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Temporal Analysis of Handicapped 
Ridership in Specialized 
Transportation Service: Lexington/ 
Fayette County Experience 

MANOUCHEHR V AZIRI 

This paper focuses on modeling of Kentucky's Lexington/Fay­
ette County specialized transportation (WHEELS) monthly 
ridership. The 1979 through 1985 time-series data suggest an 
intervention model to replicate monthly ridership. The iden­
tified model successfully incorporated the lag structure and 
functional forms that constitute the relationships between 
monthly ridership and service changes, such as service area 
expansion and fare increase. The selected model satisfies all 
estimation and diagnostic requirements. Model predictions for 
1985 were quite reasonable when compared with actual rider­
ship: cyclical patterns were correctly replicated. The suprem­
acy of intervention modeling when compared with multiple 
linear regression analysis was found to be in capturing rider­
ship seasonality, properly reflecting the impact of changes in 
service attributes, and displaying uncorrelated residuals. 

Specialized transportation services are often provided to per­
sons who do not have the physical or mental ability to use 
alternative means of transportation. In the last two decades, 
specialized transportation services have seen a tremendous 
growth, mostly in the form of paratransit services (1,2). The 
development of paratransit systems has been accompanied by 
the development of mathematical modeling for better plan­
ning and management, particularly in routing and scheduling. 
These models are often designed to determine the delicate 
balance between supply, demand, and cost of a paratransit 
system (2 ,3). The demand is considered as a whole range of 
levels of ridership that would eventuate from a variety of 
different fare levels, different area coverage levels, different 
times of operation, different months and years, different pol­
icies of passenger eligibility, and so forth. The methods used 
for measuring and forecasting the demand for specialized 
transportation systems have not adequately taken into account 
all its major dimensions ( 4-6). Nonetheless, in recent years, 
implementation of microcomputer and data base management 
software has alleviated many previous problems of trip infor­
mation gathering and recording (7,8). 

In planning and management of specialized transportation 
services, major characteristics of ridership that should be con­
sidered include spatial and temporal variations. Information 
about time variation of ridership is essential to determine the 
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level of service that is most appropriate for different points 
in time. Most of the existing demand models predict trip 
density, trips per square mile per day or hour (3). Although 
these models are useful in ridership forecasting because of 
structural changes in users' condition and density, they become 
problematic and insensitive when generating short-run pre­
dictions . A class of models proven to be particularly well 
suited to short-term forecasting is that often referred to as 
ARIMA, autoregressive integrated moving average (9,10). 
These models replicate past behavior of a univariate time­
series rather than determine direct multivariate structural 
relationships. Such models are particularly useful for short­
term forecasting when it is expected that underlying factors 
determining the level of the variable of interest in the past, 
herein specialized transportation monthly ridership, will behave 
the same in the near future. An extension of univariate ARIMA 
models to the multivariate domain can be presented by inter­
vention modeling. This type of model is specially structured 
to deal with intervening events affecting the time-series pro­
cess, herein changes in fare, fleet size, and coverage area 
affecting ridership. In recent years, there have been several 
published works related to time-series demand modeling for 
regular transit systems (11-17). However, its application has 
not been sufficiently addressed in paratransit and specialized 
transportation ridership modeling. 

This paper presents an intervention model for modeling 
and forecasting of Lexington/Fayette County (Kentucky) spe­
cialized transportation ridership . Managers and planners of 
specialized transportation can use the methodology and find­
ings of this study to enhance ridership forecasts and assess 
the impact of service policy changes. 

LEXINGTON/FAYETTE COUNTY 
SPECIALIZED TRANSPORTATION 

The Lexington/Fayette County specialized transportation 
service, WHEELS, was established in 1978. WHEELS is 
designed to meet the needs of handicapped persons by over­
coming the lack of economical and accessible transportation. 
The disability of individuals using WHEELS must be docu­
mented and a person must fill out an application and be reg­
istered in order to become eligible for service. Trip reserva­
tions, usually by telephone, are made at least 1 day in advance. 
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WHEELS provides service Monday through Friday from 7 
a.m. to 6 p.m. and Saturday from 10 a.m. to 4 p.m. Since 
January 1979, when WHEELS began operation, there have 
been several modifications of this service. Among these, there 
were four major events that could be predicted to most pro­
foundly impact system ridership: 

• In January 1981, coverage (service) area was expanded 
from a pilot area in the north end to the whole urban area; 
simultaneously, fleet size was increased from four to eight 
vehicles. 

