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Convergence Properties of Some 
Iterative Traffic Assignment 
Algorithms 

ALAN J. HOROWITZ 

This paper examines the convergence properties of four pop
ular traffic assignment algorithms: Frank-Wolfe decomposi
tion for fixed-demand equilibrium assignment, an ad hoc vari
ation of the Evans algorithm for elastic-demand equilibrium 
assignment, fixed-demand incremental assignment, and elas
tic-demand incremental assignment. The algorithms were eval
uated according to errors associated with insufficient itera
tions, arbitrary selection of starting point, inexact theory, and 
small variations in data. Each of the four algorithms reached 
its intended solution, but did so very slowly. Elastic-demand 
incremental assignment emerged as the preferred technique, 
principally because of its more accurate response to small vari
ations in data and its adaptability to various models of travel 
demand. 

The most popular traffic assignment algorithms may be thought 
of as logical extensions to traditional iterative capacity restraint. 
That is, the algorithms consist of a series of all-or-nothing 
assignments interspersed with computations to improve esti
mates of link impedances and, perhaps, link volume. Some 
of these algorithms, such as the Frank-Wolfe decomposition 
method for fixed-demand assignment (1) or Evans's method 
for elastic-demand assignment (2), have a strong theoretical 
basis. Other algorithms are ad hoc. In spite of the large body 
of theoretical work on traffic assignment, transportation plan
ners have had little guidance about the algorithm that yields 
the best performance within the usual limits on resources. In 
addition, there is little accurate information on how to employ 
an algorithm most effectively once a choice has been made. 
Many common rules-of-thumb are seriously misleading. 

REVIEW OF THE ALGORITHMS 

The purpose of this paper is to reevaluate a few existing 
algorithms rather than to break new theoretical ground. The 
following are brief descriptions of the algorithms considered: 

• Iterative capacity restraint: Iterative capacity restraint is 
still popular, despite its terrible convergence characteristics. 
This algorithm is included in this comparison because it has 
aptly served as a "straw man" in studies by other researchers. 

• Equilibrium: This fixed-demand, equilibrium assignment 
technique, available in most major planning packages, is an 
implementation of Frank-Wolfe decomposition . 

• Modified Evans: Modified Evans is an ad hoc variation 
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of the Frank-Wolfe decomposition algorithm that recalculates 
demand at each iteration. It resembles the Evans algorithm 
in both purpose and performance. 

• Fixed-demand incremental: Incremental traffic assign
ment loads a fraction of the trip table at each iteration using 
all-or-nothing assignment. This technique can be imple
mented as a slight variation of equilibrium assignment. 

• Elastic-demand incremental: At each iteration, the trip 
table is recalculated and a portion of it is loaded to the net
work. This algorithm can be implemented as a slight variation 
of the modified Evans algorithm. 

Occasional reference will be made to Evans's precise algo
rithm for elastic-demand equilibrium assignment. Although 
the Evans algorithm is not explicitly evaluated , it is possible 
to determine the extent to which the other algorithms differ 
from the results of a true elastic-demand equilibrium assign
ment-the intended product of the Evans algorithm. The 
Evans algorithm was dropped from consideration because of 
its comparatively large computational requirements on mul
tipurpose networks. 

The algorithms were tested on two networks. The first was 
the five-zone UTOWN network, developed for testing the 
equilibrium assignment in the Urban Transportation Planning 
System (UTPS). The second was the a.m. peak-hour network 
for East Brunswick, N.J. The East Brunswick network con
tained 129 zones, and it gives a good indication of how algo
rithms would perform in actual practice . Both networks had 
five trip purposes. The tests were performed with an exper
imental version of QRS II running on a Zenith Z-248 (IBM 
PC-AT compatible). 

Convergence Error 

Generally, assignment error is the difference between assigned 
and actual volumes. Unfortunately, we can never measure 
actual volume with sufficient accuracy to use it as a criterion 
in evaluating the differences between assignment algorithms 
because the results are far too similar. 

Total error is quite large. Various studies have shown (3, 
4) that root mean square (RMS) errors can regularly exceed 
50 percent. Established guidelines for error (5) take into con
sideration the better performance on high-volume links, but 
a 20 percent error is still considered acceptable. 

