Evaluation of the 1986 AASHTO Overlay Design Method

HAIPING ZHOU, R. G. HICKS, AND I. J. HUDDLESTON

The 1986 AASHTO Guide for Design of Pavement Structures is currently being evaluated in Oregon for use in the design of overlays. This newly revised guide presents two nondestructive methods for determining the strength of existing pavement structures so that the remaining life of the pavement can be evaluated. In the evaluation of the AASHTO overlay design procedure, five project sites around Oregon were selected, including four flexible pavements and one rigid pavement. Deflection measurements were taken using both the Falling Weight Deflectometer and Dynaflect. Cores were also tested to aid in evaluating paving materials. Three backcalculation programs (BISDEF, ELSDEF, MODCOMP2) were used to compute the moduli of the pavements, and the results were used to perform the overlay design. These results were compared with the current ODOT procedure, which is based on tolerable maximum deflection; and considerable inconsistency was observed. Generally, the AASHTO method provided a thinner overlay than the ODOT procedure. The results of this study show that the guide has an important advantage in that pavement strength for each layer can be quantified (NDT method 1) and remaining life may be taken into account. However, further investigation is still required to verify the method of determining existing pavement strength from backcalculation programs and the remaining life of the existing pavement. Therefore, the guide should be used with caution at the present time.

Problem Statement

Currently, the Oregon Department of Transportation (ODOT) uses the California Transportation Department (Caltrans) Procedure with some modifications to design flexible overlays over distressed highway pavements (1). The Portland Cement Association (PCA) and American Association of State Highway and Transportation Officials (AASHTO) methods are employed for Portland cement overlays (2, 3). Currently, either the Dynaflect or the Falling Weight Deflectometer (FWD) are used to obtain deflections for the flexible overlay design procedure. The maximum surface deflection obtained using the FWD or Dynaflect (converted to an equivalent Benkelman beam deflection) is used in the modified Caltrans method (4). For Portland cement concrete overlays, the overlay thickness is determined by subtracting the new design from the

effective thickness of the existing pavement (PCA and AASHTO methods).

In both instances, the data generated are insufficient to define accurately the structural adequacy of the existing pavement. In addition, the current procedures do not take into account the remaining life of the existing pavement. To enable designers to make better evaluations on the remaining life of the pavement and provide for more efficient utilization of paving materials, a new overlay design method is needed. The development and use of this new procedure should assist in determining the structural capacity and remaining life.

Purpose

The purpose of this paper is to present an evaluation of the use of the 1986 AASHTO Guidelines (5) on selected projects in Oregon. This has included the following steps:

1. Selecting typical project sites for deflection measurements and materials sampling;

2. Laboratory testing materials sampled from each project;

3. Analyzing deflection basin data and developing overlay design recommendations;

4. Discussing results; and

5. Developing appropriate conclusions and recommendations.

1986 AASHTO OVERLAY DESIGN METHOD

Concept

This overlay design procedure is based on the serviceability traffic and structural capacity—traffic relationships developed at the AASHTO Road Test. Determination of an overlay is accomplished by using a deficiency approach; Figure 1 illustrates seven steps that are generally involved. Of these steps, materials characterization and effective structural capacity analysis require the most effort. Two nondestructive test (NDT) methods are presented in the guide and can be used to analyze the existing pavement structure. They are (1) determination of pavement layer moduli (NDT method 1) and (2) determination of the total structural capacity (NDT method 2). Both methods rely on the use of deflection data generated from a nondestructive testing device.

H. Zhou and R. G. Hicks, Department of Civil Engineering, Oregon State University, Corvallis 97331. I. J. Huddleston, Oregon Department of Transportation, Salem, 97310.

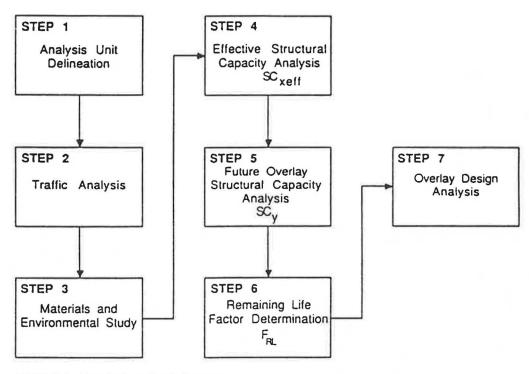


FIGURE 1 Required overlay design steps.

NDT Method 1

NDT method 1 is a technique used to determine the structural capacity of an existing pavement. This technique uses measured deflection basin data from an NDT device to backcalculate the in situ layer elastic moduli, and it is applicable to both flexible and rigid pavements. The fundamental premise of this solution is that a unique set of layer moduli exist such that the theoretically predicted deflection basin is equivalent to the measured deflection basin. To implement this technique, a computer program that backcalculates the elastic modulus for each pavement layer is necessary. The obtained moduli are related to layer coefficients using various charts given in the guide. The structural number is then determined using the equation

$$SN = \sum a_i h_i$$

where a_i equals the layer coefficient for each layer and h_i equals the thickness of each layer above subgrade.

NDT Method 2

NDT method 2 is based upon the maximum measured deflection from the dynamic NDT equipment and, as such, does not require a computerized model to backcalculate layer moduli (E_i). With NDT method 2, the maximum measured deflection is used to determine effective pavement structural number (SN_{xeff}) from Burmister's two-layer deflection theory. For a particular pavement structure, the SN_{xeff} value can be determined by a trial-and-error process. This is done by assuming an SN_{xeff} and computing the deflection d_o . If the calculated d_o does not agree with the maximum measured deflection (temperature adjusted), a new SN_{xeff} is assigned. The process is repeated until the calculated deflection matches the maximum measured deflection. A computer program has been developed to solve these equations (6).

PROJECTS EVALUATED

Project Descriptions

Field data were collected in the spring of 1987 at five project sites on existing highways in the state of Oregon. Four of the project sites were flexible pavements, and one was a rigid pavement. The age of the projects ranged from 10 to 25 years. Figure 2 shows the location of the project sites, and Figure 3 shows the typical cross sections.

For each of the project sites, data were collected on past and current traffic volumes. The new AASHTO overlay design traffic analysis suggests that two types of data be collected: the cumulative 18k ESAL repetitions until an overlay is placed and the cumulative 18k ESAL expected in the future for the overlay. However, the historic traffic is required only if the traffic method of determining remaining life is used. Table 1 includes a summary of traffic information obtained for each project.

The existing pavement conditions for the five sites varied considerably from one to the other. Two of the test sites (King's Valley Highway and Salem Parkway) did not show any signs of pavement surface distress. The Lancaster Drive site had been overlaid the previous year and, at the time its surface was tested, was in an excellent condition. The Willamina-Salem Highway site showed a considerable amount of cracking, both alligator and longitudinal. The PCC site (Wilsonville-Hubbard Highway) showed a fair amount of cracking in most slabs.

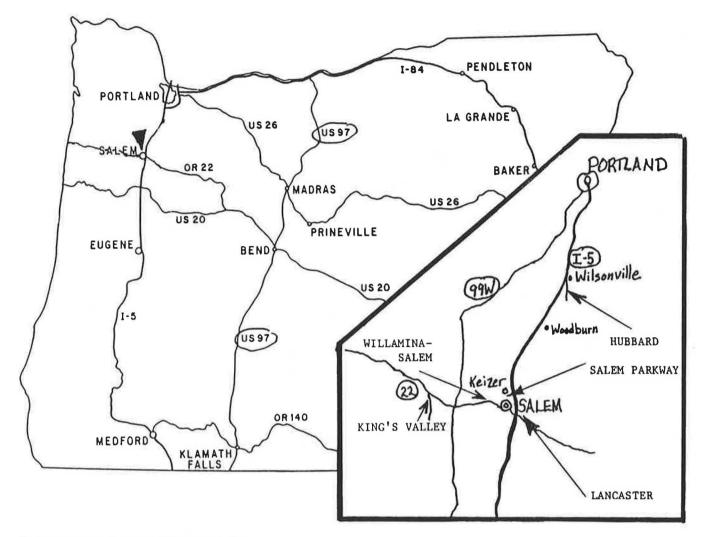


FIGURE 2 Location map of the project sites.

