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Diffusion of Contaminants Through
Waste Containment Barriers

CHARLES D. SHACKELFORD

The steady-state and transient equations describing the process
of diffusion in free (aqueous) solution are presented. Four types
of free-solution diffusion coefficients are identified with respect
to the systems used for their measurement. The free-solution
diffusion coefficient is shown to be a function of several factors,
including the temperature, viscosity, and dielectric constant
of the solution; the radius and valence of the diffusing chemical
species; and the equilibrium chemistry of the solution. Several
modifications must be made to the free-solution diffusion equa-
tions in order to describe diffusion in soil. The modifications
result from the reduced cross-sectional area and the longer
and more tortuous pathways experienced by solutes diffusing
in soil. In addition, some solutes may be subject to reversible
sorption reactions during transport through the soil. As a result
of these effects, diffusion in soil is slower than diffusion in free
solution. The equations describing diffusion in soil are used to
indicate the significance of diffusive transport of contaminants
through fine-grained soil barriers. For waste containment bar-
riers, the significance of diffusive contaminant transport is
described with respect to three flow conditions. The signifi-
cance of diffusion increases as the seepage velocity decreases.
As a result, the best waste containment barrier is one in which
diffusion controls the transport process. However, the rate of
contaminant transport through waste containment barriers may
still be relatively rapid even if diffusion is the only active trans-
port mechanism, especially when relatively thin barriers are
built to contain relatively high concentrations of contaminants.

Several factors affect the transport of contaminants through
fine-grained soil barriers (e.g., clays). The most widely rec-
ognized factor is probably the hydraulic conductivity (perme-
ability) of the soil. Considerable research has been performed
to determine the permeability of soils used for waste con-
tainment barriers. However, growing evidence points to
molecular diffusion as the principal mechanism of contami-
nant transport in fine-grained barrier materials (/-8). This
evidence, coupled with the concern for the deleterious effects
of minute concentrations of contaminants in groundwater, has
increased the importance of considering diffusion as a trans-
port process in the design of waste containment barriers.
The purposes of this paper are to review the concept of
diffusion as a transport process and to describe the effects of
diffusion on the transport of contaminants through fine-grained
soil barriers used for the containment of toxic wastes. Several
modifications to Fick’s laws of diffusion are shown to be required
for a more realistic representation of the process of diffusion,
not only in free solutions but also in soils. Also, diffusion
through soil barriers is shown to be an important, if not dom-
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inant, transport process in soil. The appropriate equations for
modeling both advective and diffusive transport through waste
containment barriers are presented. The need to account for
diffusion of contaminants through waste containment barriers
is illustrated with the aid of several examples.

DIFFUSION IN FREE SOLUTION

Diffusion is a fundamental, irreversible process whereby mat-
ter is transported spontaneously from one part of a system to
another as a result of random molecular motions (9,10). These
random molecular motions result in the net transport of a
chemical species (e.g., ion, molecule) from a region of higher
concentration to a region of lower concentration. As a result,
diffusion may be thought of as the transport of a chemical
species because of a gradient in its concentration.

Types of Diffusion Coefficients

There are essentially four different types of diffusion coeffi-
cients: (a) self-diffusion, (b) tracer diffusion, (c) salt diffusion,
and (d) counter- or interdiffusion. The type of diffusion coet-
ficient that is measured depends on the system used to mea-
sure it. The four systems that describe the four types of dif-
fusion coefficients are schematically represented in Figure 1,
in which sodium chloride (NaCl) or potassium chloride (KCl)
(or both) is assumed to be the diffusing compound.

In self-diffusion [Figure 1(a)], each half-cell of the system
initially contains an equal concentration of sodium chloride
(NaCl). However, in one half-cell, a small amount of the
sodium, Na™*, has been replaced by its isotope, 22Na*. When
the two half-cells are connected, diffusion of both Na* and
its isotope, *?Na*, occurs, but in opposite directions, owing
to the small concentration gradients of each species. Because
the concentration gradient is extremely small, the movements
of the radioactive tracer ions (*Na*) and the Na* ions are
not tied to that of the ions of opposite sign (i.e., C1-), and
the tracer ions may be considered to be moving relative to a
stationary background of nondiffusing ions (9). This move-
ment of the tracer ions is termed self-diffusion, and the dif-
fusion coefficient describing it is called the self-diffusion coef-
ficient. Actually, this system does not depict true self-diffusion.
In true self-diffusion, the initial system would contain two
half-cells, each with equal concentrations of NaCl but without
any isotopically different species. In such a system, the move-
ment of the molecules would be truly random, but the motion
of the molecules could never be traced. Therefore, the true
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FIGURE 1 Schematic representation of diffusion
cells for different systems: (a) self-diffusion,

(b) tracer diffusion, (c) salt diffusion, and

(d) counterdiffusion or interdiffusion [after Li and
Gregory (13)].

self-diffusion system is approximated by the introduction of
the isotopic (tracer) species.

