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A Sensitivity Analysis of the 
Application of Dynamic Programming 
to Pavement Management Systems 

KIERAN J. FEIGHAN, MOHAMED Y. SHAHIN, KuMARES C. SINHA, AND 

THOMAS D. WHITE 

There has been a concerted research effort to update the pre­
diction and optimization capabilities of the Micro PA VER 
pavement management system. An approach uniting the 
Markov probability prediction curves and dynamic program­
ming optimization has been proposed. This paper briefly out­
lines the background work done on both. It examines the sen­
sitivity of the dynamic programming output to changes in input 
parameters. Data from three existing databases and a fourth, 
formulated database are used in the analysis. Output values 
from dynamic programming are also compared with results 
obtained from deterministic analysis using best-fit curves for 
prediction and cost versus condition data. It is concluded that 
the dynamic programming results are reasonable. A multizone 
dynamic programming approach was seen to give more con­
sistent results than a one-zone approach. It was found that for 
life-cycle lengths greater than 15 years, there was little change 
in optimal decision or cost. Low interest rates favored more 
expensive, longer-lasting solutions. The minimum Pavement 
Condition Index (PCI) level specified affected the results ap­
precfably, in general. These results were consislent lhrough 
all four databases examined. It wa concluded that the Markov/ 
dynamic programming approach was functioning satisfactor­
ily, and was suitable and appropriate for use at the micro­
computer level. 

This paper describes a series of analyses performed on the 
dynamic programming optimization package developed for 
the Micro PA VER pavement management system (1) in which 
the sensitivity of the output to changes in input parameters 
is documented. The outputs are also compared with a "tra­
ditional ," deterministic life-cycle analysis to determine how 
well the dynamic programming algorithm is performing. The 
major advantage in using this dynamic programming approach 
is that the generation of the output is extremely fast and 
efficient on a microcomputer. The system is directly appli­
cable to any pavement management system that uses a con­
dition index to indicate overall condition. 

This work is part of an overall effort to improve the pre­
diction, optimization, and budget allocation capabilities of 
Micro PA VER. A necessarily brief background on the 
Markov process and dynamic programming is included. Fur­
ther details are available in the literature cited (2-6) . 

K. J. Feighan, ERES International Inc. Champaign, Ill. 61820. 
M. Y. Shahin, United States Army, Construction Engineering Research 
Laboratory, Champaign, Ill. 61820. K. C. Sinha and T. D. White, 
Department of Civil Engineering, Purdue University, West Lafay­
ette, Ind. 47907 . 

MARKOV PREDICTION MODEL 

It is not possible to describe the functioning of the dynamic 
programming algorithm without first describing the prediction 
model used. More detailed and comprehensive descriptions 
have already been published elsewhere (2,3). Much of the 
terminology used in this description also is used in dynamic 
programming. 

The Pavement Condition Index (PCI) range of 0 to 100 is 
divided into ten states, each state being 10 PCI points wide. 
A pavement is modeled as beginning its life in near-perfect 
condition (a PCI of 100 being perfect) and deteriorating as it 
is subjected to a sequence of duty cycles. A duty cycle is 
defined as 1 year's imposition of the effects of weather and 
traffic. A state vector indicates the probability of a pavement 
section being in each of the ten states in any given year. Figure 
1 shows the schematic representation of state, state vector, 
and duty cycle. 

The sections are grouped into families of sections having 
common characteristics, such as pavement type, traffic, and 
so forth . All of the sections are grouped into one of the ten 
states at any age . It is assumed that all of the pavement sec­
tions are in state 1 (PCI of 90 to 100) at an age of 0. 

It is necessary to identify the Markov probability matrix to 
model the deterioration process of the pavements. The 
assumption made is that the pavement condition will not drop 
by more than one state (10 PCI points) in a single year. Thus, 
the pavement will either stay in its current state or transit to 
the next lowest state in 1 year. The probability transition 
matrix has a diagonal structure as shown in Figure 2. 

The state vector for any duty cycle t, S(t), is obtained by 
multiplying the initial state vector S(O) by the transition matrix 
P raised to the power of t. Thus 

S(l) P * S(O), 
5(2) = P * S(l) = P 2 * S(O), and 
S(t) = P * S(t - 1) = P' * S(O) . 

If the transition matrix probabilities can be estimated, the 
future condition of the road at any duty cycle (age) t can be 
predicted. 

