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Trip Generation Models for 
Infrequent Trips 

JosE MONZON, KONSTADINOS GOULIAS, AND RYUICHI KITAMURA 

The adequacy of conventional linear regression models in trip 
generation analysis is examined in this study. Simulation exper­
iments are conducted to determine whether model coefficients 
can be accurately estimated by least-squares estimation when 
the dependent variable is a nonnegative integer. Following this, 
nonlinear, two-stage model systems are estimated by using an 
empirical data set to examine whether more elaborate repre­
sentation of the decision process underlying trip generation 
will lead to improved prediction. The results of this study 
indicate that linear regression models of trip generation offer 
consistent coefficient estimates and accurate predictions, and 
improved performance may not be obtained by adopting more 
complex model systems. 

The most frequently used statistical methods for trip gener­
ation analysis are the least-squares estimation of linear regres­
sion models and trip rate analysis based on cross-classification 
of households on the basis of a few grouping variables. Both 
methods draw on principles that are relatively easy to under­
stand, and models can be estimated using commonly avail­
able statistical software packages. However , these methods 
involve certain assumptions and limitations that need to be 
well understood for valid formulation of trip generation 
models. 

Sample size requirements usually limit the number of 
grouping variables that can be used in cross-classification anal­
ysis, leaving least-squares regression the standard method used 
whenever an adequate data set and statistical package are 
available. Linear regression analysis is based on the assump­
tion that the dependent variable (number of trips) is an 
untruncated continuous variable. Also important is the typical 
assumption that one model structure explains the entire range 
of trip generation behavior. 

These assumptions may not be entirely satisfied in typical 
trip generation analyses. The dependent variable in this case 
is a nonnegative discrete variable, not an untruncated con­
tinuous variable . Trip generation behavior may result from a 
two-stage decision process in which a decision to make trips 
on a given day is made first; then , given that trips will be 
made at all, the number of trips is determined. This can be 
most typically seen in trip generation by purpose (e.g., the 
number of shopping trips on a given day) or by mode (e.g., 
the number of transit trips). 

The question that naturally arises is whether linear least-
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squares regression can be used successfully in trip generation 
analysis when its assumptions are not satisfied. The latter is 
especially the case when models are formulated for infrequent 
trips whose observed frequencies are zero for many behavioral 
units. The dependent variable will then be heavily truncated 
and the underlying decision process may involve more than 
one stage that cannot be adequately represented by a single 
model. 

The objective of this paper is to shed light on the following 
two questions . 

1. Is the linear regression method suited for trip generation 
analysis in which the dependent variable (number of trips) is 
a nonnegative integer rather than an untruncated continuous 
variable? 

2. Can a single regression model capture trip generation 
behavior that may involve multistage decision processes? 

The first question is examined through simulation experi­
ments in which the number of trips made by an individual has 
a Poisson distribution . In the simulation , discrete numbers 
are generated from Poisson distributions as the number of 
trips generated, the parameters of the distributions are esti­
mated by least-squares regression, and the accuracy of the 
parameter estimates is examined against the true values used 
in the simulation to generate the data. Timmermans (J) offers 
a comprehensive discussion of trip generation analysis by 
examining a set of alternative trip generation model formu­
lations, including Poisson regression models, and testing their 
goodness-of-fit empirically. The emphasis in this study is on 
the extent of estimation errors that result from the application 
of linear regression models to Poisson data (linear regression 
models are misspecified in this case). 

The second question is examined by estimating two models 
on empirical data and comparing their relative fits. The first 
model is a regular linear regression model . The second is 
based on the assumption that the trip generation process con­
sists of two stages: in the first stage the decision is made 
whether to make trips of a given type; then in the second 
stage the number of trips is determined. 

The rest of this paper is organized as follows. Trip gener­
ation models used in this study are briefly described. The 
results of simulation experiments are presented after that 
together with the discussion on whether linear regression models 
can be successfully used with discrete and truncated depen­
dent variables. The next two sections offer a description of 
the data used to address the second question, the results of 
the empirical analysis , and a comparison of the two models . 
The final section summarizes the study. 
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TRIP GENERATION METHODS 

Cross-classification analysis of trip generation is based on the 
premise that each group of households, defined in terms of 
a set of grouping variables, has an average trip rate that remains 
stable over time. The grouping variables are categorical, and 
groups of households can be defined by combinations of their 
categories. An important advantage of this straightforward 
method is its capability to represent the interaction effect of 
the classification variables, that is, systematic variation in trip 
rates that is uniquely associated with a particular combination 
of categories. 