• In September 1983, Saturday service was initiated. 
• In July 1984, fare was increased from $0.50 to $0.75. 
• In July 1985, fare was increased from $0. 75 to $1.00. 

Monthly ridership during the study period is shown in Fig­
ure 1. Figure 1 suggests a general secular increase after expan­
sion of the service area in 1981, seasonal variation involving 
periodicity over 12-month cycles with a minimum most often 
occurring during midwinter, and the possible negative impacts 
of 1984 and 1985 fare increases. The combination of distinct 
seasonality, secular increase, and four intervening events sug­
gests that the time-series of monthly ridership is a good can­
didate for intervention modeling. 

MODEL STRUCTURE 

The intervention model consisted of a mathematical relation­
ship known as a transfer function, which expresses the degree 
to which intervening events affect the time-series. The model 
and the method for assessing its parameters as presented in 
the following section are known as Box-Tiao Intervention 
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Analysis (19). This technique is a generalization of the mul­
tiple linear regression model with k independent variables: 

k 

Y, = h0 + 2: h;X;1 + er (1) 
i = l 

where Y, is the dependent variable at time t, h0 is a constant, 
h; is the coefficient of the ith independent variable X;,, k is 
the number of independent variables, and e, is the error term. 
The basic assumption of Equation 1 is that covariance 
(e,, e,.) = 0 for t =I= t'. This presents a serious constraint for 
application to monthly ridership because of factors such as 
seasonality. Such a problem does not exist in intervention 
modeling. The intervention model applied to the 1979 through 
1985 monthly time-series for specialized transportation rider­
ship had the following general functional form: 

(2) 

where Y, is the time-series dependent variable; Bis a backshift 
operator pertinent to the time index of variables, that is, 
BY, = Y1_ 1 and B2 Y, = Y,_ 2 ; w; and 3; are polynomial oper­
ators for ith intervention variable, that is, w;(B) = w0; - wi;B 
- ... - w

8
;Bgi for polynomial operator of order gi, where 

w0;, ••• , w
8

; are coefficients and B;(B) = 1 - 31iB - ... 
- 3h;Bhi for polynomial operator of order hi, where 31;, ••• , 

3hi are coefficients; X;, is the ith intervention variable and 
X;, = 1 for month t, wherein the ith intervening event is taking 
place and X;, = 0 otherwise; and N, is the noise that can be 
presented by an ARIMA process such as N, = (0(B)/ 
<!>(B))a,, where 0 and<!> are polynomial operators and a, is the 
white noise variable for month t, independent and normally 
distributed with mean of zero and variance of a 2

• The advan-
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FIGURE 1 Monthly ridership for the period 1979-1985. 
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tage of Equation 2 is that it allows estimates of Y, to reflect 
prior levels of Y, prior levels of X;'s, and prior levels of white 
noise. This is not feasible for Equation 1 when Y, is only 
dependent on current levels of the X;'s. 

MODEL BUILDING 

The selection of a model for any time-series data from the 
family of intervention models pre en ted by Equation 2 i in 
large part a matter of judgment. Nevertheless, a generally 
accepted model building strategy include i.tera tive identifi­
cat ion , estimation , and diagno i tages (9,10 ;20) . TI1e iden­
tifica tion stage is often accomplished on the ba is of (a) prior 
knowledge of the data pattern., (b) evaluation of the plotted 
time-series, ( c) evaluation of the ample autocorrelation coef­
ficients (ACFs), and ( d) evaluation of the sample partial auto­
correlation coefficients (PACFs). The identification often tarts 
with initial noise modeling, the ARIMA modeling for N,, 
based on (a) the portion of the data containing no unusual 
even ts or (b) all the data by using robu t estimation to reduce 
the effect of unusual event . Once components of the AR IMA 
model are identified, the information is used to identify the 
transfer function components. Once a tentative model is iden­
tified, its parameters are estimated and tested for statistical 
ignificance. In addition , parameter e ti mates must meet sta­

tionarity-invertability requirement (9 ,10,20). If either cri­
terion is not met , a new model mu t be identified and its 
parameter estimated and tested . After ucces fut estimation 
and testing the mode! i · finally diagnosed . To pa s diagnosis 
che autocorrelation of the residuals (RA Fs) from the e ti­
mated model should be sufficiently small and should resemble 
white noise. If the residuals remain significantly correlated 
among themselves, a new model should be identified. 