The probabilities are estimated using a nonlinear program­
ming approach. Probability values are found that, when inserted 
into the Markov chaining process, match the actual (PCI, 
age) data points as closely as possible . It has been found that 
this approach can accurately model the pavement deteriora-
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FIGURE 1 Diagram of state, state vector, and duty cycle. 
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tion over time. A sample output of this program is shown in 
Figure 3. 

INTRODUCTION TO DYNAMIC 
PROGRAMMING 

Dynamic programming is an approach to optimization. It is 
not based on a well-defined, consistent algorithm such as the 
simplex algorithm used in linear programming. Instead, it 
seeks to take a single, complex problem and break it down 
into a number of smaller constituent problems. It is hoped 
that the solution of these smaller problems will arrive much 
faster and require considerably less computational power. If 
set up properly, dynamic programming is guaranteed to find 
the global optimal solution(s). 

This is a major advantage over almost all classical optim­
ization techniques. A general dynamic programming approach 
is also extremely robust in that it can handle integrality, nega­
tivity, and discreteness of variables very easily. It also, by its 
nature, produces the solution to all of its constituent sub­
problems. 

The major constraint upon the use of dynamic programming 
is that the proposed problem to be solved must be able to be 
formulated in terms of subproblems. If that is possible, how­
ever, as in the present case, dynamic programming provides 
an extremely fast and efficient optimization tool. 

Structure of Dynamic Programming 

The basic components of dynamic programming are states, 
stages, decision variables, returns, and transformation or tran­
sition functions (7). A physical system is considered to pro­
gress through a series of consecutive stages. In pavement 
performance terms, each year is viewed as a stage. 

At each stage, the system must be capable of being fully 
described by the state variables or state vector. In the present 
case, as described earlier, each state is a 10-PCI bracket for 
every pavement family, and the condition of the pavement at 
any year (stage) can be defined as being in one of the ten 
states. 

At each stage, for every possible state, there must be a set 
of allowable decisions. The decisions being made in the dynamic 
programming model are which repair alternative to implement 
in each state at every stage. 

Finally, there is the transformation or transition function. 
If a process is in a given state and a feasible decision is made, 
there must be a function that determines the new state to 
which the process should move. In general, dynamic pro­
gramming transformation functions can be deterministic or 
stochastic. In this particular case, the transition function is 
defined by the Markov probability matrix derived in the curve­
fitting process described earlier and, hence, is a stochastic 
process. 

In summary, the problem set up for this dynamic program­
ming formulation is: 

Minimize: Expected cost over a specified life-cycle length 
subject to keeping all sections above a defined performance 
standard. 

The dynamic programming parameters are: 

States: Each bracket of 10 PCI points in a family. 
Stages: Each year in the analysis period. 
Decision Variables: Which M&R treatment to apply. 
Transformation Function: The Markov transition probability 
matrix defines the transformation . 
Return: Expected cost if a particular decision is made in each 
state at each stage. 

Dynamic Programming Output 

The output from the dynamic programming program consists 
of 

1. A file containing the optimal maintenance alternative in 
every year (stage) for every family/state combination; 

2. The discounted present worth costs expected to accrue 
over the life cycle specified if the optimal decisions are imple­
mented; 

3. The expected effectiveness accrued as a result of follow­
ing the optimal decisions calculated for every family/state 
combination; and 
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4. The calculated effectiveness/cost ratio for every family/ 
state combination . 

INTRODUCTION TO ANALYSIS 

The data analysis is made up of two main sections. First, an 
analysis of the sensitivity of the dynamic p1 ogramming results 
to changes in input parameters is performed for four data­
bases. These databases were selected because relevant con­
dition performance and condition/cost data were available. 

Second, a comparison of the dynamic programming results 
with those obtained from a deterministic analysis using best­
fit performance curves is performed. 

DESCRIPTION OF PARAMETER SETTINGS 

The parameters considered in the sensitivity analysis of the 
dynamic programming solution were 

1. Minimum allowable state, 
2. Combined zone versus multizone probability values, 
3. Effective interest rate, and 
4. Length of life-cycle analysis. 

The variable levels used in each parameter were as follows: 

1. Minimum allowahle statP. (MAS)· Th~ minimum <!l!ow­
able state, as the name implies, is the worst PCI level that 
the pavement manager will allow a pavement to reach before 
it must be repaired. In terms of feasible maintenance alter­
natives, the implication is that routine maintenance is not 
allowed in the minimum allowable state; the only feasible 
alternatives are those that will raise the PCI above the present 
condition state. It differs from a trigger point in that a non­
routine maintenance action can be taken above the MAS if 
it is economically advantageous to do so. Thus, with a spec­
ified MAS of 5 (minimum PCI of 55), if dynamic programming 
recommends a surface treatment at a PCI of 75, this non­
routine maintenance action will be taken. Three levels of this 
parameter were chosen: minimum allowable states of 3, 5, 
and 7. 