Convergence error, a component of total error, can be 
measured by comparing the results of two assignments, assum
ing that one of the assignments is essentially perfect. For 
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example, a network can be run through a huge number of 
iterations of equilibrium assignment to obtain a nearly perfect 
solution to the fixed-demand problem. This solution becomes 
a standard for comparison. Because the primary purpose of 
an assignment algorithm is to forecast volumes on links, it 
makes sense to measure convergence error as the RMS dif
ference in volume between the test algorithm and the standard 
algorithm. The RMS difference is analogous to standard error 
and is in units of vehicles, so it is easily interpreted. 

Other researchers have attempted to measure convergence 
error by monitoring the objective function of the equilibrium 
assignment algorithm: 

U = L (v; t;(v) dv 
all Jo 

links 

(1) 

where t; (v) is the functional relationship between travel time 
and volume on link i, and V; is the assigned volume. Since 
the equilibrium solution is achieved when U is minimized, an 
experienced individual can roughly judge the progress of an 
algorithm by comparing U at successive iterations. However, 
this objective function is deceptive. Surprisingly large changes 
in volume can be associated with very small changes in U. It 
is known (at least for the fixed-demand problem) that smaller 
values of U are better, but it is difficult to determine how 
much better or how fast the solution is improving. 

A related criticism applies to monitoring the RMS change 
in volume between successive iterations [see paper by Sheffi 
and Powell (6) for an example]. The algorithms, as a group, 
converge slowly. It is not possible to determine the ultimate 
amount of change in volume by the change from a single 
iteration. 

A given level of convergence error can be either important 
or unimportant, depending on the purpose of the forecast. 
To understand the role of convergence error in forecast valid
ity, it is first necessary to list various forms it can take. 

1. Insufficient iterations: Solutions generally improve at 
each new iteration. There can be significant convergence error 
associated with terminating an algorithm prematurely. 

2. Resolution: An algorithm should be able to reach the 
same solution to a given problem each time that it is run. 
Since an algorithm is trying to replicate real-world processes, 
we would also expect it to produce similar solutions to similar 
problems. If it cannot do this, the algorithm is flawed. 

3. Starting point: An algorithm should arrive at the same 
solution regardless of how it is started. Practically speaking, 
the solutions produced by all algorithms are affected by the 
choice of starting point. Insensitivity of an algorithm to its 
starting point is an important characteristic. 

4. Ad hoc algorithm: An ad hoc algorithm could fail to 
converge or it could converge to a solution that is inconsistent 
with assignment theory. The justifications for choosing an ad 
hoc algorithm are potentially less error due to insufficient 
iterations and potentially better resolution . 

It is important to keep these errors in perspective. Assign
ment algorithms are highly imperfect models of travel behav
ior. Much more significant errors stem from our poor under
standing of route choice behavior, limited knowledge of 
impedance functions, problems in collecting demographic and 
network data, and our inability to show the network as it 
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actually exists. Imperfections in theory and data are much 
more serious than imperfections in algorithms to implement 
the theory. 

Test Conditions 

To the best of their ability , tests were representative of plan
ning practice. Neither the UTOWN nor East Brunswick net
work was modified in any way. With the exceptions of the 
assignment algorithm and the number of iterations of the trip 
distribution model, all parameters were set to the defaults for 
ORS IL 

A doubly constrained entropy-maximizing model was used 
for trip distribution. For the UTOWN network, the attraction
end constraints were satisfied by 10 iterations of the trip dis
tribution model. Trip distribution on the East Brunswick net
work was iterated only three times. 

A Fibonacci search was used to find the averaging weights 
for the equilibrium and modified Evans algorithms, which 
minimize U. The Fibonacci search was permitted to run for 
21 iterations, assuring four significant digits in the weights. 

Only links that would normally carry traffic were compared 
for error. Centroid connectors and other artificial network 
elements were ignored. Also ignored were links that received 
no volume in any of the assignments. 

Relationship Between Equilibrium and Incremental 
Assignments 

Each iteration of equilibrium assignment consists of (a) an 
all-or-nothing assignment, (b) an averaging of volumes, and 
(c) a recalculation of link travel times given the averaged 
volumes. The averaging step consists of finding a weighted 
average between the all-or-nothing assignment and the results 
of the previous iteration such that U is minimized. Each iter
ation has a different weight, and it is impossible to know ahead 
of time what those weights will be . 

