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Highway Assignment Method Based 
on Behavioral Models of Car Drivers' 
Route Choice 

ROBERT W. ANTONISSE, ANDREW J. DALY, AND MOSHE BEN-AKIVA 

This paper proposes a highway traffic assignment technique 
based on an improved behavioral model of drivers' route choice 
as developed in a recently completed study in the Netherlands. 
Route choice models are developed from data collected in three 
corridors in the Netherlands. The models presented here, which 
are based on evidence of drivers' varying valuations of a num
ber of road characteristics, are (a) probabilistic and (b) based 
on more variables than were used in previous models. They 
contrast with the underlying route choice models of conven
tional traffic assignment procedures, which are typically based 
on a single measure of travel impedance (e.g., travel time, 
generalized travel cost). A key feature of the models developed 
in the present study is that they are based on data describing 
the actual routes chosen by individual drivers. The paper 
describes how these models are used to generalize assignment 
methods through the exploitation of a multiclass-user tech
nique. In an uncongested network, several routes typically will 
be predicted to be used between a given origin and destination; 
as congestion increases, so will the diversity of routes used. 
Several models appropriate for use in varying circumstances 
of data availability are presented and compared. Model inputs 
(e.g., road attribute data) are described, and practical impli
cations of the underlying structural assumptions are discussed. 
Spatial transferability of the models is appraised on the basis 
of the differing results obtained for the three corridors studied. 
Finally, advantages and limitations of application of the pro
posed assignment method compared with conventional pro
cedures are discussed. 

A central element of the traffic assignment procedure is a 
model of the traveler's decision about which route to take 
given the origin, destination, and mode of travel of a trip. 
The problem of route choice for a traveler might be stated as 
follows: Given the other characteristics of the trip to be made
purpose, time, origin, destination, and mode, for instance
choose the "best" route through the transportation network 
in terms of some criterion. This best route is most often thought 
of as the one that minimizes travel disutility. Existing traffic 
assignment models often assume single measures of travel 
disutility such as travel time or distance, or some simple for
mula of generalized travel cost. 
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In reality, the problem of route choice faced by an auto
mobile driver is very complex because of 

1. The large number of possible alternative routes through 
even modestly sized road networks, and 

2. The complex patterns of overlap between the various 
route alternatives. 

Realistic replication of the human decision process in route 
choice-which synthesizes many factors about the trip and 
the various possible routes in making a choice-with a math
ematical model is difficult at present because of the limited 
understanding of the route choice phenomenon, as well as 
limited techniques and computational resources. 

The primary interest of studying car drivers' route choice 
is in improving traffic assignment procedures. In particular, 
accurate predictions of the usage of proposed new infrastruc
ture are essential to the evaluation of the need for that infra
structure. The results of the route choice study suggest that 
current methods may underestimate the traffic attracted to 
major new roads. Secondarily, understanding route choice is 
valuable in attempting to redirect traffic streams so as to make 
the best possible use of existing roads. The current study is 
one of very few directed to a better fundamental understand
ing of this important aspect of behavior and the implemen
tation of that understanding in practical planning methods. 
The overall objectives were twofold: 

1. To improve current understanding of drivers' route choice 
preferences, and 

2. To develop a practical traffic assignment model that 
reflects this choice process with greater sophistication. 

FACTORS AFFECTING ROUTE CHOICE 
BEHAVIOR 

A major task completed during the first phase of this project 
was an extensive literature review of factors affecting drivers' 
route choice preferences. Ben-Akiva et al. (J) synthesized the 
results of this review as a set of hypotheses that may be broken 
down into the following three categories: 

1. Drivers' knowledge about alternative routes: Several 
authors hypothesize that drivers plan their trips in a hierar-
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chical fashion, building up from lowest-level (local) roads near 
the origin of the trip to expressways at the highest level, which 
they use for the bulk of travel, and back to local streets at 
the end of the trip (2-4). Knowledge may be lacking of local 
road alternatives to expressway portions of trips (5- 7). Driv
ers often are unable to evaluate simple characteristics of paths 
and thus are unable to find the quickest or shortest route 
(2, 8, 9). 

2. Decision processes: Various hypotheses assert that driv
ers either plot out their entire route before departure or make 
decisions at road junctions as they encounter them inde
pendently from previous decisions (that is, they follow a Mar
kov process), or else they use some combination of these two 
approaches (10) . 

3. Route attributes and preferences: Specific attributes of 
routes to which drivers are attracted include travel time (11-
14), distance (14), number of traffic signals (5), scenery ( espe
cially for nonobligatory trips, such as social or recreational 
ones) (6,15), time or distance on limited-access highways (15), 
safety (11 ,15), commercial development, congestion (15 ,16), 
road quality, and road signing (17). 

Most of these hypotheses are not reflected in existing traffic 
assignment models. 