2. Zone approach: There were two levels for this variable: 
the combined zone approach and the multizone approach. In 
the approach used to obtain the Markov probabilities that 
define the deterioration of condition over time, the life span 
of each family is divided into a number of zones. A separate 
set of Markov transition probabilities is obtained for each 
zone. 

The multizone approach uses all of these sets and uses all 
of the transition probabilities within each set to define the 
transition from one state to another as a function of time. 
The combined zone approach identifies the states in which 
most of the data points of that zone are located. The state 
transition probabilities corresponding to those states only are 
chosen. Thus, for example, if the majority of the data points 
in zone 2 are located in the PCI range of 70 to 90, the com­
bined zone approach will take the transition probabilities cor­
responding only to states 2 and 3 (PCis of 80 to 90 and 70 to 
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80, respectively). In this way, a single representative transition 
probability matrix is compiled tor use 10 the dynamic pro­
gramming algorithm. 

3. interest rate: Two levels of effective interest rates were 
used in the analysis: 5 percent and 15 percent. The interest 
rate is used to discount future expenditures to present worth 
costs, the most equitable basis of comparison for strategies 
having different expenditures at differing times. 

4. Life-cycle analysis period: Three analysis periods were 
investigated: 5, 15, and 25 years. 

AVAILABLE DATABASES 

Four databases were prepared for use by the dynamic pro­
gramming programs: 

1. Fort Eustis, 
2. Tulsa, 
3. Great Lakes Naval Center, and 
4. A sample formulated database. 

Information on cost and performance for the three actual 
databases was obtained from the CERL report, "The Rela­
tionship of Pavement Maintenance Costs to the Pavement 
Condition Index" (8). This report contains detailed cost infor­
mation and best-fit performance curves for five locations. The 
three selected have the most complete data and more main­
tenance alternatives from which to choose. 

The formu1ated datab3se h:is hypothetical pcrfvrmancc and 
cost relationships. Some of these relationships were chosen 
specifically to attempt to show how optimal alternatives may 
change depending upon state, interest rates, life-cycle length, 
and other factors. 

The maintenance alternatives available for each database 
are shown in Table 1. Sample best-fit constrained least-squares 
performance curves are shown in Figures 4 and 5 for the Great 
Lakes base. Markov probability values were obtained to model 
these curves. Examples are shown in Figures 6 and 7. Some 
sample PCI/cost relationships are shown in Figures 8 through 
10 for both initial cost and routine maintenance cost. In the 
CERL report, cost values are given for every 20-PCI-point 
bracket. These values were taken to be centered at the mid­
point of the bracket, and a best-fit curve was obtained for the 
entire PCI range using these points. 

PROCEDURE UTILIZED FOR SENSITIVITY 
ANALYSIS 

The basic procedure used follows. For each of the four data­
bases, 12 dynamic programming runs were performed. (This 
number is made up of two interest rate ievels times three 
minimum allowable state levels times two zone approaches 
used in estimating Markov probability values.) A life-cycle 
analysis period of 25 years was always specified. Because of 
the nature of the dynamic programming formulation, the 25-
year solution set also contains the optimal solutions for every 
year fewer than 25 years; thus the 5- and 15-year optimal 
decisions and costs are readily obtainable. Forty-eight dynamic 
programming runs were performed. 
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TABLE 1 MAINTENANCE ALTERNATIVES FOR EACH 
DATABASE 

FORT TULSA GREAT SAMPLE 
EUSTIS LAKES DATA 

ROUTINE 
MAINTENANCE YES YES YES YES 

SURFACE 
TREATMENT YES YES YES YES 

THIN 
OVERLAY YES YES YES YES 

THICK 
OVERLAY YES YES YES YES 

RECONSTRUCTION 
NO YES NO YES 

PCI 
100 

80 

60 

40 -

20 

0 
0 5 10 15 

AGE (yea rs ) 
20 25 

- - Thin Overl ay 

FIGURE 4 Thin overlay at Great Lakes. 

It is not possible to obtain the variance of the expected cost 
from dynamic programming. Consequently, a random simu­
lation was performed after each dynamic programming run . 
The purpose of this was to obtain a mean estimated cost and 
variance for each family/state combination. The estimated cost 
can be compared with the expected cost obtained from dynamic 
programming. These values will not usually be the same but 
should be reasonably close in magnitude. Twenty-five simu­
lations were performed for each family/state combination. 
Thus, the final products for all such combinations were 

1. Optimal decisions from dynamic programming, 

2. Expected costs from dynamic programming, 
3. Estimated mean cost from simulation runs, and 
4. Estimated variance of the mean cost from simulation 

runs. 