It is easy to give the algorithm a predetermined series of 
weights. Although it will not necessarily converge to the equi
librium solution, the algorithm runs faster, behaves more pre
dictably, and is easier to explain to those outside the field. 
One particular sequence of weights yields an incremental 
assignment: 

w = 1/(i + 1) (2) 

where Wis the weight given to the all-or-nothing assignment 
that is calculated at iteration i. Regardless of the number of 
iterations, each all-or-nothing assignment (including the one 
from the 0th iteration that starts the algorithm) is weighted 
equally in the final average. Running the equilibrium algo
rithm with this particular fixed series of weights is a form of 
incremental assignment, in which the link travel times for the 
next increment are calculated from extrapolations of the par
tial volumes that have already been assigned (7). 

Incremental assignment, as described in this paper, is a case 
of the method of successive averages (MSA) (6, 8) . As a group, 
algorithms based on MSA are not as precise as purer optimi
zation methods but have a greater range of applicability. 

The close relationship between equilibrium and incremental 
assignment suggests that their solutions would be similar. It 
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TABLE 1 COMPARISON OF ITERATIVE CAPACITY RESTRAINT 
WITH MODIFIED EV ANS ALGORITHM (UTOWN NETWORK) 

Iteration 
% RMS Difference 
in Link Volumes 

% of Optimal 
Objective Function 

0 
1 
2 
3 
4 
5 

10 
20 

84 
156 
134 
104 
133 
119 
135 
144 

413 
407 
559 

1110 
540 
631 
561 
777 

Modified Evans' algorithm was run for 200 
iterations. 

is expected that equilibrium assignment would converge faster 
when measured by iterations, but equilibrium assignment might 
well be slower when measured by total computer time. 

Straw Man: Iterative Capacity Restraint 

It is important to understand that an ad hoc algorithm can be 
either good or bad, depending on its design. A popular ad 
hoc algorithm is iterative capacity restraint. As implemented 
in QRS II, each iteration consists of (a) calculation of a trip 
table with travel times from the previous iteration, (b) an all
or-nothing assignment, and (c) a recalculation of link travel 
times. Thus, the algorithm can be considered "elastic demand"; 
it attempts to find a trip table that is consistent with link loads. 
Travel times are recalculated with the Bureau of Public Roads 
(BPR) speed-volume function. To provide some stability to 
the algorithm, link travel times were damped. That is, link 
travel times were taken as a weighted average of the results 
of the BPR function (25 percent) and the link travel times 
from the previous iteration (75 percent). 

The UTOWN network was run for the 7:00 to 8:00 a.m. 
peak hour through 20 iterations of iterative capacity restraint. 
These results were compared with those of the modified Evans 
algorithm. The modified Evans algorithm is also ad hoc, but 
(as will be seen later) converges nicely . The comparison vol
umes were taken from the 200th iteration . 

As expected, Table 1 shows that iterative capacity restraint 
performs poorly. Link volumes oscillate wildly. RMS error 
never becomes better than 84 percent; the value of the Frank
Wolfe objective function, U, never falls below its starting 
value. 

The weaknesses of iterative capacity restraint are well doc
umented, so these results are not totally unexpected. The 
especially poor performance seen in Table 1 illustrates that 
the UTOWN network can be hostile to ad hoc algorithms. 

Ad Hoc Error of the Modified Evans Algorithm 

Evans's algorithm correctly solves an elastic-demand assign
ment problem. It produces a solution consisting of (a) link 
volumes that are consistent with both link travel times and 
the trip table and (b) a trip table that is consistent with path 

travel times. In practice, the Evans algorithm looks like a 
variation of equilibrium assignment. Each iteration consists 
of computation of a trip table, an all-or-nothing assignment, 
an averaging step, and a recalculation of link travel time from 
the averaged volumes. The major obstacle to implementation 
of Evans's algorithm is the objective function of its averaging 
step. It requires far more computation and memory than reg
ular equilibrium assignment, especially on large, multipurpose 
networks. 

The elastic-demand equilibrium algorithm in QRS II replaces 
Evans's objective function with Equation 1. Consequently, 
QRS II is ensured of converging to a slightly wrong solution. 
It is possible to estimate the size of the error by the following 
procedure. 