NEW MODEL OF ROUTE CHOICE BEHAVIOR 

The earlier work on this project documented by Ben-Akiva 
et al. (1) also included the conceptualization of a two-step 
model of route choice that (a) narrows down the large number 
of possible route alternatives to a choice set 0f a few alter
natives and (b) chooses a route from this choice set based on 
the characteristics of the trip, driver, and attributes of the 
available alternatives. Survey data were collected for a sample 
of drivers observed to travel between the cities of Utrecht 
and Amersfoort, including information on the driver and on 
the trip itself (including the route actually chosen on the sur
vey day). A network model of the corridor was used to gen
erate sets of alternative routes for the sampled drivers, and 
a large number of route choice models was tested. 

The empirical evidence of the first phase of this study showed 
that factors other than time and distance play a significant 
role in interurban route choice. For example, several road 
attributes that one normally associates with major highways
large capacity, restricted access, high hierarchical level, and 
high speed limit-were found to positively attract route choice. 
Traffic signals, on the other hand, were found to have a neg
ative effect. 

The estimation results demonstrated the feasibility of the 
two-stage approach to modeling route choice and produced 
a model that reflects the hypothesized structure underlying 
route choice behavior. Finally, a number of market segmen
tation tests demonstrated that trip purpose, frequency, and 
length can have important influences on route choice. 

OBJECTIVES 

The results of the second phase of this project are presented. 
They are based on a new data collection effort that began in 
1980 in two other road corridors in the Netherlands. The 
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primary objectives of the second phase were 

1. To test the transferability of both stages of the modeling 
process as developed in the first phase (the method used to 
generate the set of alternative routes and the choice model) 
to the other corridors, and 

2. To simplify the choice model as a way to enhance the 
applicability of the model in a wider geographical area and 
under conditions of limited road network data. 

Drivers were surveyed in two different corridors in the 
Netherlands in the spring of 1980-one between Amsterdam 
and Purmerend and the other between Arnhem and Apel
doorn . All the corridors offer a number of viable route alter
natives for the many trips between the two cities defining each 
study area. In each case, a cordon of roadside survey points 
was laid out across the corridor. At some survey points, return
mail questionnaires were handed out to drivers, whereas at 
other points license plate numbers were recorded and regis
tered owners of the vehicles were sent a return-mail survey 
form at home. The surveys asked respondents to trace the 
route they took on a map provided for the day of the sighting. 
The questionnaires also asked a range of questions about trip 
and personal characteristics: purpose at origin and destina
tion, frequency of this trip, age, profession, and so on. Mean
while, network data were collected from engineering sources. 

ROUTE CHOICE MODEL FOR TRAFFIC 
ASSIGNMENT 

This section describes the basic methodological requirements 
and data and computer needs for forecasting route choice 
behavior using the new approach. 

Methodology 

Travel behavior in general and route choice behavior in par
ticular can be considered as choosing between discrete, mutually 
exclusive alternatives. Discrete choice analysis attaches 
expressions of attractiveness or utility to each of the available 
choice options. The utility expression of each alternative gen
erally incorporates information on the attributes that may 
either add to or detract from its attractiveness. It is then 
assumed that the decision maker will choose the alternative 
that is most attractive. 

With the primary problem in this case being highway route 
choice, the two major steps in determining behavior are 

1. Identifying a set of route alternatives that the driver can 
choose among, and 

2. Making the choice from this set on the basis of the type 
of driver and trip conditions and the various attributes of the 
route alternatives. 

Because it would be prohibitively time-consuming and 
behaviorally unrealistic to evaluate the attractiveness of all 
possible routes between the origin and destination, a method 
is applied to narrow down the vast number of route possi
bilities to a few alternatives that may be considered in greater 
detail. 
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Once a set of options has been identified, it is necessary to 
measure the relevant attributes of those options that affect 
their attractiveness. A choice model is used to relate the prob
ability of choosing each available alternative to its attractive
ness, which, in turn, is based on the attributes of the alter
natives. For the predictive tool to be successful in forecasting 
travel behavior under a wide range of circumstances, the choice 
model must be responsive to how changing travel conditions 
and varying perceptions affect the relative attractiveness of 
the available travel options. 

Generation of Route Alternatives 

As discussed above, the first stage of the route choice mod
eling process involves the generation of a set of candidate 
route alternatives from the myriad of feasible paths through 
the road network. The technique developed in this study is 
called the "labeling" approach because descriptive labels are 
attached to the selected route candidates. Each of these labeled 
routes is optimal with respect to some criterion from among 
all possible routes between the given origin-destination pair. 
For example, "quickest," "shortest," and "most scenic" might 
be criteria used to define three candidates from all route 
possibilities. The criteria to be used may be extracted from 
hypotheses regarding influences on route choice behavior and 
could be considered to constitute a model of drivers' percep
tions of a road network. 