All of the data were entered into data spreadsheets, one 
for each database. This was done for ease of data manipu­
lation. Confidence limits were drawn about the mean cost 
using the estimated variance. An example from the Great 
Lakes database is shown in Table 2. It can be seen that , in 
general, these limits are reasonably tight, especially given that 
a 95 percent confidence level is used . In almost all cases, the 
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FIGURE 7 Markov prediction for structural overlay. 
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TABLE 2 GREAT LAKES EFFECTIVENESS/COST RATIOS 

INTEREST RATE: 5% 

!floi.AMILY ,, S<TATE STBA!f. sm>.r. 
Li@f ""''' -::. %" ~ i.' ··e "" 

"' 
"" 1 f1 121.1 118.99 

1 . 4 ' 81.8 77.99 
'" ,~. 1 .,,, 

}'<' 1 67.46 62.27 

"' 2 "" & 7 64.13 59.32 
"''3 "' ·1 115.49 109.68 

3 4 78.15 78.06 
4 1 141.57 113.89 

INTEREST RATE: 15% 

P,AMll.!Y STATE STRAJ. smAT. 
A B 

1 7 93.98 90.64 
2 , 243.25 219.29 
2 7 87.63 84.52 
3 1 266.59 259.9 
3 7 92.18 88.91 

estimated mean cost from simulation falls within a 95 percent 
confidence bracket around the dynamic programming mean. 
This is encouraging and indicates that the costs obtained are 
reasonable and the programs are functioning correctly. 

For the purposes of analysis, the data were extracted from 
the database in a number of structured ways. As there were 
four parameters of interest, data were extracted so that the 
effect of changing the parameter level of one variable while 
holding the others constant could be examined. 

SUMMARY OF RESULTS 

A brief description of the trends seen in all four databases 
for each of the input parameters follows. 

Interest Rates 

The predominant observed trend was that low interest rates 
tended to favor the alternatives with more expensive initial 
costs and lower subsequent maintenance costs. This pattern 
is consistent with basic economic theory. There was an inter­
action between interest rate and time. As the analysis period 
was increased, differences between costs using the 5 percent 
and 15 percent interest rates became more substantial, both 
in absolute terms and in percentage terms for any family/state 
combination. This pattern was observed regardless of the 
minimum allowable state (MAS) specified. 

Minimum Allowable State 

Costs decreased as the MAS increased. This is again in line 
with the expected pattern, as specifying an MAS is basically 

STRA'lli S'fRAti • (;OMS. MULil 
c D ZONE ZONE 

109.08 112.26 200.2 160.6 
65.08 87.62 111.8 90.9 
59.59 66.67 89.6 71.3 
56.71 63.43 149.2 121.5 
95.35 106.16 89.6 71.3 
64.24 88.57 117.5 90.9 

109.62 109.38 252.8 163.3 

STRAT. ST RAT. GOMB. MULTI 
c 0 ZONE ZONE 
83.81 91.99 106 94.7 

172.59 225.48 294.8 258.3 
78.23 85.93 106 94.7 

216.55 249.53 326.2 297.6 
90.32 82.27 106 94.7 

equivalent to putting a constraint on the feasible optimal deci­
sions; and the greater the MAS, the less confining the con­
straint is. Consequently, the optimal costs would be expected 
to decrease as the MAS is increased. For any family/state 
combination, the cost difference between an MAS of 3 and 
one of 5 was greater than the difference between an MAS of 
5 and one of 7. Consequently, it was concluded that the opti­
mal solutions were reaching a steady-state level at about an 
MAS of 5; and further loosening of the constraint to an MAS 
of 7 had little further influence. 

Varying Zone Analysis 

Few consistent patterns were obvious in comparing the opti­
mal decisions and costs for the two zone approaches specified. 
Generally, it was found that the 5 percent interest rate caused 
differences in optimal decisions between the two approaches 
much more than the 15 percent rate did. There were no con­
sistent trends other than this. For any given family/state com­
bination, the optimal decisions and costs varied considerably 
from database to database. Sometimes the combined zone 
approach gave higher costs; other times the multizone costs 
were higher. The analysis later in this paper comparing the 
dynamic programming results to the deterministic results was 
used to determine which approach was more realistic. 