1. Run the modified Evans algorithm through enough iter
atio~s that link volumes are no longer changing. The selected 
nunrt>er of iterations for the UTOWN network was 1,000. 
The assignment for the East Brunswick network was termi
nated at 100 iterations. 

2. Save the trip table at the final iteration. 
3. Run a fixed-demand equilibrium assignment for the same 

large number of iterations on this same network using the 
saved trip table. 

4. Compare the volumes from the two assignments. 

To control computation errors in the trip table, the trip 
distribution model was iterated 20 times (for each assignment 
iteration) on the UTOWN network and 10 times (for each 
assignment iteration) on the East Brunswick network. 

The comparison is not a tautology. The modified Evans 
algorithm does not converge to the exact solution because the 
averaging weights disregard information about trip distribu
tion. As the algorithm progresses, an inconsistency develops 
between the averaged volumes and the trip table, which is 
recomputed at each iteration. If this inconsistency is small, 
then final path travel times and, thus, the final iteration trip 
table are at the equilibrium solution. However, the final assigned 
volumes partially come from trip tables that were not at the 
equilibrium solution. The inconsistency can be measured by 
locking the trip table at its known equilibrium solution and 
running an exact, fixed-demand equilibrium assignment. 

With UTOWN the link volumes differed (RMS) by 1.1 
percent. With East Brunswick, the link volumes differed by 
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TABLE 2 PERCENT RMS ERROR FROM INSUFFICIENT !TERA TIONS 
(UTOWN NETWORK) 

Modified Fixed-Demand Elastic-Demand 
Iteration Evans' Equilibrium Incremental Incremental 

1 64.4 46.8 70.4 84.9 
2 55.3 35.6 48.0 53.6 
3 34.2 32.5 39.7 41. 3 
4 28.1 24.9 29.5 34.3 
5 25.1 21. 8 25.2 27.6 

10 15.9 14.8 15.6 18.7 
20 9.1 9.3 10.7 11. 3 
50 3.7 4.0 4.5 4.3 

100 1. 4 1. 3 2.0 1. 5 

TABLE 3 EQUILIBRIUM OBJECTIVE FUNCTION BY ITERATION (UTOWN NETWORK) 

Modified Fixed-Demand Elastic-Demand 
Iteration Evans' Equilibrium Incremental Incremental 

1 21. 533 14.466 178.018 208.939 
2 13.398 11. 291 32.121 36.710 
3 11.188 10.553 15.356 16.801 
4 10.679 10.147 11. 732 12.947 
5 10.484 9.985 10.652 11. 226 

10 9.940 9.745 9.817 9.965 
20 9.708 9.616 9.632 9. 710 
50 9.578 9.525 9.505 9.563 

100 9.546 9.485 9.466 9.535 
200 9.532 9.464 9.447 9.525 

Units are 100,000 vehicle-minutes. Fixed-demand trip 
tables were taken from the 20th 

0.4 percent. Some of this error may be due to rounding. The 
small differences in assigned volumes indicate that the ad hoc 
error of the modified Evans algorithm, when used with a 
doubly constrained trip distribution model, is unimportant. 

These comparisons were repeated using elastic-demand 
incremental assignment. For the UTOWN network the RMS 
difference in link volumes was 0.8 percent. When the East 
Brunswick network was subjected to the same comparison, 
the RMS difference in link volumes was 0. 7 percent. The ad 
hoc error of elastic-demand incremental assignment is similar 
to that of the modified Evans algorithm. 

Convergence Rates of Iterative Algorithms 

An important attribute of an algorithm is its speed of con
vergence-often measured as the number of iterations nec
essary to reach a convergence criterion. Convergence speed 
was tested on four algorithms: equilibrium, modified Evans, 
fixed-demand incremental, and elastic-demand incremental. 
The first tests concerned performance on the UTOWN net
work. The volumes from various iterations of each algorithm 
were compared with volumes from 200 iterations of the same 
algorithm. The RMS differences are summarized in Table 2. 

The convergence rates of all the algorithms were remark
ably slow. Regardless of the algorithm, it took approximately 
20 iterations before the convergence error fell below 10 per
cent. A convergence error of less than 5 percent required 

iteration of modified Evans'. 

nearly 50 iterations. Interestingly, the variable-weight algo
rithms (equilibrium or modified Evans) did not significantly 
outperform either incremental assignment algorithm. Some 
of the slow convergence can be attributed to the hostility of 
the UTOWN network. 