For example, let S and T be the grouping variables, and 
let s and t be categories of S and T, respectively. In the case 
of household trip generation, variable Smay represent house­
hold size and T, the number of cars available to the household. 
Let the set of values S be assumed to be {l, 2, 3, 4, 5, 6 or 
more} and that for T be {O, 1, 2, 3 or more}. Let the mean 
trip rate, Y(st), of the group of households with S = s and 
T = t be 

Y(st) = µ + V(s) + W(t) + Z(st) 

where 

µ= 
V(s) and W(t) 

Z(st) 

grand mean, 
the effects of category s of variable S and 
category t of variable T, respectively, and 
interaction effect of category s and cat­
egory t. 

V(s) and W(t) represent the effects that are attributable to S 
and T, respectively, whereas effect Z(st) is the contribution 
of the particular combination of categories. The statistical 
significance of these models can be tested by analysis of vari­
ance (ANOV A), available in most statistical packages. 

In a linear regression model, the expected number of trips 
made by household i is represented as 

where 

13 model coefficient, 
H; number of persons in household i, and 
A; number of cars available to household i. 

In this formulation, 131 represents the average number of trips 
generated per household member, and 132 the average number 
of trips per automobile. The number of trips is linearly related 
to the explanatory variables, and no interaction effect is assumed 
in this formulation. 

Interaction effects can be represented in a linear regression 
model by introducing terms representing combinations of cat­
egories. Possible nonlinear effects of an explanatory variable 
can also be included in a linear model by using nonlinear 
transformation of the variable (including a step function rep­
resented by a set of dummy variables). Although it is limited 
to the case in which the model is linear in terms of its coef­
ficients, the least-squares method can be used in a variety of 
cases involving nonlinear relations or interaction effects. 

A critical limitation of the least-squares approach to trip 
generation may stem from the assumption that the random 
variation in the dependent variable can be represented by a 
random error term that has a continuous, untruncated dis­
tribution. The dependent variable of trip generation analysis, 
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the number of trips, is a nonnegative integer. Ideally this 
variable can be modeled by using a discrete distribution, such 
as a Poisson or negative binomial distribution (1,2). Appli­
cation of the least-squares method, therefore, assumes that 
this discrete distribution can be replaced by a continuous 
distribution. 

Problems arise when the expected number of trips is close 
to 0. For example, suppose the expected value is 0.2 trip. 
Then possible values that the error term may assume are 
- 0.2, 0.8, 1.8, 2.8, and so on. The error distribution is trun­
cated at - 0.2 with the probability mass associated with this 
error value equaling the probability that no trip will be made. 
If the number of trips has a Poisson distribution with a mean 
of 0.2, this probability will be 0.819 and the distribution of 
the error term will be heavily skewed. 

The validity and usefulness of the least-squares estimation 
and resulting trip generation models may be severely limited 
when there are many zeroes in the observation. This situation 
arises when models are formulated by purpose or by mode. 
Another example is the case in which models are specified at 
the person level rather than at the household level. In these 
instances, the probability is much higher that no trip of a 
given type will be generated by a given behavioral unit. The 
effect of error truncation may become significant, and the 
quality of estimated model coefficients and test statistics may 
deteriorate. This problem exists in addition to the more obvious 
problem of producing negative values as predicted numbers 
of trips. The possible extent of this problem is discussed later 
by using simulation examples. 

As a second example, it may not be possible to properly 
capture travel behavior with one linear model. Trip genera­
tion behavior may be a result of a two-stage decision process 
in which a decision is first made to make, or not to make, 
trips of a given type at all on a given day; then, given trips 
will be made, and the number of trips is chosen in the second 
stage. If this is the case, it is probable that the decision to 
make trips at all is governed by a different causal mechanism 
than is the choice of the number of trips. For example, con­
sider the case in which a transit trip generation model is devel­
oped at the household level. The primary determinants of the 
first-stage decision may include household car ownership and 
the number of nondrivers, whereas the second-stage decision 
may be described as a function of the number of household 
members and number of workers. 