Varying Life-Cycle Length 

The present worth costs always increased with increasing life­
cycle length, as expected. In general, when the present worth 
costs were expressed as equivalent uniform annual costs 
(EUACs), the EUAC decreased with increased life-cycle 
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length. This was believed to be because the costlier but longer­
lasting M&R alternatives were getting an insufficient length 
of time to "justify" their cost over the 5-year life-cycle length. 

Occasionally, this pattern was reversed in states 1 and 2 
when the EUACs for the 5-year life cycle were lowest. Rou­
tine maintenance was always the optimal decision in those 
states when this pattern was observed, and it is believed tha, 
this was reflecting the fact that routine maintenance is a short­
lived activity that does not require a lengthy life cycle to justify 
its expenditure. 

It was also observed that there was much less of a drop in 
EUAC from 15 to 25 years than from 5 to 15 years. Again, 
this was believed to be because the life cycles of most of the 
M&R alternatives were greater than 5 years but shorter than 
25 years. Thus, the 5-year life cycle was not long enough Lo 

"prove" the worth of the costlier alternatives, while life-cycle 
lengths greater than 15 years basically reproduced a repeat 
of the 15-year optimal decision cycle \.Vith little or no further 
reduction in EUAC. 

COMPARISON WITH DETERMINISTIC 
RESULTS 

The dynamic programming algorithm has as its output the 
optimal maintenance decision to make for every state of every 
family in each year of the life cycle considered. The costs and 
benefits associated with this decision are also produced. These 
results are obtained on a probabilistic basis and represent the 
mean minimum cost in each case. 

Certain simplifying assumptions are made in defining the 
dynamic programming setup for network-level optimization. 
The major assumption is in the state definition concept that 
essentially assumes that all sections in each 10-PCI-point bracket 
of each family behave in the same way. The Markov assump­
tion hypothesizes that the performance curve for any family 
can be represented through the Markov transition probability 
matrix values. Information on both initial cost and routine 
maintenance cost is used on a state basis, again assuming that 
all family sections in each 10-PCI-point bracket will have the 
same maintenance costs. 

As a result of these simplified assumptions, there may be 
some doubt as to the veracity of the "optimal" decisions cho­
sen. To obtain some idea of how good the dynamic program­
ming solutions are , it is necessary to compare the solutions 
with those obtained from a different analysis of the available 
data. The alternative analysis used is the "strategy" algorithm, 
which contains PCI versus age and PCI versus dollar curves 
into a life-cycle cost analysis. Figure 11 shows the sample 
strategies wnsitleretl. 

By experimenting with different strategies for a given life 
cycle and interest rate, it is possible to come close to the 
optimal combination of alternatives. This program's approach 
is deterministic, assuming that future condition can be pre­
dicted precisely. Thus, it is not connected theoretically or 
practically with the dynamic programming approach. By com­
paring the outputs of these programs, it should be possible 
to 

1. Confirm or reject the optimality of the dynamic pro­
gramming solution, 
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2. Confirm or reject the validity of the cost and cost/benefit 
ratios output by dynamic programming (the magnitude of 
these values should be comparable for both programs), and 

3. Investigate the sensitivity of the dynamic programming 
solution to changes in input values. 

ANALYSIS APPROACH USED 

It was not realistic to attempt to run the deterministic cost 
analysis package on every combination of parameter variables 
for every database, as the number of such combinations is 
much too large. It was decided to specify certain variable­
level combinations and then randomly choose a number of 
these combinations for analysis. 

It was decided to fix the life-cycle analysis length at 25 years, 
as it was believed that this would yield the most valuable 
insights into the behavior of the one-zone and inultizone 
dynamic programming approaches. It was decided to examine 
the results using both the 5 percent and 15 percent effective 
interest rates. It was further decided that all four families in 
each database should be candidates for analysis and that all 
four databases should be examined. Also, it was decided to 
limit the initial candidate starting states to states 1, 4, and 7. 

Thus, for each database, the potential number of combi­
nations of parameters for deterministic analysis is 

3 states * 2 interest rates * 4 families = 24 combinations 

It was anticipated that there would be four trial strategies run 
deterministically for each such comhin:ition, leadine; to almost 
100 runs for each of the four databases. It was decided to 
select randomly 12 combinations from the 24 to reduce the 
number of required runs to a manageable figure. 