Pavement Deflection Measurements

Pavement surface deflections were measured at 50-ft intervals for 1,000-ft sections for each project. The measurements were taken with the KUAB Falling Weight Deflectometer (FWD) and the Dynaflect, both owned and operated by ODOT. For each site, deflection basin measurements were taken in the outer wheelpath. The FWD data were taken at three load levels and converted to a 9,000-lb load level by simple linear interpolation. The Dynaflect data were measured at a 1,000lb cyclic load and at a frequency of 8 Hz. The Dynaflect and FWD tests were conducted at the same locations so direct comparisons could be made.

The Dynaflect employs two counter-rotating masses to apply a peak-to-peak dynamic force of 1,000 lb (4.4 kN) at a fixed frequency of 8 Hz. The force is applied to the pavement through the use of two steel wheels 20 in. (50.8 cm) apart, and the deflection basin is measured using five sensors. The spacing of the sensors on this equipment is 1 ft. The ODOTowned KUAB Falling Weight Deflectometer is trailer-mounted and towed by a ³/₄-ton van. The impulse force is created by dropping a set of two weights from different heights. By varying the drop height, the load at the pavement surface was varied from 4,900 to 11,300 lb. The two-mass system is used to create a smooth load pulse similar to that created by a moving wheel load (7, 8). Surface deflections were measured with four seismic transducers (seismometers) that are lowered automatically with the loading plate and spaced 12 in. apart. Since the FWD can apply a load pulse similar to that produced by a loaded truck, there is no need to correct the determined in situ moduli for stress sensitivity. The load configurations for both the FWD and Dynaflect are shown in Figure 4.

Deflection Results

For each analysis section, the mean and standard deviations of the maximum measured deflection were calculated. Those basins with a maximum deflection that varied by less than the mean or more than 1.5 standard deviations from the mean were discarded. Of the remaining basins, five were randomly selected for further analysis.

In Table 2, the 9,000-lb load level is for the FWD and the 1,000-lb load level, for the Dynaflect. The deflection basins for the FWD were obtained at the 9,000-lb load level by linearly interpolating between the two adjacent load levels.

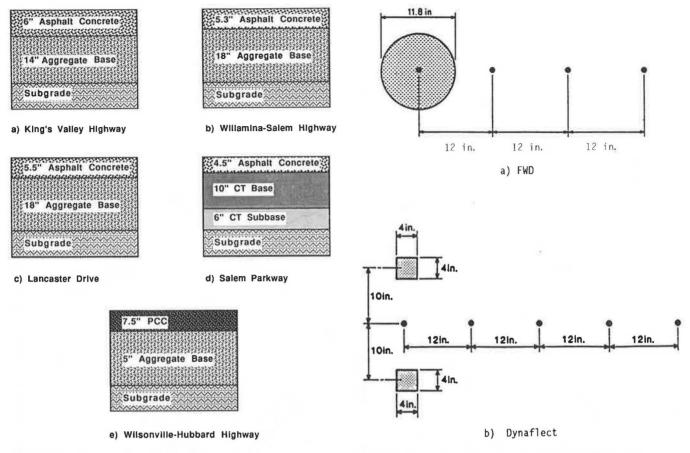


FIGURE 4 Load configuration for both NDT test units.

Project	Cross-Section	Traffic	Pavement Condition
King's Valley Highway	6.0" AC 14.0" Agg. Base Subgrade	4500 ESAL/yr 10 yr TC = 6.0 Cumulative ESAL = 5x10 ⁴ Future traffic = 33,200	Good surface condition Drainage adequate
Willamina-Salem Highway	5.3" AC 18.0" Agg. Base Subgrade	Current = 173,200 ESAL/yr 10 yr TC = 9.7 Cumulative ESAL = 2x10 ⁶ Future traffic = 1,876,600	Fair to Poor Longitudinal and alligator cracking in all lanes Evidence of rutting on outside lanes
Lancaster Drive	5.5" AC 18.0" Agg. Base Subgrade	Total Accum. 15 years ~40,000 ESAL/yr 20 yr Future traffic = 1,000,000	Surface condition very good Drainage good
Salem Parkway	4.5" AC 10.0" CTB 6.0" CTS Subgrade	Current = 135,000 ESAL/yr Accumulative = 420,000 ESAL 20 yr Future traffic = 3,200,000	Surface condition and drainage very good
Wilsonville- Hubbard Highway	7.5" PCC 5.0" Agg. Base Subgrade	Current = 115,000 ESAL/yr 10 yr TC = 9.1 Future traffic = 1,097,300	Good to Poor Cracking of slab Erosion of shoulders

TABLE 1 SUMMARY OF PROJECT DATA

				Se	ensors (×10 ⁻³	³) in.	
Reading Number	Equipment	Load (1bs)	1	2	3	4	5
King's Valle	y Highway						
1	FWD	9000	20.9	16.1	10.6	6.31	
	Dynaflect	1000	1.02	0.76	0.47	0.27	0.16
2	FWD	9000	20.76	16.14	10.67	6.25	
	Dynaflect	1000	1.12	0.81	0.49	0.28	0.10
3	FWD	9000	22.17	16.79	10.52	5.72	
	Dynaflect	1000	1.26	0.90	0.51	0.28	0.17
4	FWD	9000	22.19	16.97	10.47	5.77	
-	Dynaflect	1000	0.95	0.74	0.47	0.29	0.17
5	FWD	9000	22.27	16.39	9.88	5.02	
	Dynaflect	1000	1.09	0.77	0.43	0.24	0.14
/illamina-Sa	lem Highway						
1	FWD	9000	36.57	22.65	10.39	4.47	
	Dynaflect	1000	1.76	0.98	0.42	0.20	0.12
2	FWD	9000	42.35	25.12	10.62	3.98	
	Dynaflect	1000	2.27	1.17	0.45	0.20	0.10
3	FWD	9000	43.82	27.36	11.18	3.69	
	Dynaflect	1000	2.39	1.09	0.37	0.16	0.10
4	FWD	9000	36.77	22.22	9.50	3.32	
-	Dynaflect	1000	1.84	1.03	0.43	0.17	0.08
5	FWD	9000	39.80	24.70	8.95	3.76	A 1
	Dynaflect	1000	1.90	1.07	0.47	0.23	0.14
ancaster Dr	ive						
1	FWD	9000	26.17	19.80	11.10	7.70	
	Dynaflect	1000	1.55	1.11	0.71	0.46	0.31
2	FWD	9000	27.30	20.30	12.08	7.23	
	Dynaflect	1000	1.65	1.16	0.72	0.44	0.31
3	FWD	9000	26.39	21.13	12.62	7.94	
	Dynaflect	1000	1.65	1.22	0.78	0.47	0.33
4	FWD	9000	26.06	19.86	12.08	7.59	
	Dynaflect	1000	1.36	0.97	0.62	0.39	0.26
5	FWD	9000	27.12	20.72	13.36	8.75	
	Dynaflect	1000	1.44	1.11	0.76	0.51	0.37
alem Parkway	y						
1	FWD	9000	5.22	4.47	3.26	3.11	
	Dynaflect	1000	0.41	0.31	0.26	0.21	0.13
2	FWD	9000	4.47	3.36	2.81	2.4	
	Dynaflect	1000	0.35	0.29	0.26	0.27	0.1
3	FWD	9000	5.04	4.09	3.11	2.65	
	Dynaflect	1000	0.39	0.32	0.26	0.21	0.17
4	FWD	9000	5.78	3.99	3.42	2.83	
-	Dynaflect	1000	0.46	0.37	0.30	0.23	0.19
5	FWD	9000	4.90	3.77	2.90	2.27	A 91
	Dynaflect	1000	0.47	0.39	0.32	0.27	0.23
	Hubbard Highway						
1	FWD	9000	16.6	13.81	10.96	9.20	
	Dynaflect	1000	0.98	0.91	0.79	0.66	0.54
2	FWD	9000	16.76	13.48	10.47	8.58	
-	Dynaflect	1000	1.21	1.14	1.03	0.89	0.76
3	FWD	9000	15.69	13.74	11.25	10.19	
	Dynaflect	1000	1.09	1.06	0.97	0.85	0.7
4	FWD	9000	15.43 1.15	12.62 1.12	9.64 1.02	8.00 0.89	0.7
F	Dynaflect	1000			12.43	10.50	0.7
5	FWD	9000 1000	17.49 1.29	15.46 1.20	12.45	0.90	0.74
	Dynaflect	1000	1.29	1.20	1.00	0.90	0.74

TABLE 2 DEFLECTION VALUES FOR THE PROJECTS EVALUATED

Project	M _R @74°F (psi)	M _R @ 50°F (psi)
King's Valley Highway AC	608,000) T* 451,000) M* Av = 568, 375,000) M* Av = 568, 732,000) B*	1,758,000 [°] 000 1,409,000 Av = 1,652,000 1,791,000
Willamina-Salem Highway AC	320,000 307,000 } ** 396,000 334,000 } ** Av = 346, 306,000 } **	1,162,000 000 1,369,000 Av = 1,272,000 1,286,000
Lancaster Drive AC	264,000 } T* 275,000 } T* 336,000 } M* Av = 403, 297,000 } B*	1,045,000 000 801,000 Av = 1,242,000 1,881,000
Salem Parkway AC	217,000) ** 200,000) ** 257,000) ** 253,000) **	760,000 750 Av = 1,149,000 1,538,000
Wilsonville-Hubbard Highway PCC	5,891,300 4,064,700 Av = 4,97	7,000 N/A

TABLE 3 RESILIENT MODULUS OF ASPHALT AND PORTLAND CEMENT CONCRETE CORES

*T = Top; B = Bottom; M = Middle.