So that these labels can help determine specific paths through 
the given network, a quantitative descriptor based on avail
able network data must be selected to measure a route in 
terms of the label criterion. Labeled paths are defined by an 
impedance function that depends on one or more link attri
butes. A separate function is specified for each label criterion 
to be used. Determining the labeled path for a particular 
criterion is then simply a matter of calculating the associated 
impedance for all links in the network and executing a min
imum-path algorithm that can efficiently generate labeled paths 
for a large set of origin-destination pairs. Observed chosen 
route data are required in selecting the most reasonable set 
of labels to apply in forecasting route choice. The selected 
set of impedance functions maximizes the frequency of observed 
routes included in the set of the corresponding labeled 
paths. 

At this point, it is useful to describe the network data avail
able for this study. Two types of data were used in this anal
ysis: a basic network data base system and sets of extra, detailed 
link attributes. The Dutch Ministry of Transport maintains a 
computerized "Basisnetwerk" system consisting of many node 
and link records that represent the national highway network. 
This system is used extensively in the Ministry's planning and 
management functions. Node records include the junction's 
geographic location. Link records include A- and B-nodes, 
distance, speed code, and road hierarchy level as attributes. 
These basic attributes supply sufficient information for the 
generation of a few important labels. 

A large number of detailed road link attributes was gath
ered for the detailed study area within each of the data col
lection corridors. Example attributes include road surface type, 
width of roadway, number of Janes in each direction, zoning 
type of adjacent land, and presence of various types of facii
ities along the roadside. A large number of alternative labeled 
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paths could then be generated for any driver traveling either 
entirely or partially through the detailed study area. 

In the first phase of the project, 10 labels were selected for 
application. These same labels were designated for applica
tion to the two new study areas in the second phase. The 
labels chosen and associated quantitative descriptors are 
described briefly as follows: 

• Minimize time: travel time is calculated from information 
on the distance and average speed of the link. 

• Minimize distance: the distance from the link records is 
applied. 

• Maximize travel on scenic roads: the measure of imped
ance for the route is time spent driving on roads adjacent to 
nonscenic land uses-city center, dense residential, or indus
trial-as determined from percentage of link distance through 
these types of land use, which is available from detailed attri
butes. 

• Minimize number of traffic signals: for each link, the 
number of traffic signals was calculated using detailed attri
bute information and the following formula: 

No. signals = no. signals along link 

+ 0.5 (total signals at nodes) 

• Minimize travel on congested roads: detailed attributes 
allowed calculation of volume:capacity (VIC) ratios for road 
links in the Phase 1 study area. The descriptor is time spent 
on roads with high VIC ratios. Unfortunately, link volume 
data were not available for either the Arnhem-Apeldoorn or 
the Amsterdam-Purmerend study area, and this label had to 
be dropped from the analysis of joint data. 

• Maximize use of expressways: links were classified as 
expressways if the network speed code was the maximum, 
that is, 100 km/hr (approximately 60 mph). Time spent on 
nonexpressway roads was used as a measure of link impedance 
in this case. 

• Maximize travel on high-capacity roads: the impedance 
measure is time spent on low-capacity roads, that is, roads 
that either are less than 9 m (approximately 30 ft) wide or 
have less than two lanes in either direction. 

• Maximize travel in commercial areas: again using land 
use data from the detailed attributes, time spent in noncom
mercial areas was calculated on the basis of the distance trav
eled in any land use area other than cities or industrial areas. 

• Maximize road quality: for every link in the study area, 
a road quality rating is available on a scale of 1 (best quality) 
to 3 (worst quality). Time spent on poor-quality roads-those 
with a rating of 2 or 3-was measured. 

• Hierarchical travel: each link includes an attribute for 
road hierarchy level. This label favors travel on the highest
level roads-generally limited-access highways. Two imped
ance measures were used: (a) time spent on roads of the lowest 
hierarchy (local roads) and (b) time on roads of moderate 
hierarchy (main roads of regional importance). 

With the label descriptors determined, the next step is the 
specification of the impedance functions. In the case of the 
"minimize time" and "minimize distance" labels, this is sim
ply the measure itself. For the other labels, however, it was 
possible for the optimal route of the criterion to deviate unrea
sonably from the minimum time path. To mitigate this prob-



4 TRANSPORTATION RESEARCH RECORD 1220 

TABLE 1 LABEL IMPEDANCE FUNCTIONS AND FINAL COEFFICIENT VALUES 

Label Criterion Link Iq>edance Function Initial Coefficients 

(to be minimized) 