After random selection, the list of combinations selected 
was as follows: 

1. Family 1, state 1, 5 percent interest rate; 
2. Family 1, state 4, 5 percent interest rate; 
3. Family 1, state 7, 5 percent interest rate; 
4. Family 2, state 7, 5 percent interest rate; 
5. Family 3, state 1, 5 percent interest rate; 
6. Family 3, state 4, 5 percent interest rate; 
7. Family 4, state 1, '.i percent interest rate; 
8. Family 1, state 7, 15 percent interest rate; 
9. Family 2, state 1, 15 percent interest rate; 

10. Family 2, state 7, 15 percent interest rate; 
11. Family 3, state 1, 15 percent interest rate; and 
12. Family 3, state 7. 15 percent interest rate. 

ANALYSIS OF DETERMINISTIC RESULTS 

The deterministic analysis cost package was run for each of 
the family/state combinations chosen in each database. The 
results, the present worth cost and total effectiveness, were 
entered on spreadsheets for ease of analysis. 

The effectiveness/cost ratio for each of the strategies chosen 
was tabulated with those predicted by the dynamic program­
ming approaches. These results are given in Tables 3 to 6. 
The remainder of this ;malysis is concerned with the exami­
nation of these tables in an effort to determine the reason-
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STATE 1 OF EACH FAMILY: 

A: SURFACE TREATMENT WHEN PCI 

WHENEVER PCI FALLS TO 70. 

111 

70, REPEAT SURFACE TREATMENT 

B: THIN OVERLAY WHEN PCI = 50, REPEAT THIN OVERLAY 

WHENEVER PCI FALLS TO 50. 

C: STRUCTURAL OVERLAY WHEN PCI = 40, REPEAT STRUCTURAL OVERLAY 

WHENEVER PCI FALLS TO 40. 

D: SURFACE TREATMENT WHEN PCI = 70, THEN APPLY THIN OVERLAY 

WHEN PCI = 50, REPEAT SURFACE TREATMENT WHEN PCI = 70. 

STATE 4 OF EACH FAMILY: 

A: SURFACE TREATMENT WHEN PCI 55, REPEAT SURFACE TREATMENT 

WHENEVER PCI FALLS TO 70. 

B: THIN OVERLAY WHEN PCI = 50, REPEAT THIN OVERLAY 

WHENEVER PCI FALLS TO 50. 

c: STRUCTURAL OVERLAY WHEN PCI 40, REPEAT STRUCTURAL OVERLAY 

WHENEVER PCI FALLS TO 40. 

D: SURFACE TREATMENT WHEN PCI = 65, THEN APPLY THIN OVERLAY 

WHEN PCI = 50, REPEAT SURFACE TREATMENT WHEN PCI = 70. 

STATE 7 OF EACH FAMILY: 

A: SURFACE TREATMENT WHEN PCI 35, REPEAT SURFACE TREATMENT 

WHENEVER PCI FALLS TO 70. 

B: THIN OVERLAY WHEN PCI = 35, THEN APPLY THIN OVERLAY 

WHENEVER PCI FALLS TO 50. 

C: STRUCTURAL OVERLAY WHEN PCI = 35, REPEAT STRUCTURAL OVERLAY 

WHENEVER PCI FALLS TO 40. 

D: SURFACE TREATMENT WHEN PCI 

WHENEVER PCI = 70. 

35, REPEAT SURFACE TREATMENT 

FIGURE 11 Symbol key for database LCCST comparisons. 

ableness of the dynamic programming results vis-a-vis the 
deterministic results, and to establish which of the dynamic 
programming zone approaches gives more reasonable results . 

EFFECTIVENESS/COST RATIO COMPARISONS 

In general, the effectiveness/cost (E/C) ratios predicted by 
the deterministic approach and those given by dynamic pro­
gramming were certainly comparable in magnitude. It was not 
anticipated that the figures would be exactly the same since 
the dynamic programming approach uses cost figures on a 
state-by-state basis, assigning the same cost for each PCI in 
each 10-PCI-point bracket. The deterministic approach, on 
the other hand, is more detailed and can calculate the cost 
for any PCI point between 0 and 100. 

It was also anticipated that, in general, the dynamic pro­
gramming E/C ratios would be higher as these solutions should 
be global optimal in comparison with the strategies selected 

for the deterministic analysis. In fact, in many cases, it was 
found that the best strategy in the deterministic analysis mir­
rored the dynamic programming strategy almost completely, 
leading to almost identical E/C ratios under both analyses. 

There are a total of 48 family/state combinations to be 
analyzed, spread over the four databases of interest. In 37 of 
the 48 cases, the multizone dynamic programming approach 
was close to the best deterministic E/C result. In 6 cases, the 
one-zone and multizone results were equally close to the 
deterministic results, and in 5 cases, the one-zone dynamic 
programming results were closer. Of the 37 cases in which 
multizone was closer, 34 of the E/C ratios were higher than 
the deterministic values, an expected result in the context of 
global and local optima. 