Tracer diffusion is the same as self-diffusion in all respects
except that the isotopic species is of a different element. For
example, consider a system of two half-cells, each containing
equal concentrations of NaCl. If a small amount of the Na~*
in one of the half-cells is replaced by an equal amount of a
radioisotope of a different element, say K", and the two
half-cells are connected, the diffusion of the “K* may be
traced [Figure 1(b)]. In this case, the diffusion of “K* is
termed tracer diffusion to distinguish it from self-diffusion.
At infinite dilution, the tracer diffusion and self-diffusion
coefficients are the same.

Salt diffusion is illustrated in Figure 1(c). In this case, one
half-cell contains a sodium chloride solution, whercas the other
half-cell contains only the solvent. When diffusion is allowed,
both the Na* and the Cl- diffuse in the same direction.

Counter-diffusion or interdiffusion describes the process
whereby different ions are diffusing against, or in opposite
directions to, each other. A system describing such a process
is shown in Figure 1(d). In this system, two half-cells with
equal concentrations of sodium chloride and potassium chlo-
ride are joined together, resulting in the diffusion of Na* and
K+ ions in opposite directions. This samc proccss applics to
any system in which concentration gradients are established
in opposite directions. In reality, both self- and tracer diffu-
sion are limiting cases of counterdiffusion, and salt diffusion
and counterdiffusion usually occur simultaneously in most
systems.

Fick’s First Law

In free solutions (i.¢., no porous matrix) diffusion is described
mathematically by Fick’s first law (9,10):

Jo = —D°grad c §))]
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where

J, = the diffusive mass flux, or the rate of transport of
chemical species pel unii Cc1oss-séciional aica
(ML™2T"),

D° = the free-solution diffusion coefficient of the chem-
ical species (LT},

¢ = the concentration of chemical species (ML %), and
grad = the gradient or vector differential operator (L™').

The units of measurement used here are generic; M stands
for mass, L stands for length, and T stands for time. The
negative sign indicates that diffusion occurs in the direction
of decreasing concentration. The following points can be made
about Equation 1: (a) in general, the mass flux is a vector
quantity (in bold type), (b) the equation applies to steady-
state transport, and (c) the free-solution diffusion coefficient
is assumed to be constant, which is a valid assumption only
for relatively dilute solutions. If diffusion is assumed to occur
in one direction, say the x-direction, then Equation | can be
reduced to
_ _p¥

J, = —-D ™ 2)
The diffusive mass flux has been changed from a vector to a
scalar, because the direction of transport has been fixed.

Fundamental Basis for Diffusive Transport

There is a more fundamental basis for diffusive transport than
Fick’s first law, which is empirical. The fundamental basis
results in a number of expressions that help to provide insight
into some of the factors affecting the free-solution diffusion
coefficient.

Under ideal conditions (i.e., microscopic scale, infinite dilu-
tion), the absolute mobility of a particle may be defined as
the limiting velocity attained under a unit force (9). On the
basis of the postulates of irreversible thermodynamics, the
driving force for ions or molecules can be taken as the gradient
in chemical potential or the partial molar Gibbs free energy
of the chemical species. The combination of these relations,
together with the definition of mass flux, results in an expres-
sion for diffusion known as the Nernst-Einstein equation (11):

uRT ac
Jp=——"— 3
=N ()
A comparison of Equations 1 and 3 reveals that the free-
solution diffusion coefficient, D°, is given by

o _ URT
ne == (4)
= ukT (5)

R = the universal gas constant (8.134 J mole ' K~'),

T = absolute temperature (in kelvins),

Avogadro’s number (6.022 x 10% mole '),

u = the absolute mobility of the particle (LT~'F~'), and
k = Boltzman’s constant (R/N).

2
I

Equations 4 and 5 indicate that D is directly dependent on
the absolute temperature of the solution.
Either Equation 4 or 5 can be combined with expressions
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TABLE 1 SELF-DIFFUSION COEFFICIENTS FOR REPRESENTATIVE IONS AT

INFINITE DILUTION IN WATER AT 25°C

Anion DO x 1010 m2%/s Cation DO x 1010 m%/s
OH- 52.8 93.1
F- 14.7 10.3
Cl- 20.3 Na* 13.3
Br- 20.8 19.6
I- 20.4 Rb* 20.7
HCO53- 11.8 Cs+ 20.5
@NO;- 19.0 Be2+ 5.98
Neres 10.6 Mg+ 7.05
COz% 9.22 Ca2+ 7.92
Sr2+ 7.90
Ba2+ 8.46
Pb2+ 9.25
Cu2* 7.13
(@Fe2+ 7.19
@cd2+ 7.17
Zn2+ 7.02
@Ni2+ 6.79
(@Fe3+ 6.07
@Cr3+ 5.94
@A+ 5.95

(a) Values from reference (13)

relating the absolute mobility to the limiting ionic equivalent
conductivity (9) and the viscous resistance of the solvent mole-
cules, i.e., Stokes’ law (12), to form two additional expres-
sions for D°, or:

RT\®

0 — —~-
D ] (6)
and
RT
(-
6mNnr Y
where

F = the Faraday (96,490 coulombs),
|z| = the equivalents, or charge, per mole of chemical
species,
A° = the limiting ionic equivalent conductivity (LT equiv-
alent™1),
m = the absolute viscosity of the medium (ML~ 'T~!), and
r = the hydrated radius of the ion or molecule (L).

