carried over to year 2; therefore, the spendings of 
the two years are interrelated. The task of the dynamic pro­
gramming is to determine the optimal spendings among these 
possible combinations of spendings (i.e., 50, 150; 60, 140; 70, 
130; 80, 120; 90, 110; and 100, 100) and to obtain the cor­
responding optimal project selections. Similarly, if Tis larger 
than 2, say 10, the model can determine the optimal spendings 
fwl!l yea1 1 lo year 10 and give the corresponding project 
selections. 

Let us denote the number of spending combinations by N, 
the number of possible spendings of each year by s, and the 
program period by T; then N can be expressed by s and T, 
N = sT- t. When Tis large, the number of possible spending 
combinations becomes so large that the search for the optimal 
path of spendings from year 1 to year T requires great effort 
and computation time. 

Dynamic programming is an efficient technique to search 
for the optimal path among the combinations of spendings. 
Rather than examining all the paths, dynamic programming 
looks at only a small part of these paths. According to the 
principle of optimality, at each stage the programming finds 
the optimal subpath up to the current stage, and only this 
subpath is used to search for the optimal subpath up to the 
next stage. The paths that do not belong to the optimal sub­
path are abandoned as the search goes on , which makes the 
search efficient and saves a great deal of time. 

The search for the optimal path can easily be performed 
by expressing the problem as recurrence relations (6). In doing 
so, Equations 1, 2, and 3 are rewritten as follows, 

T 

max L <P1(Y(t)) (12) 
1 = l 
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T 

s. t L Yr{t) :S; CBF 
t=l 

T 

L Ys(t) :S; Cns 
l = I 

where 

<P,(Y(t)) L L [Xja) * E; * d;(t)] 
; 

L L [X;,r(a) * c(a) * F;] :S; CnF 
I a 

Y5 (t) L L [X;)a) * c(a) * (1 - F;)] :S; C8 s 

The state variable is defined as 

A, = A,+ I - Y(t + 1) 

The optimal return function is defined as 

0 :S; Y(l) :S; >.., 

max [<P2 (Y(2)) + g 1(>.. 2 - Y(2))], 

0 :S; Y(2) :S; A.2 

g,(>..,) max [<P,(Y(t)) + g,_,(>.., - Y(t))], 

0 :S; Y(t) :S; >.., 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

By the recurrence relations of Equations 16, 17, and 18, 
the dyna mic programming proce s starts ac ear l , or tage 
1, and g 1(>.. 1) can be obtai ned for all the possible spendings 
of year J. Then the bridge condit ions are updated by Equati n 
10 or Equa tion l .l according to che project. selections conc­
sponding to g,(>.. 1); and g2 (11. 2) can be solved based on the 
information of g 1(>.. 1) as well as the updated bridge conditions. 
This forwa rd recllrsion is performed for every successive year 
of the program period until g1 >...,) is obtained; therefore, the 
optimal spending policy and project selection from year 1 to 
year Tare obtained. 

The value of q>,( Y(t)) can be obtained by olving the integer 
linear programming (Equations 5 to 9). T he value of the 
objective function (Equation 5) of the linear programming 
equals <P,(Y(t)) if TJ,T and TJ1s of Equations 6 and 7 are sub­
stituted by possible spending limitations of year t. 

A SAMPLE APPLICATION 

A computer program of the optimization model was coded 
in Fortran 77. XMP package (7) was used in the programming 
to solve the integer linear programming. Branch-and-bound 
method (5) was applied to solve the integer linear program­
ming, which is essentially a direct enumeration technique that 
excludes from consideration a large number of possible inte­
ger combinations; it therefore makes possible the solution of 
a problem with hundreds of decision variables. The input of 
the problem includes the following: 

1. Condition ratings of bridge components; 
2. Bridge age; 
3. Bridge type; 
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4. Highway type; 
5. Safety index; 
6. Detour length; 
7 . Average daily traffic; 
8. Available federal and state budgets; 
9. Federal budget share for bridge projects by highway 

type; 
10. Recommended activity and timing by engineers; 
11. Estimated rchabi lirntion cost; and 
12. Program period . 

The output of the program is a list of selected bridges and 
activities and the corre. ponding federal and state costs for 
each year of the program period. 

To demon Irate the application of the model, a ample 
problem is pre entcd as follow . Table 2 gi cs the general 
information on 20 bridges. lt includes a de ·cription of each 
bridge and !he activitie and timing recommended by bridge 
inspector or engineer . A 5-year program p riod i used (that 
is T = 5). Suppose the availabl federa l and tat budget 
for each year are $2,250.000 and $460,0 0 respectively. and 
the bridges being con idercd are eligible for a 90 percent 
federal budget hare (F,) on imer ·tate and an 80 per cnt 
federa l budget sha re on nonintcr tale highways. Taking tJ1i · 
information a input, the program yield. the output hown in 
Table 3. The output provide · project ·electi ns f reach year 
of th program period and the corresponding cosL. The plan 

f optimal spendings from year 1 to year 5, therefore is given 
as: $ 1,696,000; $3 636.000; $1 ,673 ,000: $2,9 l .O 0 ; and 
$2, '91,000. 