**Samples tested at two strain levels.

The 9,000-lb load was selected to correspond to the standard axle of 18,000 lb commonly used in the United States.

LABORATORY TESTS

Test Procedures

Resilient modulus laboratory tests (ASTM D4123) were performed on representative asphalt concrete core samples (4in. diameter). Sample preparation consisted of trimming the cores to a height of approximately 2.5 in. The resilient modulus was determined at test temperatures of 50°F and 74°F using a tensile strain value ranging from 75 to 125 microstrain.

The Portland cement concrete modulus tests were performed on 8-in.-high cylinders with a 4-in. diameter at 74°F. The 4-in. cylinders were tested in compression using three strain gauges attached to the side of the specimen. A strain meter was used to detect the change in strain from changes in electrical resistance in the wire gauges. Strain values were recorded at several levels of load.

Results

The laboratory test results are presented in Table 3. The average modulus obtained was the result of testing the top

(T), middle (M), and bottom (B) parts of the AC layer. Figure 5 shows the plot of modulus versus temperature for each of the flexible pavements evaluated.

DETERMINING THE EXISTING PAVEMENT STRENGTH

The structural capacity of the existing pavements was estimated using NDT methods 1 and 2 of the AASHTO Guide (5). Three backcalculation programs (BISDEF, ELSDEF, and MODCOMP2) were utilized for NDT method 1. For NDT method 2, calculations were performed by following the procedures described in the AASHTO Guide.

Backcalculation Methods

BISDEF

This computer program was developed by the U.S. Army Corps of Engineers, Waterways Experiment Station (9, 10). It uses the deflection basin from NDT results to predict the elastic moduli of up to four pavement layers. This is accomplished by matching a calculated deflection basin to the measured deflection basin.

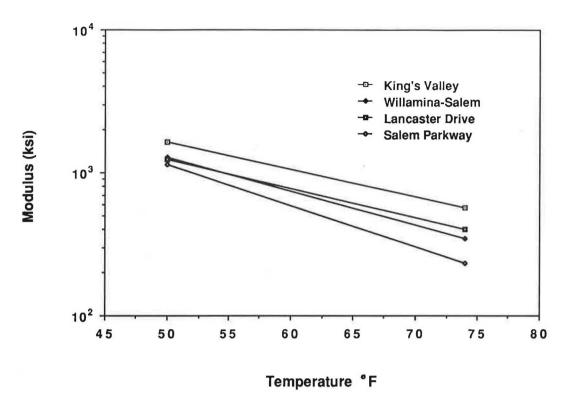


FIGURE 5 Plot of modulus vs. temperature.

To determine the layer moduli, the basic inputs include initial estimates of the elastic layer pavement characteristics as well as deflection basin values. Inputs for each layer include layer thickness, probable modulus range, initial estimate of modulus, and Poisson's ratio. For the deflection basin, the required inputs are load and load radius of an NDT device, deflections at a number of sensor locations, and a maximum acceptable error in deflection matching.

The modulus of any layer may be assigned or computed. If assigned, the value is based on the properties of the material at the time of deflection testing. The number of layers with unknown modulus values cannot exceed the number of measured deflections.

The program is solved using an iterative process that provides the best fit between measured deflection and computed deflection basins. This is done by determining the set of moduli that minimizes the error sum between the computed deflection and measured deflections. BISDEF uses the BISAR program as a subroutine for stress and deflection computations and is capable of handling multiple wheel loads and variable interface friction. BISDEF supports the 8087 or 80287 math coprocessor and runs on IBM-compatible microcomputers.

ELSDEF

This program is a modification of the program BISDEF (11). The modification was performed by Brent Rauhut Engineers and uses the computer program (ELSYM5) developed at the University of California at Berkeley (12). The input data and output results are basically the same as those of the BISDEF program. ELSDEF has been compiled with the Microsoft FOR-TRAN Compiler to run on IBM-compatible microcomputers. Two versions are available: the standard version and an 8087 math coprocessor chip version.

MODCOMP2

This program was developed by Irwin (13) of Cornell University. The program utilizes the Chevron elastic layer computer program for determining the stresses, strains, and deflections in the pavement system. As in BISDEF and ELS-DEF, there is no closed-form solution for determining layer moduli from surface deflection data. Thus, an iterative approach is used that requires an input of initial or estimated moduli for each layer. The basic iterative process is repeated for each layer (beginning at the bottom) until the agreement between the calculated and measured deflections is within the specified tolerance or until the maximum number of iterations has been reached.

Backcalculation Results

Tables 4 to 8 show the backcalculation results using both the FWD and Dynaflect data on all five project sites. The backcalculation was carried out using the preceding three programs with three different procedures in an attempt to obtain consistent results. Procedure 1 used a fixed surface layer modulus for each project site to determine moduli of the base and subgrade. The surface layer modulus was based on the laboratory test results. Procedure 2 used both a fixed surface

Location Identification		79	FWD	C	Dynaflect		
	Layer*	BISDEF	ELSDEF	MODCOMP2	BISDEF	ELSDEF	MODCOMP2
3	Base Subgrade	1,000 60,000	1,100 60,000	N/S**	10,200 36,600	9,400 32,900	20,700 27,600
4	Base Subgrade	1,000 60,000	1,000 60,000	3,000 12,000	7,400 39,400	5,700 40,800	10,100 33,100
5	Base Subgrade	1,000 60,000	1,000 60,000	N/S	5,300 39,500	3,800 53,200	6.300 41.500
8	Base Subgrade	1,000 60,000	1,000 60,000	N/S	14,200 32,300	13,600 27,500	28,500 25,500
18	Base Subgrade	1,000 60,000	1,000 60,000	N/S	7,300 46,700	5,500 51,200	9,500 41,500

*Surfacing layer modulus = 1,200,000 psi, determined at 60°F from laboratory tests (Fig. 5).

**N/S = no solution

Value 1,000 is low limit of modulus range for base while 60,000 is high limit for subgrade.

b) Procedure 2 - Fixed Surface and Subgrade Modulus

			FWD		Dynaflect			
Location Identification	Layer*	BISDEF	ELSDEF	MODCOMP2	BISDEF	ELSDEF	MODCOMP2	
3	Base Subgrade**	9,600 10,600	2,700	N/S***	12,300 35,000	8,500 35,000	N/S	
4	Base Subgrade	9,300 10,700	2,700 10,700	N/S	9,800 35,000	7,200 35,000	N/S	
5	Base Subgrade	6,100 11,700	2,300 11,700	N/S	8,500 32,900	6,100 32,900	N/S	
8	Base Subgrade	6,100 11,600	2,300 11,600	N/S	15,600 32,900	9,900 32,900	N/S	
18	Base Subgrade	5,000 13,400	2,300 13,400	N/S	10,000 39,900	7,700 39,900	N/S	

*Surfacing layer modulus = 1,200,000 psi, determined at 60°F from laboratory tests (Fig. 5). **Subgrade modulus was determined using the equation: $E_{sg} = PS_f)/(rd_r)$. ***N/S = no solution.