Equations 6 and 7 are referred to as the Nernst and the
Einstein-Stokes equations, respectively. Although Equations
3 through 7 are of limited practical value, they do indicate
that the free-solution diffusion coefficient is a function of the
temperature and viscosity of the solution as well as the ionic
valence and radius of the diffusing chemical species.

The Nernst equation can be used to calculate self-diffusion
coefficients, D°, provided the associated \° values are known
(9). These calculations have been performed for a number of
ions, and several representative D° values are indicated in
Table 1. Similar tables are provided elsewhere (13-16).

The values for D° reported in Table 1 should be considered
to be the maximum values attainable under ideal conditions.
Under nonideal conditions (macroscopic scale, concentrated
solutions), several effects, negligible for ideal conditions,
become important. For convenience, the effects associated
with nonideal diffusion can be separated into three groups:
(a) those due to the requirements for electroneutrality, (b)
those due to concentrated, nondilute solutions or electrolytes,
and (c) those due to solution speciation or electrolyte strength.



172

Effect of Electroneutrality

When two oppositely charged ions are diffusing in the same
direction in solution (salt diffusion), a microscopic charge
separation or electrical potential gradient is established between
the ions because of their different mobilities. The effect of
this charge separation is to speed up the slower-moving ion
and to slow down the faster-moving ion. Because, on a mac-
roscopic scale, electroneutrality must be satisfied, the resul-
tant speeds of both ions must be equal (9).

As a result, each ion of an electrolytic solution is moving
under the influence of not only the force due to the gradient
in the chemical potential for that ionic species but also the
force due to the gradient in the electrical potential between
the motion of the oppositely charged particles. The end result
is that the expressions for the free-solution diffusion coeffi-
cients of ions, D° must be modified to account for the addi-
tional force. This modification has been made for the spe-
cialized case of a single electrolyte, one molecule of which
gives v, cations of algebraic valency z, and v, anions of alge-
braic valency z, (9). The theoretical development for this
specialized case results in the following forms for the Nernst-
Einstein expression (Equations 8a and 8b) and for the Nernst
expression (Equations 9 and 10):

o _ Wi(v, + v) (RT 8a
b ity + vty \ N (8a)
- D?Dg(vl + VZ) (8b)
Vil + vyl
o AN+ wy) <RT>
DY = e LT 72
(A + \)vz| \ F
e )\(1)7\(2)(]}1 | v2) ﬂ (9)
(A + Nvylzy| \ F?
0 _ AN(Jz)| + |z,)) RT (10)
. () + )\2)|Z122| F?
where

DY, = free-solution diffusion coefficient of the sin-
gle electrolyte diffusing in one dircction at
infinite dilution (L2T '),

DY and D = respective self-diffusion or tracer diffusion
coefficients of the cation and the anion at
infinite dilution, and

A and N) = respective limiting ionic conductances.

An expression for simple electrolyte diffusion similar in form
to the Einstein-Stokes expression (Equation 7) is not valid,
because Stokes’ law applies only to individual particles or
molecules.

Another equation similar in form to Equation 8 has been
reported for the case where two different ions with the same
valence and concentration gradient are diffusing in opposite

directions, that is, counterdiffusion (11,14,17):
(¢, + ¢;)D{DY

0 — 21 el 7.

Dy, Db, + Dic, (b

If the two ions have different valences, Equation 11 is mod-
ified as follows (13,18,19):
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po. = Uziln + [2:na) DID3
2 |z DY + |zolnDY

(12)

where n; and n, are the concentrations of the respective
ions expressed as normalities (i.e., equivalents per liter of
solution). In the cases described by Equations 11 and 12, the
free-solution diffusion coefficient is the interdiffusion or coun-
terdiffusion coefficient. It is interesting to note that the inter-
diffusion coefficient is controlled by the diffusion coefficient
of the ion that is in the lower concentration. This unusual
result can be seen by assuming ¢, > > ¢, in Equation 11 or
n, >> n, in Equation 12, or vice versa.

General equations can be derived but not necessarily solved
for cases where more than two ions are present because there
is an infinite number of ways to satisfy the electroneutrality
condition in such cases (9). Nevertheless, the above equations
can be used to indicate the general effect of the electro-
neutrality condition. For example, Robinson and Stokes (9)
have calculated the limiting free-solution diffusion coefficients
for several simple electrolytes, and some of their results are
reported in Table 2. A comparison of each of these limiting
free-solution diffusion coefficients with their respective com-
ponent self-diffusion coefficients given in Table 1 indicates
the effect of the electroneutrality condition on the individual
mobility of ions (i.e., in each case, the value for the limiting
free-solution diffusion coefficient is between the values for
each of its component self-diffusion coefficients).

Effects of Concentration

As the concentration of the chemical species increases, solute-
solute and solute-solvent interactions become more signifi-
cant. The effects of the interactions on the free-solution diffusion
coefficient are a function of the temperature and properties
of the solvent (dielectric constant and viscosity), as well as
the ionic strength of the solution (9,20). The overall effect is
that the free-solution diffusion coefficient is a function of
concentration. This concentration dependence for simple
electrolytes is shown in Table 3, from which it is scen that
there is no general trend of diffusion coefficient with concen-
tration, and the difference in diffusion coefficients over a
relatively broad range in concentrations is small.