In the Great Lakes analysis, the multizone results were 
closer to the deterministic results in 11 of the 12 comparisons. 
The magnitudes of the results are generally very close, espe­
cially for the multizone results. The only obvious difference 
is in family 2, state 7, under a 5 percent interest rate, where 
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TABLE 3 TEST EFFECTIVENESS/COST RATIOS 

INTEREST RATE: 5% 

FAMILY STATE STRAT. STRAT. STRAT. STRAT. COMB. MULTI 
A B c D ZONE ZONE 

1 1 140.87 145.7 119.98 144.64 242.5 229.8 
1 4 67.29 68.8 58.52 63.6 136.2 104.7 
1 7 79.35 66.73 86.19 111 .68 113.2 90.7 
2 7 78.55 66.18 85.54 110.81 113.2 90.7 
3 1 120.17 76.58 98.91 95.42 218.3 139.8 
3 4 64.84 63.69 59 76.26 136.2 104.7 
4 1 167.1 112.63 125.51 134.17 195 178.9 

INTEREST RA TE: 15% 

FAMILY STATE STRAT. STRAT. STRAT. STRlff. COMB. MULTI 
A 8 c D ZONE ZONE 

1 7 127.77 113.61 140.99 164.65 158.3 132.3 
2 1 243.83 163.27 183.6 198.44 426.5 270.43 
2 7 125.72 111.89 139.27 162.56 158.3 132.3 
s 1 283.63 203.27 223 239.44 466.6 325.2 
s 7 124.57 110.93 138.26 161.34 158.3 132.3 

TABLE 4 FORT EUSTIS EFFECTIVENESS/COST RATIOS 

INTEREST RATE: 5% 

FAMILY STATE STRAT. STRAT. 
A B 

1 1 379.32 225.49 
1 4 126.09 116.88 
1 7 105.19 97.53 
2 7 109.38 104.11 
3 1 257.72 265.69 
3 4 144.55 134.83 
4 1 360.17 256.66 

INTEREST RATE: 15% 

FAMILY STATE STRAT. STRAT. 
A B 

1 7 128.33 126.81 
2 1 563.68 477.1 
2 7 134.77 133.18 
3 1 704.55 734.48 
3 7 131.4 129.84 

the one-zone and multizone analyses have substantially higher 
EiC ratios. 

In the Fort Eustis analysis, the same pattern is aga in evi­
dent. However, there are more family/state combinations where 
the dynamic programming EiC results are substantially greater 
than the deterministic results. Generally . these differences 
occur in state 1 of the various families, especially with a 5 
percent interest rate being used. An examination of present 
worth costs shows that the dynamic programming cos ts are 
much lower than those given by the deterministic analysis. 

STRAT. STRAT. COMB. MULTI 
c D ZONE ZONE 

150.92 241.33 3066.53 922.3 
91 .1 127.84 260.7 231.3 

92.48 67.92 142.5 134.3 
70.07 95.81 111.3 106.6 

178.16 240.72 1307 786.3 
103.99 133.55 231.3 209 
170.58 244.9 2479.9 1020.9 

STRAT. STRAT. COMB. MULTI 
c D ZONE ZONE 
91 .83 110.65 151.6 148.3 
538.6 407.36 1280.4 860.5 
95.79 115.45 116.4 114.9 

609.26 700 3324.4 1908.9 
93.72 112.94 116.4 114.9 

It is believed that the costs projected through dyn amic pro­
gramming in this case a re , in fact , too low . The value is low 
because the Markov transition probability value selected by 
the Markov program for state 1 is well above 0. 9, thus encour­
aging a pavement section to be retained in state l for longer 
than it would normally be expected to remain. Naturally , this 
results in a lower life-cycle cost . Modifications to the Markov 
program since thi s analysis was performed have resulted in 
more reasonable state 1 values being chosen consistently. 