Utrecht- Amst-Purm & 

Amers foort Arnhem-Apel 

Hin. Time TIME 

Hin . Di stance DISTANCE 

Max. Scenic TIME + P1CNON-SCENIC TIME) 2.0 2.0 

Hin. Signals TIME + p2(# SIGNALS) 30 sec. 5 min. 1 

Hin. Congestion TIME + P3CHIGH V/C TIME) 3.0 not used 

Max. Expressways TIME + P4CNON-EXP. TIME) 3.0 3.0 

Max. Capacity TIME + P5 CLO~-CAP. TIME) 1.5 2.0 

Max. Coornercial TIME + p6CLO\J-COHM. TIME) 1.5 1.5 

Max. Road Qua l i ty TIME + P7CLO\J-QUAL. TIME) 2.0 2. 0 

Hierarchical TIME + p81 cH1ER. 1 TIME) 5.0, 5.0, 
Travel + p82 cHIER . 2 TIME) 100 100 

1 The value of 5 min. was not tested for Utrecht-Amersfoort. 
However increased values (above 30 sec.) did not show a 
large loss of coverage on that data. 

lem, the impedance functions were specified as a weighted 
sum of the primary criterion measure (e.g., scenic time) and 
total travel time. The only remaining task is the assignment 
of relative weights to the two component measures. Table 1 
shows the impedance functions, specified with weighting coef
ficients, as applied in this study. 

The label parameters were optimized by finding the set of 
parameter values that maximized the number of observed 
chosen routes for the area under study that are matched or 
"covered" by the label set. A straightforward computer algo
rithm is used to compare each chosen route with the set of 
labels developed for that origin-destination pair and deter
mine the existence of a match. Labels were introduced into 
the label set one at a time, optimizing the label 's coefficient(s). 
A final sensitivity analysis ensured that changing any one 
parameter did not reduce the total matching score of the set 
of labels. The final Utrecht-Amersfoort label coefficients are 
shown in Table 1. A similar analysis was carried out in the 
other two study areas, using the Utrecht-Amersfoort coeffi
cients as initial values. These values are also shown in Ta
ble 1, indicating the minimal changes between the areas in 
this respect. 

Conditional Route Choice Models 

After the decision maker's set of alternative routes has been 
generated, the next step is specification of the utility functions 

for each of the alternatives. Utility functions include a sys
tematic component-an expression of how independent vari
ables affect the attractiveness of the alternatives scaled up by 
their respective estimatable parameters-and a random term 
that accounts for the variability in choice behavior indepen
dent of the options' attributes. The systematic utility expres
sions are usually specified as linear combinations of the inde
pendent variables. 

The "maximum likelihood" method is used to estimate the 
values of the utility function parameters. Simply put, this 
method determines the values of all p<1rameters for which the 
observed choices are most likely to have occurred . The two 
most commonly applied probabilistic discrete choice models, 
logit and probit, differ in their assumptions about how the 
random term of the utility function is distributed [see, for 
example , Ben-Akiva and Lerman (18)]. 

The different mathematical properties of the random vari
ables mean that each method has its advantages and disad
vantages. Logit-form models are generally more flexible in 
the feasible number and structure of alternatives in the choice 
problem, and their parameters can be estimated with consid
erably less computational burden than those of probit-form 
models . Logit-form estimation programs are widely available. 
The package used in the route choice study is ALOGIT (19). 

Two types of independent variables are considered for 
inclusion in the utility functions: (a) "level-of-service" attri
butes for each route including, for example, measures of travel 
time, distance, and travel cost; and (b) dummy variables that 
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take a value of either 1 or 0 depending on whether an alter
native meets certain conditions. In this analysis, dummy var
iables are used to indicate whether the route corresponds 
exactly to one or more of the labels considered. 

Although these variables are objective measures of the routes 
themselves, different drivers perceive these attributes differ
ently. The most common bases for these differences in per
ception may be the characteristics of the drivers themselves 
(e.g., age or profession) and characteristics of the trip being 
made (e.g., its purpose and the frequency with which it is 
made). An attempt is made to capture these differences in 
perceptions through estimation of models for various seg
ments in the population and examination of the variance in 
the respective model parameter estimates. 

Traffic Assignment 

The methods outlined in the preceding sections can be applied 
by an adaptation of a "multiclass-user" (MCU) procedure. 
In a standard MCU method, classes are defined a priori as 
using paths that are minimal with respect to a class-specific 
impedance function. In the models described in this paper, 
the assignment procedures define the classes as users of each 
of the labeled routes. Because the usage of these routes is 
not known a priori and is dependent on the features of the 
routes, additional steps have to be introduced into the assign
ment procedure to apply the model. The procedure advocated 
is outlined in Figure 1. 

An important feature of the procedure outlined is the inte
gration of the new choice modeling approach developed in 
this study with the "capacity-restraint" methods that have 
been the subject of many previous studies. This integration 
means that previously developed algorithms, techniques, and 
so on, can be retained and current methods can be seen as 
independent improvement that loses none of the previous 
gains. 