c) Procedure 3 - Fixed Subgrade Modulus

		-	FWD			Dynaflect	
Location Identification	Layer*	BISDEF	ELSDEF	MODCOMP2	BISDEF	ELSDEF	MODCOMP2
3	Surface	472,000	842,300	668,800	1,032,500	1,125,300	3,500,500
	Base	24,700	3,900	8,600	12,200	9,000	4,200
	Subgrade	10,600	10,600	10,600	35,000	35,000	35,000
4	Surface	489,700	853,700	719,400	913,800	973,500	3,228,500
	Base	23,100	3,800	7,600	10,300	8,100	3,400
	Subgrade	10,700	10,700	10,700	35,000	35,000	35,000
5	Surface	427,800	677,400	619,400	687,800	948,100	2,829,900
	Base	16,500	3,800	6,000	9,800	6,800	3,400
	Subgrade	11,700	11,700	11,700	32,900	32,900	32,900
8	Surface	426,100	673,900	655,400	1,225,500	1,465,000	3,717,300
	Base	16,600	3,900	5,500	13,800	8,500	4,600
	Subgrade	11,600	11,600	11,600	32,900	32,900	32,900
18	Surface	379,600	597,100	554,800	756,500	1,062,300	3,250,300
	Base	14,200	3,900	5,600	13,400	8,000	3,700
	Subgrade	13,400	13,400	13,400	39,900	39,900	39,900

*Subgrade modulus was determined using the equation: $E_{sg} = (PS_f)/(rd_r)$.

TABLE 5	BACKCALCULATED) MODULI (psi) FC	FOR WILLAMINA-SALEM HIGHWAY	1
---------	----------------	-------------------	-----------------------------	---

			FWD			Dynaflect		
Location Identification	Layer*	BISDEF	ELSDEF	MODCOMP2	BISDEF	ELSDEF	MODCOMP2	
4	Base Subgrade*	1,000 60,000	1,100 60,000	N/S**	8,600 46,100	5,200 60,000	N/S	
7	Base Subgrade	1,000 60,000	1,000 60,000	N/S	5,700 34,900	3,800 60,000	N/S	
8	Base Subgrade	1,000 60,000	1,000 60,000	N/S	6,400 60,000	3,200 60,000	N/S	
12	Base Subgrade	1,000 60,000	1,000 60,000	N/S	7,100 59,000	5,600 60,000	N/S	
16	Base Subgrade	1,000 60,000	1,000 60,000	N/S	7,700 41,300	4,300 60,000	N/S	

*Surfacing layer modulus = 600,000 psi, determined at 68°F from laboratory tests (Fig. 5). **N/S = no solution

Value 1,000 is low limit of modulus range for base while 60,000 is high limit for subgrade.

b) Procedure 2 - Fixed Surface and Subgrade Modulus

		FWD			Dynaflect		
Location Identification	Layer*	BISDEF	ELSDEF	MODCOMP2	BISDEF	ELSDEF	MODCOMP2
4	Base	4,700	2,800	2,800	8,700	6,200	7,300
	Subgrade**	15,000	15,000	15,000	46,600	46,600	46,600
7	Base	3,600	2,300	2,000	6,500	4,400	7,200
	Subgrade	16,900	16,900	16,900	56,000	56,000	56,000
8	Base	3,200	2,100	1,600	6,500	5,300	8,200
	Subgrade	18,200	18,200	18,200	56,000	56,000	56,000
12	Base	4,200	2,700	2,400	6,800	4,900	8,300
	Subgrade	20,200	20,200	20,200	69,900	69,900	69,000
16	Base	4,100	2,600	2,100	8,100	5,700	10,200
	Subgrade	17,900	17,900	17,900	40,000	40,000	40,000

*Surfacing layer modulus = 600,000 psi, determined at 68°F from laboratory tests (Fig. 5). **Subgrade modulus was determined using the equation: $E_{sg} = PS_{f}/(rd_{r})$.

c) Procedure 3 - Fixed Subgrade Modulus

			FWD			Dynaflect			
Location Identification	Layer*	BISDEF	ELSDEF	MODCOMP2	BISDEF	ELSDEF	MODCOMP2		
4	Surface	199,600	284,300	241,400	203,500	392,600	2,555,600		
	Base	8,000	4,000	4,800	10,300	7,300	4,300		
	Subgrade	15,000	15,000	15,000	46,600	46,600	46,600		
7	Surface	168,500	219,000	214,100	147,500	307,500	1,965,600		
	Base	5,900	3,300	2,600	5,100	5,100	3,300		
	Subgrade	16,900	16,900	16,900	56,200	56,000	56,000		
8	Surface	174,900	215,300	224,200	121,000	251,200	1,706,500		
	Base	4,900	2,900	3,400	6,000	7,000	4,300		
	Subgrade	18,200	18,200	18,200	56,000	56,000	56,000		
12	Surface	203,000	259,600	235,100	279,700	359,700	2,557,000		
	Base	6,400	3,600	4,200	8,400	5,700	3,200		
	Subgrade	20,200	20,200	20,200	69,900	69,900	69,900		
16	Surface	165,900	211,100	236,700	194,900	381,300	2,378,000		
	Base	6,500	3,700	3,600	9,900	6,700	4,000		
	Subgrade	17,900	17,900	17,900	40,000	40,000	40,000		

*Subgrade modulus was determined using the equation: $E_{sg} = (PS_f)/(rd_r)$.

1			FWD			Dynaflect		
Location Identification	Layer*	BISDEF	ELSDEF	MODCOMP2	BISDEF	ELSDEF	MODCOMP2	
2	Base	2,100	1,900	2,000	11,700	17,900	17,800	
	Subgrade*	20,800	20,600	19,800	20,400	4,000	17,500	
3	Base	1,700	1,400	1,300	9,300	11,700	13,400	
	Subgrade	60,000	51,200	86,400	21,800	4,000	19,100	
14	Base Subgrade	1,800 33,700	1,500 30,100	N/S**	9,300 20,100	11,700 4,400	13,300 17,500	
17	Base	2,100	1,800	1,800	14,400	25,600	22,600	
	Subgrade	31,600	21,700	22,900	23,300	4,100	19,700	
19	Base	2,500	2,300	2,300	18,800	21,400	25,100	
	Subgrade	17,400	10,800	13,300	16,500	12,800	14,700	

*Surfacing layer modulus = 1,000,000 psi, determined at 57°F from laboratory tests (Fig. 5). **N/S = no solution; Value 60,000 is high limit of modulus range for subgrade.

b) Procedure 2 - Fixed Surface and Subgrade Modulus

Levelden			FWD			Dynaflect			
Location Identification	Layer*	BISDEF	ELSDEF	MODCOMP2	BISDEF	ELSDEF	MODCOMP2		
2	Base Subgrade**	10,600 8,700	4,200 8,700	5,100 8,700	14,500 18,100	10,400 18,100	N/S***		
3	Base Subgrade	7,400 9,300	3,400 9,300	4,100 9,300	12,700 18,100	9,400 18,100	N/S		
14	Base Subgrade	8,600 8,500	3,400 8,500	4,100 8,500	12,500 17,000	9,000 17,000	N/S		
17	Base Subgrade	9,400 8,800	3,900 8,800	5,000 8,800	16,400 21,500	12,300 21,500	N/S		
19	Base Subgrade	10,000 7,700	3,800 7,700	5,600 7,700	23,100 15,100	14,500 15,100	N/S		

*Surfacing layer modulus = 1,000,000 psi, determined at 57°F from laboratory tests (Fig. 5). **Subgrade modulus was determined using the equation: $E_{sg} = PS_f/(rd_r)$. ***N/S = no solution

c) Procedure 3 - Fixed Subgrade Modulus	c)	Procedure	3	-	Fixed	Subgrade	Modu 1	us
---	----	-----------	---	---	-------	----------	--------	----

			FWD			Dynaflect				
Location Identification	Layer*	BISDEF	ELSDEF	MODCOMP2	BISDEF	ELSDEF	MODCOMP2			
2	Surface Base Subgrade*	287,000 26,500 8,700	647,100 6,200 8,700	585,300 8,300 8,700	383,400 22,000 18,100	987,300 10,400 18,100	N/S**			
3	Surface Base Subgrade	312,000 19,300 9,300	635,900 4,900 9,300	537,200 7,100 9,300	249,300 21,700 18,100	1,139,600 8,700 18,100	N/S			
14	Surface Base Subgrade	405,300 18,700 8,500	765,100 4,600 8,500	865,000 4,800 8,500	477,200 17,500 17,000	882,500 9,600 17,000	N/S			
17	Surface Base Subgrade	335,800 23,200 8,800	734,200 5,100 8,800	621,900 7,700 8,800	490,200 22,200 21,500	1,077,000 11,600 21,500	N/S			
19	Surface Base Subgrade	390,800 21,600 7,700	834,800 4,300 7,700	567,500 9,200 7,700	692,600 33,700 15,100	1,398,500 11,700 15,100	N/S			