Effects of Speciation or Electrolyte Strength

Electrolytes can be classified into two broad categories (9):
(a) nonassociated, completely dissociated, or strong electro-
lytes and (b) associated, incompletely dissociated, or weak
electrolytes. The strong electrolytes consist of solutes existing
only in the form of simple ions (i.e., cations and anions)
possibly solvated. The weak electrolytes consist of solutes that
can exist as associated (covalent) molecules as well as simple
ions or ion pairs (complex species), or both, in which ion
association occurs solely as a result of electrostatic attraction
between oppositely charged ions. Thus far, the discussion of
nonideal effects has pertained to nonassociated or strong elec-
trolytes. There are two effects on the free-solution diffusion
coefficient due to ion association (9): (a) the activity and
therefore chemical potential of the solute is lower relative to
that of a fully dissociated electrolyte, and (b) the resistance



TABLE 2 LIMITING FREE-SOLUTION DIFFUSION COEFFICIENTS FOR
REPRESENTATIVE SIMPLE ELECTROLYTES AT 25°C (9)

Electrolyte DO}5 x 1010 m2/s
HCl 33.36
HBr 34.00
LiCl 13.66
LiBr 13.77
NaCl 16.10
NaBr 16.25
Nal 16.14
KCl1 19.93
KBr 20.16
KI 19.99
CsCl 20.44
CaCl, 13.35
BaCl 13.85

TABLE 3 FREE-SOLUTION DIFFUSION COEFFICIENTS OF SELECTED
CONCENTRATED. AQUEOUS ELECTROLYTE SOLUTIONS AT 25°C (9)

Concentration Dy x 1010 m?/s

(moles/liter) NaCl NaBr Nal KClI KBr KI CaCl, HCl HBr
0.05 1.507 1.53 152 1.864 1.89 1.89 1.121 3.07 3.15
0.1 1.483 1.51 1.52 1.844 1.87 186 1.110 3.05 3.14
0.2 1.475 1.50 1.53 1.838 1.87 1.85 1.107 3.06 3.19
0.3 1.475 1.51 1.54 1.838 1.87 1.88 1.116 3.09 3.24
0.5 1.474 1.54 1.58 1.850 1.88 1.95 1.140 3.18 3.38
0.7 1.475 1.56 1.61 1.866 191 2.00 1.168 3.28 3.55
1.0 1.484 1.59 1.66 1.892 197 2.06 1.203 3.43 3.87
1.5 1.495 1.62 175 1.943 2.06 2.16 1.263 3.74 ND
2.0 1.516 1.66 1.84 1999 2.13 225 1307 404 ND
2.5 ND 170 192 2.057 2.19 234 1306 433 ND
3.0 1.565 ND 199 2.112 2.28 244 1.265 4.65 ND
3.5 ND ND ND 2160 235 253 1.195 492 ND
4.0 1.594 ND ND 2196@243 ND ND 5.17 ND

(a) concentration = 3.19 moles/liter
ND=No Data
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to the motion of two combined particles is less than that of
the two particles when separated. Robinson and Stokes (9)
have introduced an additional factor related to the degree of
dissociation to account for these effects, and reference is made
to their discussion for further details. The important point is
(hat the strength of the electrolyte theoretically can affect the
value for the free-solution diffusion coefficient.

Effect of Pressure

Changes in pressure also can affect the value of the free-
solution diffusion coefficient. The effect of pressure is realized
primarily through changes in the viscosity of the solution and
in the chemical potential of the solute. However, when water
is the solvent, the pressure dependence of the diffusion coef-
ficient is small (/4). In most cases, the pressure dependence
of the diffusion coefficient can be neglected.

Fick’s Second Law

When Fick’s first law (Equation 1) is combined with the con-
servation of mass, the result is Fick’s second law (9,10):

dc
i div (D° grad ¢) (13)
where div is the divergence operator and ¢ is time. The above
equation applies to transient diffusion of an ionic species at
infinite dilution in three-dimensional space. For diffusion in
one direction (e.g., the x direction), Equation 13 becomes

d ad 0

Lo 2 (pX (14)
a  ox ox

If the free-solution diffusion coefficient is assumed to be inde-
pendent of the distance of transport, Equation 14 can be
reduced further to

dc &c

— =D'— 15
ot ax? (15)
In general, Equations 14 and 15 are the forms of Fick’s second
law that are used in the study of the transient diffusion of
solute species in free solutions.

DIFFUSION IN SOIL

Diffusion in soil necessarily is slower than diffusion in free
solution for three reasons (/8):

1. There is a reduced cross-sectional area of flow,

2. There is a more tortuous diffusion pathway because of
the particulate nature of the porous medium, and

3. There may be reduced mobility of the diffusing chemical
species in the soil pores because of interactions with the pore
walls.