CONCLUSIONS 

T he use of dynamic pr gramming in combinaLio.n with integer 
programming and the Markov chain provides bridge manager 
with an optimization lool for managing bridge ys tem '. The 
m del e lects projects by maximizing the effecrivenc s of the 
en tire sy t · m over a given program period subject co budget 
constraints. Ther f re, for any available budget. the m del 
always give a project selccti n that maximizes system effec­
tiveness for the given budget. That is. the model always offers 
optimal solut ion L decision makers. The pri rity nlnking 
method as u t:d in ome bridge managemen t sy. tern , ho\ -
ever. do not usually guarantee optimal olutions because they 
are ba ed s lely n the comparison of rankings. In n rnnking 
procedure the following two importan t ingredi nt. may b 
mi sing 8): evaluari n of interprojcct trade-offs in selecting 
projects and selection of strategie cha t are guaranteed to 
adhere to exi. ting budget limitations. 

The pri nciple of optimality as ures that dynami program­
ming results in the optimal solution not on ly for the program 
period T but a ls .for any period less than T. The e primal 
olution for the ubperi d are importa nt to bridge manager ' 

in schedul ing bridge act ivities. Furthermore, lhe. e sol utions 
are guaranreed by the principle of optimality to be absolute 
optima rather than relative optima. 

T he ptimizat ion mode l ha a lmple structure and a pow­
erful capability for hand ling a system with hundreds f bridge . 
Deci ·ion maker can u e it to gain maxi mum return by effec­
tiv ly spending the limited bridge budgets with in both short­
term and long-term planning horizons. 



TABLE 2 INFORMATION PERTAINING TO 20 SAMPLE BRIDGES 

Bridge No. 1 2 3 4 5 6 7 8 9 10 

Bridge Age 35 30 35 25 40 40 48 51 52 30 

Bridge Type s s s c s c c s s c 

Highway Type N I N N N N N N N I 

ADT (xlOO) 20 90 30 15 45 19 27 38 42 150 

Detour Length (miles) 8 14 9 5 10 6 7 11 13 17 

Safety Index 5 7 2 4 8 3 1 5 6 7 

Deck Condition Rating 6 6 5 6 5 5 5 5 5 6 

Superstructure Condition Rating 4 7 5 6 4 5 5 5 3 5 

Substructure Condition Rating 5 7 7 7 4 4 5 4 3 5 

Recommended Activity 3 1 2 1 3 3 3 3 3 3 

Recommended Activity Year 1 2 1 1 1 1 3 2 1 3 

Last Year Activity Can Be Deferred 5 6 4 6 4 5 6 4 2 5 

Estimated Cost ($1000) 558 150 500 80 1082 542 542 1004 1063 789 

Note: S = Steel Bridge C = Concrete Bridge 

I= Interstate Highway N = Non-interstate Highway 



TABLE 2 (Continued) 

Bridge No. 11 12 13 14 15 16 17 18 19 20 

Bridge Age 30 35 50 48 45 50 45 35 54 38 

Bridge Type c s s s c s c c c c 

Highway Type N N N N I N N N I N 

ADT (xlOO) 7 30 12 15 133 40 12 14 100 35 

Detour Length (miles) 10 5 7 8 14 15 9 6 15 15 

Safety Index 2 9 4 5 7 6 2 1 8 5 

Deck Condition Rating 6 5 5 5 6 5 6 5 5 6 

Superstructure Condition Rating 6 5 3 3 5 4 4 5 3 5 

Substructure Condition Rating 6 7 3 3 4 3 4 6 3 5 

Recommended Activity 1 2 3 3 3 3 3 2 3 3 

Recommended Activity Year 2 2 1 1 2 1 1 1 1 3 

Last Year Activity Can Be Deferred 6 5 2 2 5 2 3 5 3 5 

Estimated Cost ($1000) 100 400 1102 317 1004 633 589 400 1063 891 

Note: S = Steel Bridge C = Concrete Bridge 

I = Interstate Highway N = Non-interstate Highway 
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TABLE 3 PROJECTS SELECTED BY THE OPTIMIZATION MODEL 

Year 
Bridge 

Activity 
Number 

1 
16 Bridge Replacement 
19 Bridge Renlacement 

2 Deck Reconstruction 
9 Bridge Replacement 

2 13 Bridge Replacement 
i4 Bridge Replacement 
15 Bridii::e Replacement 

4 Deck Reconstruction 
3 8 Bridge Replacement 

17 Bridge Renlacerrtent 

3 Deck Replacement 

4 
5 Bridge Replacement 
7 Bridge Replacement 

10 Bridge Renlacement 

1 Bridge Replacement 
6 Bridge Replacement 

5 
11 Deck Reconstruction 
12 Deck Replacement 
18 Deck Replacement 
20 Bridii::e Replacement 
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