After several trials, following basically the afore. aid stages 
of modeling and using the Time Series Program of the 
Biomedical Package (School of Public Health, UCLA), the 
selected intervention model with the smallest residual mean 
square (RMS) was found to have the following form (21): 

Wo1 

where Y, is monthly ridership for month t; X 1, i a dummy 
variable reflecting the intervening event of Oeet and service 
area expan ion, X 11 = 0 for months of 1979 through 1980 and 
X 1, = 1 thereafter; X 21 is a dummy variable reflecting the 
intervening event of Saturday service , Xz, = 0 for months 
before September 1983 and X 21 = 1 thereafter· X3, i a 
dummy variable reflecting the fare increa e from $0.50 to 
$0. 75 X3, = 0 for months be.fore July 1984 and X3, =- 1 
thereafter; x 41 is a dummy variable reflecting the intervenjng 
event of fare increase from $0.75 to $1.00, X 4, = 0 for months 
before July 1985 and X 4, = 1 thereafter; a, is the white noise 
variable for month t, independent and normally distributed 
with mean of zero and variance of a 2

; w01 , 011 , w02 , w03 , w04 , 

01, 04 , 05 , and 612 are parameters and B is the backshift 
operator. 

Based on Equation 3, thee timated intervention model for 
1979 through 1985 monthly ridership ha the followi11g form: 
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601.8 
Y, = l _ 0.

7128
X1, + 82.23X2, - 5l2.9X31 - l52 .5X4 , 

(1 - 0.584B - 0.290B4 + 0.50685)(1 - 0.811B12
) + ..;..._ ____ (_l ___ B_ )_(_l ---B-

1
-
2

) _:_:_ __ __:.:.___:. a, (4) 

where notations are the same as in Equation 3, t statistics for 
parameter estimates are all greater than 2 except 0.35 for X 2, 

and 0.63 for X 4,, and RMS is 97,579. The autocorrelations of 
the residuals-shown in Figure 2-are inside the range of 95 
percent confidence interval and therefore not significant. To 
check whether the entire residual autocorrelation is different 
from what could be expected of white noise, the Portmanteau 
test was performed (9). Following is a summary of the test 
results. 

Degree of Level of 
K Q Freedom Significance 

6 4.33 2 0.123 
12 8.20 8 0.425 
18 15.31 14 0.370 
24 19.98 20 0.464 

The Q statistic is the sum of the first K residual autocor­
relations multiplied by the number of observations minus 
the maximum back order for the period of time-series study. 
The Q values are distributed approximately chi-square with 
the degree of freedom equal to K minus the number of esti­
mated parameters. The data show that the results are not 
significant at the 0.05 level. For Equation 4, the roots of B(B) 
lie outside and those of <!>(B) lie on the unit circle, thus meet­
ing stationarity and invertability requirements (9). 

The parameter estimates for X 1, suggest that monthly rider­
ship increased by roughly 2,090 because of the service expan­
sion of January 1981. Nevertheless, the response was not 
immediate but rather a first-order dynamic response like that 
in Figure 3. The parameter estimate for X2, suggests that 
Saturday service increased monthly ridership by roughly 82. 
The parameter estimate for X 3, suggests that the fare increase 
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FIGURE 2 Residual autocorrelation function of the estimated 
intervention model. 
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FIGURE 3 Response to a step-intervening event. 

from $0.50 to $0. 75 resulted in a monthly ridership decrease 
of roughly 513. The parameter estimate for X 4 , suggests that 
the fare increase from $0.75 to $1.00 resulted in a monthly 
ridership decline of roughly 152. The intervention events, X2,, 