*Subgrade modulus was determined using the equation: $E_{sg} = (PS_f)/(rd_r)$. **N/S = no solution

Longrouped Description			F	WD			Dynaflect	
Location Identification		Layer*	BISDEF	ELSDEF	MODCOMP2	BISDEF	ELSDEF	MODCOMP2
7	СТ	Base/Subbase Subgrade*	1,020,000 18,600	501,200 15,300	365,300 19,100	523,000 34,300	1,497,300 14,100	183,000 35,600
9	СТ	Base/Subbase Subgrade	690,900 23,400	681,800 16,500	255,400 31,300	439,600 35,100	981,200 14,600	154,100 36,300
12	СТ	Base/Subbase Subgrade	805,200 24,600	508,700 12,300	299,300 23,400	543,900 35,000	1,035,500 14,400	222,700 34,800
15	СТ	Base/Subbase Subgrade	727,700 19,700	409,600 14,500	459,400 20,800	400,800 31,300	896,100 14,800	194,900 29,900
17	СТ	Base/Subbase Subgrade	697,400 27,200	491,800 13,700	250,600 28,200	564,400 25,800	1,240,600 10,100	200,300 27,700

TABLE 7 BACKCALCULATED MODULI (psi) FOR SALEM PARKWAY

*Surfacing layer modulus = 500,000 psi, determined at 67°F from laboratory tests (Fig. 5).

b) Procedure 2 - Fixed Surface and Subgrade Modulus

				FWD			Dynaflect	
Location Identification	Layer*		BISDEF	ELSDEF	MODCOMP2	BISDEF	ELSDEF	MODCOMP2
7	CT Base/S Subgra		751,300 21,600	239,000 21,600	260,800 21,600	585,600 32,900	420,100 32,900	214,600 32,900
9	CT Base/S Subgra		577,000 32,600	207,100 32,600	229,800 32,600	516,000 33,000	375,900 33,000	184,400 33,000
12	CT Base/S Subgra		671,500 25,400	223,700 25,400	240,000 25,400	604,700 33,000	404,400 33,000	249,700 33,000
15	CT Base/S Subgra		581,800 23,800	189,600 23,800	314,000 23,800	463,800 29,500	299,200 29,500	200,900 29,500
17	CT Base/S Subgra		600,400 29,600	212,600 29,600	220,400 29,600	663,300 24,400	340,500 24,400	262,300 24,400

*Surfacing layer modulus = 500,000 psi, determined at 67°F from laboratory tests (Fig. 5). **Subgrade modulus was determined using the equation: $E_{sg} = PS_f$ /(rd_r).

c)	Procedure	3	-	Fixed	Subgrade	Modulus
----	-----------	---	---	-------	----------	---------

				FWD			Dynaflect	
Location Identification		Layer*	BISDEF	ELSDEF	MODCOMP2	BISDEF	ELSDEF	MODCOMP2
7	ст	Surface Base/Subbase Subgrade*	5,813,400 273,400 21,600	7,420,300 100,000 21,600	8,224,900 130,200 21,600	3,459,500 405,600 32,900	9,201,800 100,000 32,900	6,264,500 125,000 32,900
9	СТ	Surface Base/Subbase Subgrade	919,500 476,600 32,600	3,387,000 100,000 32,600	1,762,400 190,900 32,600	2,549,700 370,800 33,000	8,157,200 100,000 33,000	6,360,600 102,100 33,000
12	СТ	Surface Base/Subbase Subgrade	5,127,600 252,800 25,400	4,224,000 100,000 25,400	4,807,000 153,900 25,400	590,117 925,800 33,000	9,467,400 100,000 33,000	6,378,500 147,800 33,000
15	СТ	Surface Base/Subbase Subgrade	510,400 556,100 23,800	3,111,700 100,000 23,800	526,900 311,100 23,800	1,030,600 609,900 29,500	9,246,700 109,000 29,500	6,673,100 109,100 29,500
17	СТ	Surface Base/Subbase Subgrade	4,408,300 230,100 29,600	3,722,200 100,000 29,600	3,234,500 162,300 29,600	1,673,100 608,400 24,400	9,186,500 100,000 24,400	4,106,600 174,000 24,400

*Subgrade modulus was determined using the equation: $E_{sg} = PS_f$ /(rd_r). Value 100,000 is the low limit of modulus range for the CT base/subbase.

1		1	FWD		-	Dynaflect				
Location Identification	Layer*	BISDEF	ELSDEF	MODCOMP2	BISDEF	ELSDEF	MODCOMP2			
1	Base Subgrade	1,000 5,900	1,000 3,900	N/S**	1,000 11,100	106,900 6,200	N/S			
2	Base Subgrade	1.000 6,400	1,000 3,900	N/S	1,000 7,700	128,600 4,000	N/S			
7	Base Subgrade	1,000 5,700	1,000 3,800	N/S	2,600 7,900	215,000 4,100	N/S			
13	Base Subgrade	1,000 6,900	1,000 4,500	N/S	1,000 8,100	185,700 3,900	24,200			
14	Base Subgrade	1,000 5,000	1,000 3,200	N/S	1,000 7,600	130,100 4,800	N/S			

*Surfacing layer modulus = 4,977,000 psi, determined from laboratory test.

**N/S = no solution; Value 1,000 is low limit of modulus range for base.

b) Procedure 2 - Fixed Surface and Subgrade Modulus

Landing			FWD		Dynaflect			
Location Identification	Layer*	BISDEF	ELSDEF	MODCOMP2	BISDEF	ELSDEF	MODCOMP2	
1	Base Subgrade**	1,000 7,300	1,000 7,300	N/S***	2,700 10,400	1,000 10,400	1,600 10,400	
2	Base Subgrade	1,000 7,800	1,000 7,800	<1,000 7,800	2,100 7,400	1,000 7,400	<1,000 7,400	
7	Base Subgrade	1,000 6,600	1,000 6,600	<1,000 6,600	1,000 7,800	1,000 7,800	4.900 7.800	
13	Base Subgrade	1,000 8,400	1,000 8,400	<1,000 8,400	1,000 7,500	1,000 7,500	2,200 7,500	
14	Base Subgrade	1,000 6,400	1,000 6,400	N/S	1,000 7,600	1,000 7,600	<1,000 7,600	

*Surfacing layer modulus = 4,977,000 psi, determined from laboratory test. **Subgrade modulus was determined using the equation: $E_{sg} = PS_f$ /(rd_r). ***N/S = no solution; Value of 1,000 is low limit of modulus range for base

c) Procedure 3 - Fixed Subgrade Modulus

			FWD			Dynaflect			
Location Identification		BISDEF	ELSDEF	MODCOMP2	BISDEF	ELSDEF	MODCOMP2		
1	Surface	424,100	1,634,700	389,000	1,944,000	4,436,400	1,255,700		
	Base	354,200	1,000	343,700	242,900	1,000	502,000		
	Subgrade*	7,300	7,300	7,300	10,400	10,400	10,400		
2	Surface	171,500	1,548,700	297,600	3,237,100	3,598,900	817,900		
	Base	1,028,600	1,000	390,700	21,000	1,000	735,600		
	Subgrade	7,800	7,800	7,800	7,400	7,400	7,400		
7	Surface	595,700	1,979,200	676,300	4,982,600	4,056,400	906,500		
	Base	272,600	1,000	340,900	2,200	1,000	1,124,200		
	Subgrade	6,600	6,600	6,600	7,800	7,800	7,800		
13	Surface	345,700	1,733,800	393,700	3,750,100	3,757,200	877,900		
	Base	582,000	1,000	314,200	3,400	1,000	479,500		
	Subgrade	8,400	8,400	8,400	7,500	7,500	7,500		
14	Surface	810,900	1,547,700	858,200	2,631,800	3,167,700	872,900		
	Base	159,000	1,000	131,600	24,100	1,000	466,000		
	Subgrade	6,400	6,400	6,400	7,600	7,600	7,600		

*Subgrade modulus was determined using the equation: $E_{sg} = (PS_f)/(rd_r)$.