For each O-D pair 

1. Find Lebel use ll'l.llti·cless-user software 
Paths 

2. Find Different eliminate overlaps of the labels 
Label Paths 

3. Skim Path s<in characteristics of links on 
Attributes paths 

4. Apportion Flow (see Figure 2) 
to Paths 

5. Assign to use ll'l.llti-class-user algorithm 
Network 

6. Capacity use classical method as appropriate 
Restraint 

7. Iterate as appropriate 

FIGURE 1 Assignment procedure (overview). 
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The procedure involves six steps for each origin-destination 
pair for which a positive traffic flow is predicted . 

Note that the first, third, fifth, and sixth steps, which are 
the most demanding in terms of computer processing, are 
standard MCU assignment steps and are already provided in 
standard packages. The second step is a simple programming 
task. 

The fourth step in the process shown in Figure 1 is novel 
and is illustrated in greater detail in Figure 2. For each origin
destination pair, an apportionment is made by the model to 
each of the labels. 

Figure 2 provides for a matrix of size (labels * segments) 
to be calculated for each origin-destination pair. It may be 
helpful to note that this procedure would be equivalent to a 
simple MCU procedure if labels and segments were identified , 
that is, if the matrix was simply 1.0 on the diagonal and zero 
elsewhere. The computation necessary to calculate and apply 
the matrix is not excessive. 

In summary, an assignment procedure is proposed that 
requires comparatively minor extensions to existing software . 
Execution of this procedure requires little more computer 
time than a standard MCU method. The procedure is orga
nized as a generalization of existing capacity restraint pro
cedures, thus offering an advance without eliminating the 
possibilities resulting from previous studies. 

MODELING RESULTS 

This section summarizes the major quantitative findings from 
this project. The first subsection discusses results from the 
choice set generation using the labeling approach described 
above. The following subsections report and evaluate the final 
choice models that consider sets of six or fewer route alter
natives . 

Label Set Coverage of Observed Chosen Routes 

With the primary objective of development of an assignment 
tool that can be applied in all three areas studied in this 
project, the parameters of the full set of nine labels are devel
oped by maximizing matches of the chosen routes in all three 
study areas . More manageable six-label and four-label sets 
were developed for use in the choice modeling stage of the 
analysis. The labels included in these reduced sets were selected 
in part on the basis of the expected availability of the link 
attribute data required for generation of the label. 

A computer network analysis package, SATURN (20), was 
used to build the labels between all chosen origin-destination 
pairs in the three study area networks. A separate computer 
program was written to compare each observed chosen route 
with the set of corresponding labeled routes and to summarize 
the match results. The label parameters developed in the first 
phase of this project (see Table 1) were used as initial values. 
Parameters were adjusted one by one, keeping the others 
fixed, in the direction that increased the number of matches 
to chosen routes. 

Table 2 shows the match results for the initial full-label set 
and the six-label set using both initial and final label coeffi
cient values . Each row in the main body of the table refers 
to one label and reports the coefficient value(s) and the set 
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For a given 0-D pair 

Volumes: N, N2 Ni NS 
Seg.l Seg.2 . . . Seg.i ... Seg.s Flow on paths: 

Path 1 P11 P21 P;1 Ps1 v, Ls i=1 Ni-pi1 

Path 2 P12 P22 P;2 Ps2 V2 Ls i=1 N; ·pi2 

Path j P11 P2j p_ii Psi ~j Ls i=1 N;·~;j 

Path r P1r P2r P;r Psr vr L\=1 N; ·pir 

Where: is the number of vehicles for this 0-D for segment i 
(input data); 

piJ is the probability of choosing path j for segment i 
(derived from model and path attributes); 

is the predicted volume for path j for this 0-D 
(output to assignment stage). 

FIGURE 2 Path apportionment. 

of match scores for that single label in the various study areas
U trecht-Amersfoort (full-label set only), Atnhem-Apel
doorn, and Amsterdam-Purmerend. Three types of match 
scores are reported for each label in the table : 

1. Absolute matches: the total number of chosen paths 
matched by this individual label for corresponding origin
destination pairs. 

2. Incremental matches: the percentage of chosen routes 
not matched by previous labels but matched by this label for 
corresponding origin-destination pairs. 

3. Marginal matches: the percentage of chosen routes 
matched by this label and not matched by any other label in 
the table. 

It is clear from Table 2 that a significant gain in coverage 
of the observed route choices can be realized by including 
additional criteria besides "minimize time." A comparison of 
the coverage in percentage terms of the time label alone versus 
the final six-label and full-label sets yields the results for the 
three study areas shown in Table 3, in which a four-label 
set-comprising time, distance, signals, and hierarchy labels
is also presented. Table 3 also shows the decreasing "rate of 
return" from increasing the size of the label set. Note that 
the apparent lower coverage of the full-label set relative to 
the six-label set for the Amsterdam-Purmerend area is explained 
by the use of the initial , nonoptimal set of coefficient values. 