X3,, and X 4, produced immediate responses, the zero order 
dynamic response type of Figure 3 (19). In view of statistical 
significance at a level of 0.05, X 2, and X 4, should be excluded 
from the model because their parameter estimates have t sta­
tistics smaller than 2. Exclusion of X 21 and X 4 , from the model 
resulted in the following intervention model: 

y - 582.6 
I - J - 0.725Bx" - 464.lX3, 

+(I - 0.5638 - 0.2968' + 0.5 1 48~(1 - 0.806812) 

(I - 8)(1 - 8' 2) a, (S) 

where the notations are the same as in Equation 4, t statistics 
for parameter estimates are greater than 2, and RMS is 96,018. 
Equation 5 meets stationarity and invertability requirements 
and passes all checks of diagnosis. The parameter estimates 
for X 11 suggest that monthly ridership increased by roughly 
2,119 because of the service expansion of January 1981. The 
parameter estimate for X 3, suggests that the fare increase from 
50 cents to 75 cents in July 1984 resulted in a monthly ridership 
decrease of roughly 464. 

MODEL EVALUATION AND PREDICTION 

To demonstrate the advantage of intervention modeling, the 
same time-series data were used to calibrate two regression 
models. The first is the simpler version that assumes time as 
the only independent variable: 

Y, = 1392.1 + 67.071t + P, (6) 
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where Y, is monthly ridership for month t (t = 1, ... , 84). 
The coefficient of t has a I statistic greater than 2. The RMS 
of Equation 6 is 991,151, which is 10 times larger than the 
RMS of Equations 4 and 5. The parameter estimate for time 
variable t suggests that monthly ridership increased by roughly 
67 per month. Introduction of intervention variables as further 
independent variables resulted in the second regression model: 

Y, = 589.4 + 71.8741 + l525.8X11 - 414.3X2, 

- 1354.7X3, - 881.4X4, + e, (7) 

where the notations are as defined before and the t statistics 
for parameter estimates are ali greater than 2 except 1.8 for 
X 21 • The RMS of Equation 7 is 222,479, which is 2 .3 times 
larger than the RMS of Equation 5. Although Equation 7 is 
superior to Equation 6 because of its smaller RMS, the neg­
ative coefficient of X 2,, introduction of Saturday service, is 
not logical. One should expect an increase in total monthly 
ridership as a result of Saturday service, as Equation 4 cor­
rectly predicted. Nevertheless, the parameter estimate for the 
time variable suggests a monthly ridership increase of roughly 
72 per month. The parameter estimate for X 1, suggests that 
monthly ridership increased by roughly 1,526 because of ser­
vice expansion. The parameter estimate for X 21 suggests that 
the Saturday service decreased monthly ridership by roughly 
414. The parameter estimate for X 3 , suggests that the fare 
increase from $0.50 to $0. 75 resulted in a monthly ridership 
decrease of roughly 1,355. The parameter estimate for X 4, 

suggests that the fare increase from $0.75 to $1.00 re­
sulted in a monthly ridership decrease of roughly 881. In view 
of statistical significance at the 0.05 level, X 2 , should be ex­
cluded from the model. Exclusion of X 21 from the model resulted 
in the following equation: 

Y, = 700.2 + 63.0l4t + 1719.6X11 

- 1431.1X3, - 801.7X4, + e, 
(8) 

where the notations are the same as in Equation 7, t statistics 
for parameter estimates are greater than 2, and RMS is 228, 780. 
The parameter estimate for the time variable suggests that 
monthly ridership increased by roughly 63. The parameter 
estimate for X 11 suggests that monthly ridership increased by 
roughly 1,720 because of service expansion. The parameter 
estimate for X 3, suggests that monthly ridership decreased by 
roughly 1,431 because of the fare increase from $0.50 to $0. 75 . 
The parameter estimate for X 4, suggests that the fare increase 
from $0.75 to $1.00 resulted in a monthly ridership decline 
of roughly 802. 

The major drawback of Equations 6, 7, and 8 is the assump­
tion of residual independency. Indeed, residual autocorrela­
tions of Equations 6, 7, and 8 showed several statistical sig­
nificances, especially for Lag 1 and Lag 12. However, such a 
problem does not exist for the intervention models, Equations 
4 and 5. 