Table 3 gives the values of the equilibrium objective func
tion, U, at each iteration. Note that fixed-demand and elastic
demand assignments approach slightly different values of the 
objective function, as expected. Table 3 illustrates the decep
tive nature of the objective function. By the fifth iteration, 
U is changing only by about 1 percent per iteration, but the 
link volumes are nowhere near their equilibrium values. 

The incremental algorithms did surprisingly well; after 20 
iterations their objective functions were lower than their vari
able-weight counterparts (equilibrium and modified Evans). 
Furthermore, the incremental assignments required consid
erably less time to reach the same number of iterations. For 
example, 10 iterations of the modified Evans algorithm took 
406 sec of elapsed time; 10 iterations of elastic-demand incre
mental assignment took just 225 sec. 

Similar tests were performed on the East Brunswick net
work. The comparison assignments were obtained from the 
50th iteration of each algorithm. These results are shown in 
Table 4. Convergence rates, as measured by percent RMS 
difference in link volumes, were twice as fast as with the 
UTOWN network. Nonetheless, it took approximately 10 
iterations to achieve a 10 percent error. Usually a 10 percent 
computational error is considered unacceptable. 
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TABLE 4 PERCENT RMS ERROR FROM INSUFFICIENT ITERATIONS (EAST 
BRUNSWICK NETWORK) 

Modified 
Iteration Evans' Equilibrium 

1 34.8 36.3 
2 22.9 23.2 
3 16.6 17.4 
4 15.7 15.4 
5 13.1 11. 9 

10 8.7 7.6 

TABLE 5 EQUILIBRIUM OBJECTIVE FUNCTION BY 
ITERATION FOR FIXED-DEMAND ASSIGNMENTS (EAST 
BRUNSWICK NETWORK) 

Iteration 

1 
2 
3 
4 
5 

10 
50 

Equilibrium 

2.373 
2.448 
2.359 
2.286 
2.247 
2.161 
2.057 

Fixed-Demand 
Incremental 

3. 013 
2.496 
2.465 
2.325 
2.282 
2.178 
2.078 

Unit s are 100,000 vehicle-minutes. 

This research did not evaluate methods of accelerating equi
librium assignment (9) , so these tests may somewhat under
state its potential. Similar acceleration techniques would also 
apply to the original Evans algorithm; however, one would 
guess that the amount of acceleration is insufficient to over
come the algorithm's large computational requirements on 
meaningfully complex networks. 

Ad Hoc Error of Incremental Assignment 

The previous results show that the two incremental algorithms 
run at about the same rate (measured by iterations) as equi
librium assignment. As a further comparison, the East Bruns
wick network was run with fixed-demand incremental assign
ment for a total of 50 iterations. These results were compared 
with 50 iterations of equilibrium. The RMS difference in link 
volumes was 1. 7 percent. Table 5 shows that the values of U 
for the two assignments were also close after the third iteration. 

A similar comparison has already been seen in Table 3. 
The last line shows that at 200 iterations on the UTOWN 
network, incremental assignment actually outperformed equi
librium assignment. Incremental assignment was slightly closer 
to the equilibrium solution. The RMS difference in link vol
umes was 1.0 percent. The superior performance of incre
mental assignment on this network should be considered 
unusual. 

Resolution Error 

In many planning situations, a serious concern is the ability of 
an algorithm to produce similar results from similar networks. 
For example, a small change in a single zone's trip production 

Fixed-Demand Elastic-Demand 
.Incremental Incremental 

34.8 33.6 
29 . 3 32.4 
25 . 4 22.4 
17.5 16.2 
13 . 7 13 .1 
7.1 6.4 

should have just a small effect on volume. Table 6 shows the 
behavior of the several assignment algorithms when 1,000 dwelling 
units are added to a single zone of the UTOWN network. 
Each line in the table compares the volumes obtained from 
the base network with the volumes from the modified network 
when run through the same number of iterations of the same 
algorithm. 

The first line in Table 6 should be considered the correct 
answer. It compares the two networks after 200 iterations of 
the modified Evans algorithm. It is seen that the addition of 
1,000 dwelling units causes a 4.2 percent RMS change in 
assigned volumes. 