A sensitivity analysis of the label coefficients near their 
initial values showed that the matching rates generally remained 
stable. Nevertheless, some gains were made possible for the 
Arnhem-Apeldoorn and Amsterdam-Purmerend >tudy areas 
by adjusting the parameters for the "minimize signals" and 

"maximize capacity" labels. These adjustments are reflected 
for the six-label set in Tables 2 and 3 and account for the 
apparent decrease in coverage shown for Amsterdam-Pur
merend in the latter table when progressing from the six- to 
the nine-label set. The match score results in Table 2 as well 
as data availability considerations were used to decide which 
labels were to be eliminated to form the reduced sets. 

The analysis found that many aspects of the labeling meth
odology were transferable between the three areas studied. 
The values of the label parameters, when optimized on chosen 
routes for the three study areas, also agreed very closely for 
most of the labels, as can be seen from Table 1. 

Choice Modeling Results 

Extensive discrete choice modeling was conducted on sets of 
six and fewer labels. Most of the modeling was done on the 
combined set of chosen route data from the Arnhem-Apel
doorn and Amsterdam-Purmerend study areas. Alternative 
specifications tested the explanatory power of various com
binations of level-of-service variables as well as various forms 
for the constants in the utility functions of the alternatives. 

A number of model runs explored the effects of applying 
separate models for various subgroups in the population. 
Information from the survey responses was used to assign 
individual drivers to categories of trip length, trip frequency, 
and trip purpose . A surprising result from the choice modeling 
analysis was the relatively significant effect of geographical 
area that could not be explained in terms of differences in 
trip purpose, length, or frequency profile for the st11cly areas. 

Tables 4 and 5 show, respectively, the six-label and four-



TABLE 2 NUMBERS OF CHOSEN ROUTES MATCHED BY SIX AND NINE LABELS 

Label /J Coef. -------------------------------- Match Scores -------------------------------------

Value(s) Utrecht-Amersfoort Arnhem-Apeldoorn 

Absolute Incremental Absolute Incremental Marginal 

" " " 
Labels not r!19uiring ~ ~rameters 

Time 1505 69.9 1659 56.1 0.3 

Distance 462 1.6 1905 13.6 12.1 

Labels r!19uiring ~ earameters : i ni t i a l val ues 

Scenic 2.0 770 5.7 1288 1.3 1. 1 

Signals 30 sec. 851 2.7 1639 o. 1 0.1 

Capacity 1.5 1058 2.5 1497 0.3 0.3 

Hierarchy 5.0, 100 712 3.3 1299 0.5 0.5 

Total 6 labels 1846 85.8 2179 72.0 

Labels not included in models 

Quality 2.0 1677 0.4 1435 1.6 1.6 

Coomercial 1.5 1506 0 1664 er. 1 0. 1 

Expressway 3.0 501 0. 1 1499 o.o 0.0 

Total 9 labels 1857 86.3 2179 73.7 

Labels regui r ing a earameters : f ina l va lues 

Scenic 2.0 1288 1.3 1. 1 

Signals 5 min. 1639 0.3 0.3 

Capacity 2.0 1497 1.8 1.8 

Hierarchy 5. 0, 100 1299 0.5 0.5 

Total 6 labels 2179 73.6 

TABLE 3 COMPARISON OF LABEL SET COVERAGE 

Study Area 

U trecht-Amersfoort 
Arnhem-Apeldoorn 
Amsterdam-Purmerend 

Time Only(%) 

69.9 
56.1 
67.4 

Four Labels" (% ) 

NIN 
70.7 
77.6 

"Time, distance, signals, and hierarchy labels make up this set. 

Six Labels ( % ) 

85.8 
73.6 
81.2 

Amsterdam-Purmerend 

Absolute Incremental Marginal 

" 

1236 67.4 

357 0.5 

115 0.3 

1233 o. 1 

1170 3.1 

1246 6. 1 

1436 77.5 

1237 0 

887 0.8 

1197 0 

1436 78.3 

115 0.3 

1233 4.5 

1170 3.4 

1246 5. 1 

1436 81.2 

Full-Label Seth (%) 

86.3 
73 .7 
78 .3 

" 

1.4 

0.5 

0.2 

0 

0.4 

6. 1 

0 

0.8 

0 

0.2 

3.4 

0.8 

5. 1 

bJnitial, not optimal, label coefficient values were applied for Arnhem·Apeldoorn and Amsterdam-Purmerend corridors. 
<N/A = not applicable. 
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TABLE 4 ESTIMATION RESULTS FOR REFERENCE SIX-LABEL MODEL 