The effects of reasons 1 and 2 are shown schematically in
Figure 2. The effects of reason 3 are usually associated with
adsorption-desorption reactions, although other chemical and
biochemical reactions, as well as radioactive decay, may affect
the mobility of chemical species diffusing in soil. Several mod-
ifications must be made to the free-solution diffusion equa-
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FIGURE 2 Concept of effective length in porous media.

tions (Fick’s first and second laws) to account for the effects
of soil on the diffusion of chemical species. In the following
section, the modifications required to adapt Fick’s laws to
describe diffusion of contaminants in soil are covered. Dif-
fusion in the gas phase of soil will not be covered in this paper.

Effect of Reduction in Cross-Sectional Area of Flow

Under steady-state conditions when the concentration distri-
bution is a linear function of distance, the differential oper-
ators in Equation 2 may be replaced by difference operators,
or

0 AC

J, = —
D Ly

(16)
Because of the reduced cross-sectional area in the soil, the
concentration of the diffusing species, c, is the concentration
in the liquid phase of the pore space. Because fluxes are
defined with respect to the total cross-sectional area, Equation
16 must be modified for diffusion in soil as follows:

Ac
J, = —D% = 17
D 0 17

where 6 is the volumetric water content defined as the volume
of liquid per total volume of soil (dimensionless). Further,
the volumetric water content may be defined as

6 = nS, (18)

where n is the total porosity, or volume of voids per total
volume of soil (dimensionless), and S, is the degrec of satu-
ration, or volume of liquid per void volume, expressed as a
decimal. When Equation 18 is substituted into Equation 17,
Fick’s first law for diffusion in soil becomes

Ac
Jp = —D%S, — 1
S DnS, (19)

Therefore, the most conservative case (i.e., maximum flux
for liquid phase diffusion) will occur when the soil is saturated
(8, = 1.0), all other conditions being equal.

Effect of Tortuous Pathway

There are two effects due to the more tortuous pathway asso-
ciated with diffusion through soils:

1. The cross-sectional area perpendicular to the actual,
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L Cross-Sectional Area of Soil, A J
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FIGURE 3 Schematic representation illustrating the effects on diffusion
due to tortuous nature of pathway [after Porter et al. (23)].

microscopic flow direction in the soil is less than that per-
pendicular to the macroscopic flow direction defined by the
x coordinate system, and

2. The driving force (i.e., concentration gradient) is also
less because of the longer, or actual, length of flow, L., versus
the macroscopically measured length of flow, L (21-23).

Each of these effects is illustrated schematically for a saturated
system in Figure 3.

As a result of these effects, Equation 19 must be modified
to describe the process of diffusion in soil, as follows:

(20)

where n' and Ax’ are the actual (microscopic) porosity and
distance of flow, respectively. Because macroscopic quantities
are desired for the measurement of diffusion coefficients, the
macroscopic equivalents for n’ and Ax’ may be substituted
into Equation 20 (see Figure 3):

L Ac

Jp = —-D° (—)ns,———
’ S 51).-1\'
L

(21a)

2
L Ac
— _ nof =t 21b
D(L)nS, (21b)

e

The factor (L/L,)? is purely geometric and is defined as the
tortuosity of the porous medium (27-23). Since L < L, for
porous media, (L/L,)> < 1.0. The tortuosity factor is usually
represented by T:

t = (LIL,y (22)

When Equations 18, 21, and 22 are combined, Fick’s first law
for diffusion in soil becomes

Ac
= — Dg— 23
Jp D16 (23)

Effective Diffusion Coefficient

At present, tortuosity factors cannot be measured indepen-
—dently. This obstacle_is surmounted by defining an effective
diffusion coefficient, D*, where

D* = D (24)
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TABLE 4 REPRESENTATIVE TORTUOSITY FACTORS TAKEN FROM THE

LITERATURE
Saturated
Tracer(s) Soil(s) or 7 Values®  Reference
Unsaturated
36Cy 50% Sand:Bentonite Mixture ~ Saturated 0.08-0.12  (24)
Bentonite:Sand Mixtures " 0.04-0.49 25)
Bentonite:Sand Mixtures " 0.59-0.84 (26)
Silt Loam Unsaturated *0.05-0.55 (27)
Sand Saturated *(.28 (28)
Loam & *0.36 (28)
Clay 4 *0.31 (28)
Cr Clayey Till " *0.15 ?2)
Silty Clay " *0.13-0.30 (@
Silty Clay " *0.10 (6)
Sandy Loam Unsaturated *0.21-0.35  (29)
Silty Clay Loam;Sandy Loam Saturated *(0.08-0.22  (30)
Kaolinite " *0.12-0.50  (31)
Smectitic Clay " *0.07-0.24 (31)

Cl- &S042-  Clay

Br Silty Clay Loam;Sandy Loam
Kaolinite
Smectitic Clay
Sandy Loam

3H Bentonite:Sand Mixtures

Bentonite:Sand Mixtures

" 0.55 (13)
" *0.19-0.30  (30)
" *0.15-0.42 (31)
" *0.08 (31
" *0.25-0.35 (32)
" 0.01-0.22  (25)
" 0.33-0.70  (26)

(a) Values with * were calculated using apprupriate DO value from Table 1with the D* valuc taken

from the reference.