The test and Tulsa databases show patterns simil ar to those 



TABLES TULSA EFFECTIVENESS/COST RATIOS 

INTEREST RATE: 5% 

FAMILY STATE STRAT. STRAT. STAAT. STRAT. COMB. MULTI 
A 8 c D ZONE ZONE 

1 1 232.38 185.66 115.16 178.25 472 253.5 
1 4 159.23 124.08 87.5 120.46 294 156.3 
1 7 122.84 103.25 66.83 108.79 159.1 114.3 
2 7 119.77 101.09 65.77 106.6 121.1 92.2 
s 1 221.53 140.99 105.76 167.25 484.4 240.9 
3 4 149.08 124.07 83.27 120.46 280 160.3 
4 1 234.77 174.13 114.05 180.2 472.7 259.2 

INTEREST RA TE: 15% 

FAM!LY STATE STRAT. STRAT. STRAT. STRAT. COMB. MULTI 
A 8 c 0 ZONE ZONE 

1 7 165.61 150.47 106.35 140.46 187.6 139.6 
2 1 490.99 318.07 230.64 393.68 969.8 456.9 
2 7 160.31 145.93 103.69 136.66 134.9 103.9 
3 1 483.76 341.69 263.54 387.78 1073.5 528.3 
3 7 162.8 148.27 105.06 138.62 139.1 106.9 

TABLE 6 COMPARISON OF DYNAMIC PROGRAMMING MEAN 
WITH SIMULATION MEAN 

DYN. PROG. SIMULATION UPPER LOWER 
FAMILY $TATE MEAN MEAN BOUND BOUND 

1 1 7.7 7.02 8.39 7.01 
2 9.65 10.43 10.65 8.65 
3 12.42 11.55 12.95 11.89 
4 13.01 12.94 13.76 12.26 
5 14.15 14.32 14.96 13.34 
6 15.2 15.48 15.96 14.44 
7 16.7 16.95 17.41 15.99 

2 1 9.98 9.74 10.57 9.39 
2 10.92 11.09 11.83 10.01 
3 11.97 11.83 12.57 11.37 
4 13.01 13.18 13.68 12.34 
5 14.15 14.86 14.92 13.38 
6 15.2 15.3 15.89 14.51 
7 16.7 16.62 17.33 16.07 

3 1 9.13 8.87 9.8 8.46 
2 10.61 10.49 11.29 9.93 
3 11.86 11.39 12.61 11 .11 
4 13.01 13.12 13.68 12.34 
5 14.15 14.34 14.76 13.54 
6 15.2 15.48 15.92 14.48 
7 16.7 17.03 17.41 15.99 

4 1 7.66 7.44 8.35 6.97 
2 11.22 11.36 12.01 10.43 
3 12.41 12.28 13.03 11.79 
4 13.23 13.2 13.83 12.63 
5 14.38 14.49 15.16 13.6 
6 15.23 15.56 16.18 14.28 
7 16.18 15.86 16.81 15.55 
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observed in Great Lakes. In general, the EiC values for the 
optimal deterministic strategy and the multizone dynamic pro­
gramming approach are very close, especially considering the 
differences in exactness of cost estimation and PCI prediction. 
In the test database, for a 15 percent discount rate, three of 
the five family/state combinations result in ties between the 
multizone and one-zone approaches in terms of closeness to 
the optimal deterministic result. 

It is interesting to note that the structural overlay option 
is found to be most cost-effective in the deterministic approach, 
as generally the thin overlay option is favored in state 7 for 
most of the databases. In summary, the EiC ratios predicted 
by the multizone dynamic programming approach are in good 
agreement with those predicted by a deterministic approach. 

SUMMARY 

This paper describes the results of an experimental analysis 
performed on four databases where condition and cost data 
were available. The effect of varying parameter-level inputs 
for these databases was investigated and reported. The effect 
was measured both in terms of change and expected cost. In 
general, the anticipated changes were actually reflected in the 
outputs. How the formulation is sensitive to changes in input 
values and which parameters in particular affected the results 
in a substantial way were revealed. 

In general, the longer life-cycle analysis periods tended to 
favor more costly initial alternatives with higher initial cost 
and greater life expectancy. Lower interest rates also tended 
........ + ..... ,,...._ +i..,.,,,..,.,, "'1+.-.- ........ +~ ........... ri.. ............... ,....,.. ~ ..... +i... ...... ---~--~_.. •• .._... ... 11 .............. i..1 ...... 
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state produced much greater differences as the state was 
lowered from 3 to 5 than when it was lowered from 5 to 7. 
The effect of using the Markov probability values in two dif­
ferent ways in the dynamic programming analysis was also 
considered. 

This was also seen in the latter part of the paper, where 
the outputs for the two zoning approaches were compared 

TRANSPORTATION RESEARCH RECORD 1215 

with the results from a deterministic analysis. Based on these 
comparisons, it was concluded that the approach using all the 
Markov values in every zone was superior to the alternative 
of using the Markov values for each state from the zone that 
contains the deterioration curve in that state. It was also con­
cluded that the dynamic programming and deterministic anal­
ysis results were certainly of the same magnitude and selected 
similar optimal maintenance decisions. 
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