Zhou et al.

layer modulus and a preestimated subgrade modulus to solve for the modulus of the base layer. The subgrade modulus was determined using the following AASHTO equation (5):

$$E_{sg} = (PS_f)/(d_r r)$$

where

- E_{sg} = in situ subgrade modulus of elasticity (psi);
- P = dynamic load of NDT device;
- d_r = measured NDT deflection (mils) at a radial distance (r) from the plate load center;
- r = radial distance (in.) from the plate load center; and
- S_f = subgrade modulus prediction factor, which is a function of radius of NDT load plate, Poisson's ratio, and effective thickness of the pavement.

Procedure 3 used the preestimated subgrade modulus alone to solve for the surface and base layer moduli. Procedure 4 used no fixed value. With this procedure, all layers were considered as unknowns for the program to determine moduli. Since three variables were involved, the computing time was significantly increased and the calculated moduli were also subject to variation with the seed moduli. Because of inconsistent results obtained using this procedure, no further discussion is presented.

Procedure 1

Using this procedure, the surfacing modulus for each project was determined from laboratory tests and used as a fixed value in the backcalculation. For Salem Parkway, base and subbase were treated as one layer, thus eliminating one variable for determining modulus. The results from three programs using FWD data indicate that the King's Valley Highway, Willamina-Salem Highway, and Lancaster Drive sites have a weak base layer. On the other hand, using Dynaflect data, a consistently higher modulus for the base layer was found. Results from BISDEF and ELSDEF are relatively close using both FWD and Dynaflect data. MODCOMP2 provided no solution in several cases. Results from three programs using the same NDT device are generally close.

Salem Parkway has a cement-treated base/subbase. Results from three programs reflect this fact. However, the backcalculated modulus values vary for each program. With FWD data, results from BISDEF are higher than those of both ELSDEF and MODCOMP2. With Dynaflect data, ELSDEF presents the highest modulus values among three programs. In all cases, MODCOMP2 provides the lowest values. Subgrade modulus values calculated from BISDEF and MODCOMP2 are relatively close for each NDT testing device, while ELS-DEF gives a consistent lower modulus value using both FWD and Dynaflect data.

Wilsonville-Hubbard Highway is a PCC pavement. Its surfacing layer modulus is about 5 million psi as tested in the laboratory. When fixing this value and backcalculating the other two layer moduli, the program BISDEF predicts a very weak base using both FWD and Dynaflect data; ELSDEF gives different solutions using different NDT device data; and MODCOMP2 fails to provide answers in most cases.

Procedure 2

This procedure used two known moduli to determine the third unknown modulus. The surfacing modulus was determined from the laboratory test, while the subgrade modulus was estimated using the AASHTO equation. Since only one variable (base) is defined, the difference, that of backcalculated moduli using different programs, can easily be seen. For all four flexible pavements, the program BISDEF presents a consistently higher modulus than ELSDEF and MODCOMP2. The results of this method show many similarities with those of procedure 1. A weak base at the King's Valley Highway, Willamina-Salem Highway, and Lancaster Drive project sites is indicated. A similar trend at Salem Parkway is also noted. For the PCC pavement at Wilsonville-Hubbard Highway, a very weak base layer is identified by all three programs using both FWD and Dynaflect data. Again, MODCOMP2 failed to give a solution in some test locations.

Procedure 3

The third procedure used an estimated subgrade modulus as a fixed input to solve for surface and base moduli. The results are presented in Tables 4c to 8c. Although the backcalculated moduli vary for each program, the results from each individual program are fairly close for the projects at King's Valley Highway, Willamina-Salem Highway, and Lancaster Drive. As would be expected, Willamina-Salem Highway would have the lowest modulus values since it had the highest measured deflection at NDT device load center, and King's Valley Highway would have high modulus because of its smaller deflection readings, while Lancaster Drive would stand in among these three project sites. The backcalculated results reflect this phenomenon very well. For Willamina-Salem Highway using BIS-DEF results, the average modulus for the surface is about 180 ksi. The average surface modulus for King's Valley Highway is close to 440 ksi and, for Lancaster Drive, approximately 350 ksi. The backcalculated moduli for the base layers also seem reasonable. Values are generally uniform, with BISDEF giving a little higher modulus. For the cement-treated base/ subbase project at Salem Parkway, the three programs give inconsistent results, as can be seen in Table 7c. This fact is also reflected in the Wilsonville-Hubbard Highway, which is a PCC pavement. It is therefore difficult to make a general prediction of pavement strength on these two projects based on the backcalculated moduli using procedure 3.

Existing Pavement Structural Capacity

The structural capacity of the existing pavements was determined using the backcalculation results. For NDT method 1, the SN_{xeff} values for each test location were computed for both the FWD and Dynaflect using the backcalculated results from the BISDEF program. For King's Valley Highway, Willamina-Salem Highway, and Lancaster Drive, backcalculated moduli from procedure 3 were used to determine the SN_{xeff} since they seemed more reasonable compared with the other two procedures. For Salem-Parkway and Wilsonville-Hubbard Highway, procedure 1 results were used because of

TABLE 9	CALCULATED	SN _{xeff}	USING	BISDEF	RESULTS
---------	------------	--------------------	-------	--------	---------

		-	FWD				Dyna	flect	
		NDT #	1	NDT #2		NDT #1		NDT #2	
Project Site	Layer	M _R (ksi)*	SC_{xeff}	MR	SCxeff	M _R	SC _{xeff}	M _R	^{SC} xeff
King's Valley Highway	Surface Base Subgrade	439.0 19.0 11.6	3.84	- - 11.6	3.70	923.2 11.9 35.1	3.17	_ 	8.15
Willamina-Salem Highway	Surface Base Subgrade	182.4 6.3 17.6	1.67	- 17.6	2.92	189.3 7.9 53.7	1.75	- 53.7	7.26
Lancaster Drive	Surface Base Subgrade	346.2 21.9 8.6	3.96	- - 8.6	3.99	458.5 23.4 18.0	4.33	 18.0	8.12
Salem Parkway	Surface Base Subgrade	500.0 788.2 22.7	5.34	- 26.3	6.95	500.0 494.3 32.3	3.80	_ 	12.46
Wilsonville-Hubbard Highway	Surface Base Subgrade	4977.0 1.0 6.0	6.00	- 7.3	6.00**	4977.0 1.3 8.5	6.00	- 8.1	6.00

*Average values

**NDT method 2 is not applicable for the evaluation of rigid pavement systems. With this method, structural capacity is expressed in terms of the PCC layer and not the other layers.

inconsistent results of procedure 3 and a good agreement between procedures 1 and 2. The layer coefficients for the surface and base were determined based on the modulus values from the backcalculation.

For NDT method 2, the SN_{xeff} values were determined using the procedures described previously, while the subgrade modulus was estimated using the AASHTO equation. The results for both methods are presented in Table 9.

The results generally indicate the following:

1. A fair agreement in calculating SN_{xeff} between NDT methods 1 and 2 was found using FWD data.

2. While using Dynaflect data, the NDT method 2 results in much higher SN_{xeff} values than NDT method 1 and also higher than those obtained using FWD data.

3. A maximum surface layer coefficient of 0.44 was used for asphalt concrete pavements. This may not reflect the true structural capacity of those surface layers with high modulus.

OVERLAY DESIGN

AASHTO Method

With the AASHTO method, overlay design was performed based upon the existing pavement structural capacity (SN_{xeff}) and future traffic applications (W_{18}) . For each project, SN_{xeff} values determined previously were used to estimate the remaining life of the existing pavement and, consequently, the thickness design. In determining the future overlay structural capacity (SC_y) , a 90 percent reliability level (R) was chosen for the Willamina-Salem Highway and Salem Parkway projects. An 80 percent reliability was selected for King's Valley Highway, Lancaster Drive, and Wilsonville-Hubbard Highway. The overall standard deviation (S_o) was selected to be 0.35 for all five projects. The design serviceability loss (DSL) was set at 2.0 (4.2–2.2). The selection of the preceding values was primarily based on the functional class and location of the facility and the projected level of usage.

Knowing the future traffic (W_{18}) , reliability level (R), overall standard deviation (S_o) , design serviceability loss (DSL), and subgrade modulus (M_R) , the structural number (SN_y) was determined.