When Equation 24 is substituted into Equation 23, Fick’s first
law for diffusion in soil becomes

Iy =~ D (25)

ac
a
where the difference operators in Equation 23 have been
replaced by the differential operators to denote generality.
Since 7 < 1.0, D* < DO and diffusion in soil is slower than
diffusion in free solution. Equation 25 can be used to measure
effective diffusion coefficients of chemical species, D*, dif-
fusing in soil. Following the measurement of D*, the tor-
tuosity factor can be determined through Equation 24, using
an appropriate value for the free-solution diffusion coeffi-
cient. The appropriate free-solution diffusion coefficient to
be used depends on the type of diffusion coefficient being
measured (i.e., self, tracer, counterdiffusion, or salt) and the
system employed to measure it (i.e., infinite dilution or not,

single, simple, or multiple electrolyte solution). However, in
most cases, the free-solution diffusion coefficient for a single
solute species at infinite dilution (D°) has been used to deter-
mine 7-values, as indicated by Equation 24. Some typical
values for 7 reported in the literature are presented in Table
4. (As noted in Table 4, some of the 7-values are based on
the results of diffusion tests performed with unsaturated soils.)

Fick’s Second Law

The transient form of the transport equation for diffusion in
soil depends on whether the chemical species, or tracer, is
nonreactive or reactive. A chemical species is nonreactive if
it is not subject to chemical reactions, biological transfor-
mations, and radioactive decay (33). A reactive chemical spe-
cies is subject to chemical and biochemical reactions or radio-
active decay, or both.
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FIGURE 4 General shapes for adsorption isotherms

[f"(c) denotes second derivative].

When Fick’s first law (Equation 25) is combined with the
equation of continuity (i.e., conservation of mass), the result
is Fick’s second law for the transient diffusion of a nonreactive
chemical species in soil (27,33):

dc d ac
— = | p*=
ot 6x< 8x> (26)

or, if D* is not a function of the transport distance,

ac ., 9%

PP @7)
Excellent discussions of the types of chemical and biological
reactions affecting inorganic chemicals are provided else-
where (33-36).

Of the numerous types of chemical or biochemical reactions
that can affect contaminant concentrations during transport
in soil, only adsorption-desorption (sorption) reactions are
routinely modeled. The other reactions typically are accounted
for by indirect, qualitative analyses. For reactive solutes sub-
ject to reversible sorption reactions during diffusive transport
in soil, Equation 27 must be modified as follows:

= (28)

where the retardation factor, R,, is given by the following

equation:

R, =1+ Pk (29)
d 6 D

where p, is the dry (bulk) density of the soil (ML) and X,

is the partition coefficient (L®*M~'). The partition coefficient
relates the mass of solute sorbed per mass of soil, g, to the

concentration of the solute in solution, ¢, at equilibrium. The
relationship between g and ¢, known as an adsorption iso-
therm, is often determined for an appropriate range of con-
centrations from the results of batch equilibrium tests. Three
general shapes for adsorption isotherms resulting from batch-
equilibrium tests are shown in Figure 4. When the g versus
¢ relationship is constant, the adsorption isotherm is linear
(f"(c) = 0), and K,, is termed the distribution coefficient, K,,.
Otherwise, K, is a function of the equilibrium concentration
insoil [i.e., K, = f(c)]. Since the effective diffusion coefficient
in Equation 28 is divided by the retardation factor, the rate
of diffusive transport of a chemical species undergoing revers-
ible sorption reactions is inversely proportional to the value
of the partition coefficient.

When the adsorption isotherm is nonlinear, the resulting
differential equation describing solute transport in soil with
simultaneous adsorption (Equation 28) is nonlinear, for which
no general analytical solutions exist. However, analytical solu-
tions do exist when the adsorption behavior is linear. The
existence of analytical solutions makes the assumption of lin-
ear adsorption desirable. For this reason, linear adsorption
isotherms are often assumed to apply when, in fact, experi-
mental data suggest nonlinear adsorption behavior.

Apparent Diffusion Coefficients

Some researchers have found it convenient to rewrite Equa-
tion 28 as follows:
ac . 0%¢

o Dis (30)

where D), is an apparent diffusion coefficient (I3), also known
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as the effective diffusion coefficient of the reactive solute, D,
(15,26), or

D
Dt =D, = =—
* = D R (31

The result of this substitution is that only one unknown (D,
or D,) must be solved for, instead of two unknowns (D*, and
R, or K,). Then, based on some information regarding either
D* or K,, and the known value of I);, the other unknown
parameter may be solved for by Equation 31.

However, Rowe et al. (37) and Rowe (38) caution against
the use of a single coefficient, D}, or D,, in Equation 28 when
the boundary conditions are flux-controlled, since the result-
ing analyses will be both incorrect and unconservative. In
addition, the coefficient D: or D, is a function of the sorption
characteristics of the soil, whereas D* is not. Therefore, it is
meaningless to report a value for D’; or D, without reporting
the associated R, value, since different soils have different
sorption characteristics.