The other algorithms, if they are working properly, should 
always show a smaller RMS change than all-or-nothing assign
ment. The other algorithms are inherently multipath, so the 
additional trips are split among a greater number of links. As 
expected, the comparison using all-or-nothing assignment 
(line 4) is larger than that obtained with 200 iterations of the 
modified Evans algorithm. 

The remaining lines in Table 6 show that the other algo
rithms are not working properly. They all overestimate the 
amount of change. The most accurate was the modified Evans 
algorithm at 20 iterations (overestimating the change by 
1.3 percent of average link volume); the least accurate was 
elastic-demand incremental at 10 iterations (overestimating 
the change by 6.9 percent of average link volume). 

Given these disturbing results, a more elaborate series of 
tests was run on the East Brunswick network ; the results are 
summarized in Table 7. As with the tests of the UTOWN 
network, each cell in the table represents a comparison of 
two slightly different networks, which were run on exactly the 
same algorithm. Each pair of networks differed by the addi
tion of 84 dwelling units to a single zone of one network. Five 
separate zones were arbitrarily chosen for investigation . The 
iterative assignment algorithms were run for just 10 iterations. 

The RMS difference using all-or-nothing assignment gives 
a slight overestimate of the expected change. At most, the 
addition of 84 dwelling units to Zone C resulted in an (RMS) 
impact of 2.6 percent. Three of the five zones had impacts of 
less than 1 percent . 

All of the iterative assignment techniques estimated the 
impact badly. For example , we know from the all-or-nothing 
assignments that the correct impact for Zone A is less than 
0.5 percent. However, the iterative assignment algorithms 
yielded impacts between 1.6 and 7 .2 percent. The elastic
demand incremental algorithm behaved best for every zone . 

It appears that resolution error is largely a consequence of 
error due to insufficient iterations. This convergence error 
has both random and systematic components. The systematic 
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TABLE 6 PERCENT RMS DIFFERENCE IN VOLUME AFTER 1,000-
DWELLING UNIT INCREASE IN ONE ZONE (UTOWN NETWORK) 

Percent RMS 
Algorithm Iterations Difference 

A. Modified Evans' 200 4.2 
B. Modified Evans' 10 7.9 
c. Modified Evans' 20 5.5 
"' All - er-Nothing 0 6.1 u. 

E. Equilibrium 10 6.5 
F. Equilibrium 20 7.5 
G. Elastic-Demand Incremental 10 11.1 
H. Elastic-Demand Incremental 20 7.6 

TABLE 7 PERCENT RMS DIFFERENCE IN VOLUME AFTER 84-DWELLING 
UNIT INCREASE IN SINGLE ZONE (EAST BRUNSWICK NETWORK) 

All-or- Modified Elastic-Demand 
Zone Nothing Evans' Equilibrium Incremental 

A 0.5 7.2 2.0 1. 6 
B 0.6 7.0 2.6 2.4 
c 2.6 7.1 3.3 2.1 
D 2.5 7.9 4.3 3.0 
E 0.7 9.4 2.2 1. 6 

TABLE 8 PERCENT RMS DIFFERENCE IN VOLUME FROM VARIOUS 
STARTING POINTS (UTOWN NETWORK) 

Total 
Iterations 

10 
20 

Modified 
Evans' 

10.6 
6.3 

component vanishes in the comparison; the random compo
nent does not. As seen here, large amounts of random error 
can mask the actual impact. Comparing the errors in Table 4 
with those in Table 7 shows that the convergence error in the 
modified Evans algorithm is almost entirely random, whereas 
the convergence error in elastic-demand incremental assign
ment has a large systematic component. 

The distinction between random convergence error and sys
tematic convergence error is critical to the selection of an 
assignment algorithm. The nature of transportation planning 
is to compare alternatives. During such comparisons the only 
important errors are random . Random convergence error can 
be attenuated only by running additional iterations. 

Starting Point Error 

All iterative assignment algorithms require an initial estimate 
of link travel times. In practice, the results of assignment 
algorithms depend on this estimate. 