The remaining life of the existing pavement (R_{LX}) was estimated using the NDT approach. The advantage of this method is that historical traffic data are not required. Using this approach, the existing pavement condition is related to its initial structural capacity by a condition factor, C_x . R_{LX} is a function of the value for C_x . The remaining life of overlaid pavements (R_{LY}) was calculated based upon the projected future traffic applications and the ultimate number of repetitions to failure. The failure serviceability level (P_f) was set at 2.0 for all five projects. After determining both R_{LX} and R_{LY} , the remaining life factor, F_{RL} , was estimated.

The required flexible overlay structural number, SN_{OL} , is a function of the structural capacity of the existing pavement (SN_{xeff}) , the overlaid pavement (SN_y) , and the remaining life factor (F_{RL}) . If this value is less than or equal to zero, no overlay is required. The thickness of an overlay is determined by dividing the SN_{OL} by the layer coefficient of the surfacing material. For the five projects, the thickness of a flexible overlay was determined assuming a layer coefficient of 0.44 for the asphalt concrete. Summaries for both NDT method 1 and NDT method 2 are presented in Table 10.

Project	E*sg	${\rm SN}_{\rm xeff}$	SN_y	R_{LX}	R_{LY}	F _{RL}	T_{AC}
NDT Method 1							
	a) FWD					
King's Valley Highway	11,600	3.84	1.47	1.00	0.01	1.00	0.0
Willamina-Salem Highway	17,600	1.67	2.61	0.00	0.05	0.67	3.4
Lancaster Drive	8,600	3.96	2.90	1.00	0.07	1.00	0.0
Salem Parkway	22,700	5.34	2.58	1.00	0.05	1.00	0.0
Wilsonville-Hubbard Highway	6,000	6.00	3.35	1.00	0.10	1.00	0.0
	b)	Dynaflect	5				
King's Valley Highway	35,100	3.17	0.87	0.46	0.00	0.63	0.0
Willamina-Salem Highway	53,700	1.75	1.70	0.00	0.01	0.71	1.0
Lancaster Drive	18,000	4.33	2.21	1.00	0.03	1.00	0.0
Salem Parkway	32,300	3.80	2.26	0.29	0.03	0.53	0.0
Wilsonville-Hubbard Highway	8,500	6.00	2.96	1.00	0.07	1.00	0.0
NDT Method 2							
	a) FWD					
King's Valley Highway	11,600	3.70	1.47	1.00	0.01	1.00	0.0
Willamina-Salem Highway	17,600	2.92	2.61	0.30	0.05	0.58	2.1
Lancaster Drive	8,600	3.99	2.90	1.00	0.07	1.00	0.0
Salem Parkway	26,300	6.95	2.45	1.00	0.04	1.00	0.0
Wilsonville-Hubbard Highway	7,300	6.00	3.12	1.00	0.08	1.00	0.0
	b)	Dynaflect	t				
King's Valley Highway	35,100	8.15	0.87	1.00	0.00	1.00	0.0
Willamina-Salem Highway	53,700	7.26	1.70	1.00	0.01	1.00	0.0
Lancaster Drive	18,000	8.12	1.43	1.00	0.01	1.00	0.0
Salem Parkway	30,200	12.46	2.32	1.00	0.04	1.00	0.0
Wilsonville-Hubbard Highway	8,100	6.00	3.01	1.00	0.08	1.00	0.0

TABLE 10 OVERLAY THICKNESS USING AASHTO PROCEDURE

*Average Values

ODOT Method

The Oregon Department of Transportation (ODOT) employs the Caltrans deflection method with some modifications to design flexible overlays over flexible pavements (I). Deflection measurements are taken with the Dynaflect or FWD equipment, and the maximum deflection values are converted to equivalent Benkelman beam deflections for the Dynaflect and 9,000-lb load for the FWD. In the ODOT method, the highest 80th percentile deflection value is used in the evaluation in the following equation:

 $D_{80} = \overline{X} + 0.84 S$

where

 $D_{\underline{80}}$ = design deflection value (80th percentile deflection);

 $\overline{\overline{X}}$ = mean deflection; and

S = standard deviation.

The representative deflection for a particular project length is then compared with a tolerable deflection that is a function of equivalent axle load repetition and thickness of the in-place pavement that has remaining fatigue life. For pavements that are substantially or wholly failed in fatigue, the tolerable deflection is based on the proposed overlay thickness only. An iterative procedure is then used to find the overlay thickness. If the representative deflection is less than the tolerable deflection, then an overlay is not needed. If the representative deflection is greater than the tolerable deflection, then the percent reduction in deflection is calculated as follows:

percent reduction = $100 * (D_{80} - D_i)/D_{80}$

where D_i equals tolerable deflection.

The value of percent reduction is used to determine the gravel equivalency factor, which means that 1 in. thick of asphalt concrete is equivalent to certain inches thick of gravel (4). The equivalent factor ranges from 1.52 to 2.5. A factor of 2.0 is used for this study.

A summary of the results for the ODOT method for the flexible pavement sites at King's Valley Highway, Willamina-Salem Highway, Lancaster Drive, and Salem Parkway is presented in Table 11.

DISCUSSION OF FINDINGS

The following discussion covers backcalculation procedures, NDT devices, determination of existing pavement structural capacity, and overlay design methods, since they are believed to be crucial to the implementation of the AASHTO Guide on overlay design.

Backcalculation Procedures

Backcalculation plays an important role in determining the strength of a pavement nondestructively. The result would influence the determination of the existing pavement structural capacity and, consequently, the overlay design. In this study, three backcalculation programs were used. With BIS-DEF and ELSDEF, a maximum of three iterations with a tolerance of 10 percent were specified. The modulus range and seed modulus were selected to be the same for each test location. With MODCOMP2, a maximum of twenty iterations with a tolerance of 0.15 percent were used. This tight tolerance range could be a reason for no solutions. The seed modulus used as an initial value to start the backcalculation was the same as those used in BISDEF and ELSDEF. The modulus range is not required for this program. Experience obtained from using these backcalculation programs shows that the predicted moduli may vary for each program. It is therefore necessary to use engineering judgment to ensure the calculated moduli are reasonable.

For conventional pavement structures, procedure 3 seems to work best and is recommended for backcalculation analysis. For other types of pavement structures, such as PCC and an AC surface with cement-treated base, laboratory tests on cores may be necessary, and the test result may be used to aid in determining other layers' moduli.

For a distressed PCC pavement, the NDT testing at slab

center may not pick up problems at the joint. This is because of strength discontinuity between distressed slabs. For such cases, the NDT test should be performed at both the center and joint of the slab and the results evaluated separately.

NDT Devices

The backcalculated moduli, the existing pavement structural capacity (SN_{xeff}) , and, consequently, the overlay thicknesses vary with the type of NDT device used. In this study, the deflection data from the Dynaflect result in a higher subgrade modulus. This is especially true for the NDT method 2. This may be because of the smaller deflection generated by the Dynaflect load and the stress sensitivity of subgrade material property. For NDT method 1, the value of the subgrade modulus has no effect on the determination of the existing pavement structural capacity (SN_{xeff}) . However, in NDT method 2, this value can influence SN_{xeff} .

It is also noted that deflection values generated from FWD and Dynaflect are not linearly correlated. For instance, a 9,000-lb FWD load results in a deflection 20.76 mils at plate center (refer to Table 2, reading number 2 of King's Valley Highway), while a 1,000-lb Dynaflect load would have a 1.12mil deformation at the same test point. The load ratio is 9, while the deflection ratio is 18, twice as high as the load ratio. Generally, for the three conventional types of pavement structure, the deflection ratio ranges from 16 to 22. For the cementtreated base/subbase project at Salem Parkway, the deflection ratio is about the same as the load ratio. For the PCC pavement at Wilsonville-Hubbard Highway, a deflection ratio ranging from 8 to 14 is identified. Because of these differences, it is difficult to tell which NDT device would provide a better indication of the pavement response. Based on the available data only, it is found that the deflection data from different NDT devices do have considerable influence on the backcalculated moduli, which in turn affect the resulting overlay design thickness.

The sensor space setting is an important factor to consider before taking deflection measurements. It is necessary to ensure that the last sensor be far enough away to obtain the pavement response purely from the subgrade. In this study, the last sensor location was 36 in. for FWD and 48 in. for Dynaflect. These configurations may not be appropriate for a good estimate of the subgrade modulus.