DIFFUSION THROUGH SOIL BARRIERS
Transport Mechanisms

Three transport mechanisms—advection, mechanical disper-
sion, and molecular diffusion—are generally recognized as
governing the flow of contaminants in porous materials.
Advection is the transport of contaminants in response to a
gradient in total hydraulic head. Due to advection, nonreac-
tive contaminants are transported at an average rate equal to
the seepage velocity, v, (LT "), which, for a saturated system,
is defined as

v ki
== (32)
where
v = the Darcian velocity (LT™),
k = the hydraulic conductivity or permeability of the soil

(LT Y), and
the hydraulic gradient (dimensionless).

i
Both mechanical dispersion and molecular diffusion are mix-
ing processes that cause the contaminant front to spread out
or disperse during transport through the porous material.
However, mechanical dispersion is a function of the seepage
velocity, whereas molecular diffusion is not (i.e., the greater
the seepage velocity, the greater the effect of mechanical
dispersion, and vice versa). Therefore, even though all three
mechanisms are active during transport, the effect of mechan-
ical dispersion becomes less significant as the seepage velocity
decreases. For the relatively low seepage velocities typically
associated with fine-grained soil barriers, the effect of
mechanical dispersion is negligible (38). As a result, the trans-
port of contaminants through waste containment barriers
generally can be described using an appropriate advective-
diffusive model.

The appropriate model to be used depends on the suscep-
tibility of the contaminant to geochemical reactions (i.c., non-
reactive versus reactive solutes) and the overall flow condi-
tions. In general, three possible cases should be considered
(see Figure 5): (a) diffusion without advection (pure diffu-
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sion), (b) diffusion with positive advection, and (c) diffusion
with negative advection. Each case is discussed in the follow-
ing sections.

Diffusion Without Advection

For the case shown in Figure 3a, the hydraulic gradient across
the clay barrier is zero, so there is no advective flow. How-
ever, because the concentration of the contaminants in the
leachate is greater than that in the natural soil, a concentration
gradient is established across the barrier. As a result of this
concentration gradient, diffusion of contaminants will occur
through the barrier. The appropriate equations for modelling
this case have been presented previously. Under steady-state
conditions, the diffusive flux of contaminants is described by
Equation 25. The transient diffusive transport of contami-
nants can be modelled by using Equation 27 for the non-
reactive solutes and Equation 28 for the reactive solutes.

The significance of pure diffusive transporl of contaminants
across clay barriers can be illustrated with the aid of an exam-
ple. If the concentration of contaminants in the leachate is
assumed to be constant with time, then the concentration of
the contaminant reaching the bottom of a clay barrier of thick-
ness L can be described as a function of time, using the fol-
lowing analytical solution to Equation 27 (10):

c L
C—o = erfc [2——(‘9”)“3] (33)

¢, = the concentration of the nonreactive solute in the
leachate,
¢ = the corresponding concentration at the bottom of
the barrier,
erfc( ) = the complementary error function, and
¢t = the transit time (i.e., the time required for the
solute to travel from the top to the bottom of the
barrier).

Tables of values for the erfc( ) are given by Abramowitz
and Stegun (40), Carslaw and Jaeger (39), Crank (/0), and
Freeze and Cherry (33), among others. A reasonable estimate
for the effective diffusion coefficient (D*) of a nonreactive
solute, such as chioride (Cl7), is 6.0 x 107 m%sec (8,31).
Based on this D* value, the relative concentrations, ¢/c,, at
the bottom of the clay barrier have been plotted in Figure 6
for a 50-year period as a function of the barrier thickness.
Since, in many cases, these values for c¢/c, represent concen-
trations that may exceed allowable standards, it is apparent
that diffusion through fine-grained soil barriers can be a sig-
nificant transport process, especially for relatively thin bar-
riers. Since the boundary conditions upon which Equation 33
is based are not flux-controlled, a similar analysis could be
performed for reactive solutes by substituting .'.)f‘ or D, for
D* in Equation 33.

Diffusion with Positive Advection
For the case shown in Figure 5(b), a hydraulic gradient has

been established across the clay barrier such that advective
flow of contaminants occurs in the same direction as the dif-
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FIGURE 5 Flow conditions for waste containment barriers: (a) diffusion
without advection (pure diffusion), (b) diffusion with positive advection, and (c)
diffusion with negative advection.
fusive flow in the pure diffusive case. The advective flow is ac , P ac
termed positive because it results in an increase in the con- o w Vo (37)

taminant concentration in the natural soil. This case is com-
monly described in texts on contaminant transport (21,33,41).
For this case, the total, steady-state flux, J, of the contaminant
is given by the sum of the advective flux, J,,, and the diffusive
flux, J,, or

J=J,+J, (34)
where
Ju = nvge (35)

and v, is given by Equation 32. Since J,; is given by Equation
25, the total flux (assuming saturated conditions) is described
by

ac

J=nve — D¥n—

™ (36)

The transient model for this case, assuming a homogeneous
soil, is described by the well-known advective-dispersive
equation for nonreactive solutes (21,33,41):

where mechanical dispersion has been considered to be neg-
ligible. There are several analytical solutions to Equation 37,
depending on the boundary and initial conditions (21,41). One
of the more popular solutions is as follows (33,42 ,43):

X = wi
: Lol
ol

Equation 38 applies to a semiinfinite medium in which the
concentration of the contaminant in the leachate, ¢,, is assumed
to be constant with time.