Table 8 shows the effect of the starting point on the UTOWN 
network. Each cell in Table 8 compares two assignments for 
the identical network on an identical algorithm. The two 
assignments differ only by the method of estimating the initial 
link travel times. One assignment uses free travel time; the 

Equilibrium 

15.7 
12.1 

Elastic-Demand 
Incremental 

10.8 
6.2 

other assignment uses travel times estimated from volumes 
resulting from an all-or-nothing assignment. 

Starting point errors are almost as large as errors due to 
insufficient iterations. Interestingly, the two ad hoc algorithms 
(modified Evans and elastic-demand incremental) were shown 
to be far less sensitive to the starting point than equilibrium 
assignment. 

There exists a rule of thumb that a good initial estimate of 
link travel times will produce a better assignment than an 
inaccurate initial guess. Although partially correct, this rule 
of thumb is not very helpful. Table 9 shows the effect of an 
optimal set of initial travel times on the objective function 
( U) of the modified Evans algorithm. The optimal link travel 
times were taken from the 200th iteration of the same algo
rithm. A comparison of Table 9 with the first column of Ta
ble 3 shows that optimal link travel times were essentially 
useless. Any early advantage was erased by the 20th iteration. 
Similar results were obtained with the other algorithms. 

CONCLUSIONS 

All algorithms tested, with the exception of iterative capacity 
restraint, are derived from Frank-Wolfe decomposition. For 
practical purposes, they all converge to their intended solu-
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TABLE 9 EQUILIBRIUM OBJECTIVE FUNCTION 
FOR OPTIMAL STARTING POINT OF MODIFIED 
EV ANS ALGORITHM (UTOWN NETWORK) 

Iteration 

1 
2 
3 
4 
5 

10 
20 

Optimal Start 

11. 582 
10.610 
10.314 
10.188 
10.082 
9.911 
9.736 

units are 100,000 vehicle-minutes. 

tions at about the same rate, as measured by iterations. How
ever, this convergence rate is unexpectedly slow. An unac· 
ceptable 10 percent convergence error remains after 20 iterations 
on the UTOWN network and after 10 iterations on the East 
Brunswick network. A more reasonable error of 5 percent is 
reached after about 50 iterations on the UTOWN network. 
Given these slow convergence rates, it is more appropriate 
to refer to "near-equilibrium" solutions, that is, solutions 
within some acceptable error limit. 

The most disturbing aspect of convergence error is its ran
dom component. Even a small amount of random error can 
completely invalidate comparisons of close alternatives; the 
only proven method of reducing random error is to run more 
iterations. Incremental assignment algorithms appear to have 
much smaller random components in their convergence errors, 
suggesting that fewer iterations are required. 

The existence of convergence error should force planners 
to adopt innovative methods of assignment. For example, it 
is sometimes possible to forecast only the increment of traffic 
due to site development. Such a forecast will have more valid
ity if the random error can be confined to the increment, 
while treating any errors in background volumes as entirely 
systematic. 

Ad hoc algorithms are not necessarily bad. It is possible 
for an ad hoc algorithm to greatly outperform a rigorously 
derived algorithm, given the same computer budget. Because 
ad hoc algorithms do not come with a pedigree, confidence 
in an ad hoc algorithm must be established through extensive 
testing. 

If the results of a simulation are to be readily accepted, its 
algorithms must be lucid. Given the choice, planners should 
pick an assignment algorithm that can be easily explained to 
decision makers. The elastic-demand incremental algorithm 
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is conceptually simple; Evans's algorithm is conceptually com
plex. Both algorithms produce essentially the same answer. 

The existence of several algorithms that can consistently 
produce near-equilibrium solutions to a given traffic model 
should enhance prospects of improving the model. Model 
developers should concentrate on incorporating better traffic 
theory and not be overly concerned with finding an algorithm 
that delivers the intended solution. The algorithm appearing 
to adapt most easily to different traffic models is elastic-demand 
incremental assignment. 

Overall, the tests indicate that elastic-demand incremental 
assignment produces the best solutions. The method is easy 
to implement, it can be quickly modified to handle a variety 
of demand models, and it converges reasonably well. Its speed 
of convergence is no worse than that of more precise algo
rithms; its ad hoc error is insignificant; it is relatively insen
sitive to the starting point; it has the best resolution among 
the tested algorithms; and it is easy to understand. The rel
ative success of elastic-demand incremental assignment con
tributes evidence of the resiliency of incremental (or succes
sive average) methods. 
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