Variable Coef. Standard T-Ratio 

Estimate Error 

Estimated with separate label-specific dummies by area 

Total travel time (minutes) -0.0979 0.053 -1. 8 

Total distance (kilometers) -0.895 0.099 -9.1 

Scenic time (minutes) 0.0767 0.025 3.1 

Number of traffic signals -0.138 0.041 -3.4 

Expressway distance (km) 0.108 0.022 4.8 

High road quality distance (km) 0.365 0.075 4.9 

Low road hierarchy time (min) -o. 0877 0.017 -5.3 

overall label-specific dummy variables 

Minimum time route 0.119 0.064 1. 9 

Minimum distance route 0.881 0.083 10.7 

Maximum scenic route -0.0527 0.088 -0.6 

Minimum signals route 0.722 0.081 8.9 

Maximum capacity route 0.571 0.077 7.4 

Hierarchical travel route 0.888 0.076 11. 7 

First Run Second Run 

Total number of observations: 3052 3052 

Likelihood with zero coeffs.: -3459.6 -3459.6 

Final Likelihood: -1038.7 -1363.4' 

p 2 (o): 0.700 0.606 

label models resulting from this analysis. These models include 
seven generic level-of-service variables, and Tables 4 and 5 
show the coefficient estimates for all variables included in the 
alternative utility functions. The label-specific dummy vari
ables take a value of 1 if the indicated label is matched by 
the route alternative in question and 0 otherwise. 

Initial models with generic level-of-service variables and 
label-specific dummies applicable across study areas failed to 
yield significant, correctly signed level-of-service coefficients 
(e.g., total travel time). Thus a two-step estimation process 
was used to develop the models presented in Tables 4 and 5. 
First, a model specification with separate sets of label-specific 
dummies for each area was estimated, producing significant 

level-of-service coefficient values of correct sign and relative 
magnitude. Because this model cannot be applied generally 
with respect to geographic area, a second estimation is required, 
yielding values for a single set of label-specific dummies while 
constraining the level-of-service coefficients to the values 
obtained in the previous estimation. 

Evaluation of Choice Models 

The choice models of Tables 4 and 5 can be compared in 
several terms, including data requirements, chosen route cov
erage, goodness of fit, and values of model coefficients. 
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TABLE 5 ESTIMATION RES UL TS FOR REFERENCE FOUR-LABEL MODEL 

Variable Coef. Standard T-Ratio 

Estimate Error 

Estimated with separate label-specific dummies by area 

Total travel time (minutes) -0.198 0.061 -3.3 

Total distance (kilometers) -0.577 0.101 -5.7 

Scenic time (minutes) 0.145 0.031 4.7 

Number of traffic signals -0.0849 0.052 -1. 6 

Expressway distance (km) 0.0936 0.031 3.0 

High road quality distance (km) 0.206 0.072 2.8 

Low road hierarchy time (min) -0.0824 0.018 -4.4 

overall label-specific dummy variables 

Minimum time route 

Minimum distance route 

Minimum signals route 

Hierarchical travel route 

Total number of observations: 

Likelihood with zero coeffs.: 

Final Likelihood: 

In terms of data requirements , both models require infor
mation for the seven level-of-service attributes for all alter
native routes. The only additional difference between the six
Iabel and the four-label models is that the former requires 
the road capacity data necessary to generate the capacity label. 
In this analysis, capacity was calculated on the basis of num
bers of lanes and road width. The four-label model requires 
somewhat less computation to run because only four labels 
must be generated for all relevant origin-destination pairs as 
opposed to six for the other model. 

Considering chosen route coverage, the six-label model was 
based on approximately 3 percent more (3,667 versus 3,563) 
chosen route observations than the four-label model. This is 
because the inclusion of two extra labels in the model spec
ification allowed the analysis of the behavior of an additional 
sample of drivers to take place-namely, those 104 drivers 
who were observed to choose a "maximum scenic" or "max-

0.060 7.4 

1. 64 0.115 14.2 

1.10 0.093 11. 8 

1. 47 0.098 15.0 

First Run Sec ond Ru 11 

2635 2635 

-2434.5 -2434.5 

-726.5 -1087.8 

0.702 0.553 

imum capacity" route that did not overlap the other four 
labeled routes . 

The likelihood and p2-statistics of each model indicate how 
well the implied predictions for models about route choice fit 
the observations for the available sample of drivers. Strictly 
speaking, the p2-values for these two models are not com
parable because they were not estimated on the same set of 
observations. Nevertheless, keeping these reservations in mind, 
the p2-statistic of the six-label model apparently indicates 
somewhat better fit to the data for the two study areas
Arnhem-Apeldoorn and Amsterdam-Purmerend. 

The coefficient estimates of the level-of-service variables 
for both models all have the intuitively correct sign. For exam
ple, one would expect increasing travel time to lead to decreasing 
attractiveness of the alternative, and indeed the travel time 
coefficient has a negative sign. Similarly, road quality, scenic 
time, and distance on expressways are all hypothesized as 
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positive qualities of a route , and these variables have positive 
signs. Another measure that may be used to appraise the 
reasonableness of a model is its implied "value of time ," which 
is calculated here by determining the ratio between the time 
and distance coefficients and factoring in an assumed oper
ating cost per unit distance. 