As previously indicated, the transport of contaminants
through clay barriers is a function of the magnitude of the
seepage velocity. An example of this dependence is illustrated
in Figure 7 where the transit times for several relative con-
centrations (c/cy) have been plotted versus the seepage veloc-
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ity. The data for Figure 7 were generated using Equation 38
for the case where D* equals 6.0 x 10-1° m%sec and x
(= L)is0.914 m (3 ft). The data presented in Figure 7 indicate
that, as the secpage velocity decreases, the transit time
approaches asymptotically a limiting value that is based on
pure diffusive transport. In the limit, when the seepage veloc-
ity approaches zero, the analytical solution for the advective-
diffusive transport (Equation 38) reduces to the analytical
solution for pure diffusive transport (Equation 37). There-
fore, the transit times based on pure diffusive transport given
in Figure 6 represent the limiting values for the case of dif-
fusion with positive advection.

For example, the transit time based on pure diffusive trans-
port for a barrier thickness of 0.914 m (3 ft) and a relative
concentration of 0.5 is approximately 49 years (sce Figure 6).
This value is represented in Figure 7 by a vertical line, which
indicates the independence of diffusion on the seepage veloc-
ity. As a result, the best containment barrier that can be built
for the case of positive advection is one in which diffusion is
the controlling mechanism of contaminant transport, How-
ever, relatively short transit times may still result even though
diffusion is the controlling mechanism of transport, especially
for relatively thin barriers and/or low values of c/c, (see
Figures 6 and 7).

For reactive solutes subject to reversible sorption reactions,
Equation 37 is not an appropriate model. Instead, Equation
37 must be modified as follows:

# " R, R %
Equation 38 also represents an analytical solution to Equation
39 if D* in Equation 38 is replaced by D*/R,,.

Diffusion with Negative Advection

In some instances, the direction of advective transport may
be opposite that of diffusive transport, as shown in Figure
5(c). This situation may occur in practice, for example, when
the barrier (either natural or man-made) is located over a
confined aquifer under artesian pressure, or when vertical
barriers, such as slurry walls, are used to isolate a contami-
nated area (see Figure 8). In this case, the advective flow is
termed negative because it works to prevent the escape of
pollutants from the contaminated area.

The steady-state and transient equations describing this case
can be formulated by simply substituting —v, for v, in the
equations for the previous case (i.e., Equations 36, 37, and
39). However, the boundary and flow conditions for this case
can be quite complex. For example, if the concentration, ¢,
in the slurry wall scenario in Figure 8 is initially zero, then
there is no initial advective flux of contaminants into the
barrier. The initial flow of water into the containment area
may dilute the concentration ¢, with time and, therefore,
reduce the concentration gradient for outward (positive) dif-
fusive transport. The contaminant migration front, if any, will
depend on the offsetting effects of the advective and diffusive
fluxes. The situation for reactive solutes is more complex.
Regardless, significant diffusive transport of contaminants may
still result if a relatively thin barrier is built to contain high
concentrations of priority pollutants over extended periods.

181

Slurry Wall

Ground Surface

[|Waste Containment Area

¢ 2%

FIGURE 8 Slurry wall scenario for case of diffusion with
negative advection.

SUMMARY AND CONCLUSIONS

The steady-state diffusion of solutes (ions, molecules) in free
solutions is described by Fick’s first law. This law, which is
empirical, is supported by several more fundamental expres-
sions (e.g., the Nernst-Einstein, Nernst, and Einstein-Stokes
equations). These expressions, derived for ideal conditions
(microscopic scale, infinite dilution), must be modified for
non-ideal conditions. The more fundamental expressions pro-
vide insight into the factors affecting the free-solution diffu-
sion coefficient. The major factors include the temperature,
viscosity, and dielectric constant of the solution; the radius
and valence of the diffusing chemical species; and the equi-
librium chemistry of the solution (i.e., the requirement for
electroneutrality, speciation or electrolyte strength, and
concentration of the solute).

Solutes diffusing in soil are subject to a more reduced cross-
sectional area of flow, a greater distance of flow, and more
tortuous pathways than are solutes in free solutions. As a
result, diffusion in soil is slower than diffusion in free solution.
In addition, some solutes may experience a reduced mobility
in the soil due to adsorption reactions with the soil particles.
Due to these effects, Fick’s first and second laws for diffusion
in free solution must be modified in order to describe the
steady-state and transient diffusion, respectively, of solutes
in soil. The modifications required are described in this paper.

Diffusion of contaminants through fine-grained soil barriers
is a significant, if not dominant, transport mechanism. The
significance of diffusion to the overall migration of contam-
inants increases as the seepage velocity decreases. Even if the
seepage velocity is zero, release rates of contaminants by
diffusion can be high, especially when relatively high concen-
trations of contaminants are being contained by relatively thin
barriers. As a result, severe consequences can result if dif-
fusive transport of contaminants is not considered in the design
of waste containment barriers.
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