The calibrated regression and intervention models were 
used to predict the monthly ridership of WHEELS for the 
12-month period beginning in January 1985. Figure 4 presents 
the 12-month predictions for Equations 5, 6, and 8 . It also 
shows the actual values and 95 percent confidence interval 
for the predicted values from the intervention model, Equa­
tion 5. The intervention model extends the seasonality 
throughout 1985, v:hereas the regression. mvdcls arc inscn-
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FIGURE 4 Comparison of actual and predicted monthly 
ridership. 

sitive to such seasonal behavior. Parameter estimates for the 
time variable t from the developed regression models are 
positive. It is noteworthy that in the least square method of 
regression modeling with time as a monotonically increasing 
independent variable, the first and the last observations of 
the time-series usually make the greatest contribution to the 
sum of squares (20). Thus, the coefficients are derived so that 
the trend line passes close to the first and last data points. 
This would suggest that predictions by such regression models 
are inferior for mid-periods. Because of the statistical signif­
icance of the coefficient of X 4,, Equation 8 has apparently 
reflected the impact of the second fare increase. However, 
this to a great extent could have been because of the aforesaid 
characteristic of the least square method. This has not been 
the case for Equation 5, which was developed excluding X 4 ,. 

Availability of 1986 data for the time-series will eventually 
allow clarification of the assumption with respect to X 4, for 
the intervention model. Implementation of the second fare 
increase was in July 1985 and the impact was reflected in only 
six monthly ridership data points. This is usually considered 
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to be an insufficient number of data points for an intervention 
model to show the impact of an intervening event. Indeed, it 
would have been desirable to develop models for the 1979 
through 1984 period, and then for model evaluation, predict 
1985 monthly ridership . Unfortunately, because of the second 
fare increase in July 1985, this was an unsuitable basis for 
evaluation. 

Ridership predictions for 1985 are summarized in Table 1. 
The superiority of the intervention model is evident because 
of smaller RMS and more accurate prediction of both average 
monthly ridership and yearly ridership. 

CONCLUSIONS 

Intervention modeling applied herein to time-series monthly 
ridership was based on Box-Tiao Intervention Analysis. The 
applied intervention modeling for Lexington/Fayette County 
specialized transportation (WHEELS) monthly ridership con­
sisted of iterative stages of identification, estimation, and 
diagnosis. The selected model for 1979 through 1985 time­
series data showed that monthly ridership has a seasonality 
of 12 months and depends on the past month's ridership as 
well as Lag 1, Lag 4, Lag 5, and Lag 12 white noises. Fur­
thermore, the monthly ridership was found to be affected by 
changes in service attributes, such as fare increase and service 
expansion. With 0.05 as a level of significance criterion for 
parameter estimates in the intervention model, it was found 
that service expansion in January 1981 resulted in a monthly 
ridership increase of roughly 2,119 and the fare increase from 
50 cents to 75 cents in July 1984 resulted in a monthly ridership 
decline of roughly 464. 

For specialized transportation service of the type analyzed, 
intervention modeling is more appropriate and powerful than 
traditional multiple linear regression in evaluating and pre­
dicting time-series data with intervening events. Although 
requiring somewhat more historical data points, intervention 
analysis successfully treated time lag structure and interre­
lations of the time-series data. The superiority of intervention 
modeling lies in the ability to capture seasonality in the time­
series and properly reflect the impact of changes in service 
attributes. Unlike traditional multiple linear regression models, 
the residual autocorrelations of the estimated intervention 
models were found to be uncorrelated. Although the selected 
intervention model is dependent on 1979 through 1985 
WHEELS ridership data, the same methodology can be applied 
to study any specialized transportation or paratransit system 
with time-series nonstationary behavior characteristics that 
have been affected by service policy changes or other inter­
vening events. 

TABLE 1 COMPARISON OF PREDICTED AND ACTUAL 1985 
RIDERSHIP 

Regression 
Intervention 

Variable Actual Simple Multiple Model 

Monthly avg. 5,415 6,657 5,535 5,524 
Yearly total 64,981 79 ,883 66,408 66,291 
RMS 0 1,809,664 208,925 111,450 
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