Assuming a marginal cost of driving of $0.15 per mile (gas
oline costs about $2.90 per U.S. gallon in the Netherlands at 
current exchange rates) , the implied vaiues of time for a major 
nonexpress road that is neither scenic nor of high quality are 
$0.61 per hour and $1.92 per hour for the six- and four-label 
models, respectively. For a minor road that is neither scenic 
nor of high quality , the respective values are $1.16 per hour 
and $2.72 per hour. Although all these estimates appear to 
be on the low side, the values of the four-label models agree 
more closely with other sources of value-of-time estimates. 

In conclusion, the differences between the two final models 
are not very great. The six-label model (Table 4) is based on 
more observations and shows better fit to the observed data, 
whereas the four-label model requires fewer data to operate 
and has a more reasonable implied value of time. If a choice 
were to be made between application of one model or the 
other, the six-label model would be recommended unless 
capacity data were difficult to come by or the value of time 
were perceived as too low based on other studies. 

In practice, several of the variables used in these models 
are not likely to be available for the networks to which the 
models are to be applied. For these circumstances , reduced 
models were developed in which the requirements for data 
were substantially reduced or omitted, for example, scenery, 
road quality, and traffic signals . These models are based on 
four or even three labels. The loss of explanatory power of 
these reduced models compared with the models of Tables 4 
and 5 is the inevitable consequence of the omission of the 
relevant variables . Fortunately, some variables other than 
time and distance , such as hierarchical level , speed limit , and 
capacity, are generally available in the Netherlands. 

Other Results 

Apart from the variables incorporated in the models pre
sented in Tables 4 and 5, several other variables were con
sidered for inclusion in the models . Some of these could be 
eliminated because of their excessively high correlation with 
variables already included in the models, others because they 
were not found to significantly influence route choice. In par
ticular, income-dependent effects were carefully tested, but 
no significant influences could be found. 

Further tests were made of differences in behavior among 
drivers traveling for various purposes, making trips of varying 
lengths, or traveling with various frequencies. Although some 
differences of these types were found, they were much smaller 
than the differences with respect to geographical area. 

In general, despite the differences between areas just men
tioned, a substantial degree of transferability was found among 
the three areas for which data were available. As noted above, 
the labeling procedure was transferable without problems; the 
choice models lost explanatory power in the transfer but still 
gave useful and reliable results . 

Structural tests were also made on the models estimated. 
Again some evidence was obtained of failure of the inde-
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pendence assumption on which the legit model is based, but 
this was not sufficiently serious to cause the structure to be 
abandoned. Moreover , there was no simple way in which the 
structural divergence could be approximated. 

CONCLUSIONS AND RECOMMENDATIONS 

A method has been developed for describing the generai route 
choice behaviors of car drivers. The method is based on the 
" labeling" of alternative routes that provide realistic possi
bilities for each driver's journey. A probability model then 
represents the choice among these route alternatives. 

The method is based on a fundamental reassessment of the 
choice processes that lead to the selection of routes and the 
analysis of the choices actually made by nearly 7,000 drivers 
observed in three corridors in the Netherlands. 

Several road characteristics other than time and distance 
are found to be important in influencing route choice. Of 
particular relevance to policy is the finding that characteristics 
associated with major roads (restricted access, high speed 
limit, high capacity, hierarchical status) are strongly positive 
in influencing route choice. Scenery (positive) and traffic lights 
(negative) are also found to be relevant. 

Even under uncongested circumstances, several routes are 
used for a given journey. The models estimated identify these 
routes and predict the proportion of vehicles that will use them. 
The fact that these predictions are based on models formu
lated by observing behavior rather than on an arbitrary basis 
as in some algorithms in current use gives much more con
fidence in their use. 

Application procedures have been developed for the models. 
These procedures take into account the existing sophisticated 
methods for the treatment of capacity constraint. The appli
cation of the route choice models would add little to the 
computer time needed to make an assignment and would 
require little additional software. 

Reduced models have been developed to be applied in 
circumstances of reduced data availability. 

Further development of route choice analysis is required 
to account for two important aspects: 

1. The information available to the driver is not currently 
modeled. Apart from fixed sign posting, interest in formu
lating policy on the dynamic provision of information is grow
ing, and it is important to know the extent to which drivers 
might be influenced by methods of providing it. 

2. Cost is incorporated into the models only weakly , through 
the distance variables. The policy under consideration includes 
"road pricing," whereby drivers would pay much more directly 
for the use of roads ; the influence of such measures on route 
choice, however, needs to be investigated. 

A third aspect that might be considered is the apparent safety 
of one route compared with another and how that affects route 
choice. 
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