TABLE 11 OVERLAY THICKNESS USING ODOT PROCEDURE

Project	FWD			Dynaflect		
	D ₈₀ *	D _t	T _{AC} (in.)	D ₈₀ **	Dt	T _{AC} (in.)
King's Valley Highway	22	23	0	18	23	0
Willamina-Salem Highway	40	14	7.8	42	14	8.1
Lancaster Drive	28	16	1.0	28	16	1.0
Salem_Parkway	6	19	0	5	19	0

*Deflection in mils.

**Converted to Benkelman beam value using the equation $BB = 15D^{1.3}$

Determination of SN_{xeff}

The existing structural capacity (SN_{xeff}) of a pavement can be determined using either NDT method 1 or NDT method 2, although the background of these two methods differs. For NDT method 1, the determination of SN_{xeff} relies on deflection basin data, methods of estimating the modulus of each pavement layer, and the relationship between layer modulus and layer coefficient. For NDT method 2, SN_{xeff} is determined from the maximum deflection as well as the in situ subgrade modulus. Ideally, these two methods should provide similar solutions. The results in this study (Table 9) show that the calculated SN_{xeff} using FWD data seems to give good correlation, while the SN_{xeff} values are less related when Dynaflect data are used. It should be noted that for NDT method 1, the layer coefficient for AC is restricted to a maximum value of 0.44; any modulus higher than 500 ksi would not contribute to the SN_{xeff} value. For NDT method 2, there is no such restriction; the SN_{xeff} is determined from the matching of the maximum deflection.

Overlay Design Methods

The overlay thicknesses determined from the two design methods, AASHTO and ODOT, are summarized in Table 12. As can be seen from the table, the King's Valley Highway and Salem Parkway projects have no need of an overlay. However, both procedures indicate that the Willamina-Salem Highway requires an overlay. The thickness of the required overlay varies for each method: the AASHTO NDT methods 1 and 2 require an overlay thickness ranging from 1 to 3.4 in., while an overlay thickness of about 8 in. is required by the ODOT method. For the Lancaster Drive site, no overlay is required using both NDT methods 1 and 2, while results from the ODOT method show that an overlay of 1 in. is required. Since Lancaster Drive had been overlaid the previous year (1986), it would seem that the AASHTO procedure provided a more reasonable estimate. The WilsonvilleHubbard Highway is a PCC pavement. The structural capacity of this pavement is good, and no overlay is needed, as calculated using the AASHTO method. The pavement condition is bad, however, and cracking of slabs was found during the condition survey. It is possible that the determination of the SN_{xeff} was not right. The existence of the slab cracking seems difficult to identify using the AASHTO method.

Preliminary analysis of these results seems to lead to either one of the following conclusions: the ODOT method provides an overdesign of the overlay thickness and the AASHTO method(s) provide a more reasonable result; or the ODOT method provides a reasonable design and the AASHTO method(s) provide an underdesign. Further large-scale investigation on typical asphalt concrete and PCC pavements is needed to verify the conclusions reached thus far.

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

Preliminary conclusions made from the data analyzed include:

1. The AASHTO method is based on the concept of reliability of design as well as the remaining life of the pavement; the ODOT method is based on the highest 80th percentile deflection value while the remaining life of the pavement is ignored.

2. A reliable backcalculation program is critical to implement NDT method 1. The study in this paper shows that the three backcalculation programs seem to work relatively well for the conventional pavement sections analyzed.

3. Good correlation was found between NDT methods 1 and 2 in determining the structural capacity using the FWD data. However, significant differences were also noted while using Dynaflect data.

4. The deflection data collected using FWD or Dynaflect can result in different overlay design. This conclusion is applied to both AASHTO and ODOT methods.

	AASHTO					
	NDT	Method 1	NDT Method 2		ODOT	
Project Site	FWD	Dynaflect	FWD	Dynaflect	FWD	Dynaflect
King's Valley Highway*	0	0	0	0	0	0
Willamina-Salem Highway	3.4	1.0	2.1	0	7.8	8.1
Lancaster Drive	0	0	0	0	1.0	1.0
Salem Parkway	0	0	0	0	0	0
Wilsonville-Hubbard Highway**	0	0	0	0	N/A	

TABLE 12 COMPARISON OF TWO OVERLAY DESIGN METHODS

*This pavement would probably require a chip seal to prevent water infiltration. Its structural capacity is good.

**This is a PCC pavement. The structural capacity of this pavement is good; the thickness of the overlay would be controlled by reflection cracking. N/A = not applicable.

Recommendations for Implementation

The following recommendations are based upon the results of this study:

1. Although the backcalculation program may produce a set of moduli for a pavement structure, laboratory tests may still be necessary for providing an estimate and/or verification of the backcalculated values. In some cases, the laboratory results should be used in the program as a fixed input to determine the moduli of the other layers. For conventional pavements, subgrade modulus may be estimated using the AASHTO equation and used as a fixed input to solve for other layers' moduli.

2. Engineering judgment must be made in selecting the layer coefficients. This is particularly difficult when extremely high and low moduli are involved.

3. A comparison of the two design procedures (AASHTO and ODOT) reveals significant differences between the calculated overlay designs. The reason for these differences needs to be understood before the 1986 AASHTO procedure can be applied to routine design work.

ACKNOWLEDGMENTS

The work presented in this report was conducted as a part of a Highway Planning and Research (HP&R) project funded by the U.S. Department of Transportation, Federal Highway Administration (FHWA), and Oregon Department of Transportation (ODOT). The authors are grateful for the support of the Surfacing Design Unit (ODOT) for collecting the data contained in the report. They are also grateful to the Department of Civil Engineering, Oregon State University (OSU), for providing the laboratory and computer facilities required to complete the needed work. Laurie Dockendorf and Peggy Offutt of OSU's Engineering Experiment Station typed the paper.

REFERENCES

1. Flexible Pavement Design Procedure. Oregon State Highway Division, Salem, 1956.

- 2. Thickness Design for Concrete Highway and Street Pavements. Portland Cement Association, Skokie, Ill., 1984.
- AASHTO Interim Guide for Design of Pavement Structures. American Association of State Highway and Transportation Officials, Washington, D.C., 1981.
- 4. Asphalt Concrete Overlay Design Manual. California Department of Transportation, Sacramento, 1979.
- 5. AASHTO Guide for Design of Pavement Structures. American Association of State Highway and Transportation Officials, Washington, D.C., 1986.
- H. Zhou, R. G. Hicks, and R. Noble. Development of an Improved Overlay Design Procedure for Oregon: Vol. III—Field Manual. FHWA-OR-RD-88-03C. FHWA, U.S. Department of Transportation, November 1987.
- O. Tholen. Falling Weight Deflectometer, A Device for Bearing Capacity Measurements: Properties and Performance. Department of Highway Engineering, Royal Institute of Technology, Stockholm, Sweden, 1980.
- O. Tholen, J. Sharma, and R. Terrel. Comparison of Falling Weight Deflectometer with Other Deflection Testing Devices. In *Transportation Research Record 1007*, TRB, National Research Council, Washington, D.C., 1985, pp. 20-26.
- A. J. Bush and D. R. Alexander. Pavement Evaluation Using Deflection Basin Measurement and Layered Theory. In *Transportation Research Record 1022*, TRB, National Research Council, Washington, D.C., 1985, pp. 16–25.
- A. J. Bush III. Nondestructive Testing for Light Aircraft Pavements: Phase II—Development of Nondestructive Evaluation Methodology. Final Report FAA-RD-80-9-II. FAA, U.S. Department of Transportation, November 1980.
- R. L. Lytton, F. L. Roberts, and S. Stoffels. Determination of Asphaltic Concrete Pavement Structural Properties by Nondestructive Testing. Final Report, NCHRP, Project 10-27. TRB, National Research Council, Washington, D.C., 1986.
 R. G. Hicks and R. L. McHattie. Use of Layered Theory in the
- R. G. Hicks and R. L. McHattie. Use of Layered Theory in the Design and Evaluation of Pavement Systems. Report FHWA-AK-RD-83-8. FHWA, U.S. Department of Transportation, July 1982.
- L. H. Irwin. User's Guide to MODCOMP2, Version 2.1. Local Roads Program, Cornell University, Ithaca, N.Y., November 1983.

The opinions expressed in this paper are those of the authors and not necessarily those of FHWA or Oregon DOT.

Publication of this paper sponsored by Committee on Pavement Rehabilitation.