In the analysis of this study, this possible two-stage decision 
mechanism is represented by a system of two models: a binary 
probit model that represents the decision to make a trip of a 
given type at all, and a linear regression model applied to the 
number of trips, given that trips are made. Formally, the 
model system can be presented as 

Y; = 0 if A; :s 0 

Y; = 13' Z; + V; if A; > 0 

where 

A; = latent variable underlying the binary choice, 
Y; = number of trips made, 

ex' and 13' = coefficient vectors, 
X; and Z; vectors of explanatory variables, 

U; and V; normal random error terms, and u; is assumed 
to have a unit variance. 
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The two vectors of explanatory variables, X; and Z;, may 
contain the same variables. The binary choice probability is 
given as 

Pr[Y; >OJ = <1>(-cx'X;) 

where the lefthand side is the probabihty that trips will be 
made at all, and <I> on the righthand side is the standard 
cumulative normal distribution function. 

The number of trips, Y;, is defined w be 0 if A; :s 0. Given 
that trips are made at all (A; > 0), the expected number of 
trips is 13 'Z;. The unconditional expected number of trips can 
be obtained as ' 

E[Y;] = E[Y; I Y; = OJ Pr[Y; = OJ + E[Y; I Y; >OJ Pr[Y; >OJ 

= E[Y; I Y;> OJ Pr[Y;> OJ 

= 13' Z;<I>( -ex' X;). 

The model system can be estimated simultaneously using 
the maximum likelihood method. Use of this method, how­
ever, requires the development of a computer code to estimate 
the coefficients. Alternatively, the model system can be esti­
mated equation by equation using easily available binary probit 
and linear regression codes. A problem arises when the error 
term of the pro bit trip choice model ( u;) and that of the linear 
trip generation model (v;) are correlated. Possible biases in 
coefficient estimates are avoided in this study by introducing 
a correction term into the linear regression model. Further 
discussions of this method are given elsewhere (3- 7). 

LINEAR REGRESSION ON SIMULATED 
POISSON TRIP DATA 

The question of whether the least-squares regression approach 
will produce adequate model coefficients and test statistics is 
addressed in this section. Simulated data sets are generated 
assuming that trip generation is a Poisson process, the values 
of the parameters used to generate the data are then estimated 
by least-squares regression, and the quality of the parameter 
estimates is examined. 

Trip generation is simulated as follows. For each case sim­
ulated, the expected number of trips is assumed to be 

m; = 130 + 13uXi; + l32;X2; 

where 

m; = expected number of trips for case i, 
Xi; and X 2; = independent variables, and 

130, 131, and 132 = model parameters to be estimated later 
by least-squares regression. 

In the simulation, Xi; and X 2; are assumed to be 0-1 binary 
variables. Therefore, each case has one of the following four 
possible expected values: 130, 130 + 13,, 130 + 132, 130 + 131 + 
132 • The number of trips, Y;, is simulated using the following 
Poisson probability: 

Pr[Y; = nJ = exp(-m;)m;"/n! n = 0, 1, 2, ... 

where m; is the expected number of trips for case i as defined 
above. 

In each simulation run, cases are evenly divided into four 
groups, each having fixed values of the Xs (and therefore 

TRANSPORTATION RESEARCH RECORD 1220 

TABLE 1 ORDINARY LEAST-SQUARES ESTIMATES OF 
THE PARAMETERS OF SIMULATED POISSON TRIP 
GENERATION 

Theoretical Simulation Estimated True 
Values Results• S.E.• S.E. 

MeanY .550 .547 
Constant .100 .109 .121 .040 

f31 .300 .285 .139 .083 

f32 .600 .593 .139 .056 
R2 .170 .165 

McanY 1.000 0.980 
Constant .100 .126 .084 .062 

ll1 .600 .553 .097 .136 

ll2 1.200 1.160 .097 .091 
R2 .310 .310 

McanY 1.900 1.889 

Constant .100 .ll5 .083 .072 

ll1 1.200 1.204 .097 .165 

ll2 2.400 2.385 .097 .133 
R2 .486 .498 

MeanY 2.800 2.771 
Constant .100 .098 .140 .064 

ll1 1.800 1.801 .162 .188 

ll2 3.600 3.547 .162 .126 
R2 .591 .604 

McanY 3.450 3.337 
Constant 3.000 3.217 .168 .ll5 

ll1 .300 .052 .194 .122 

ll2 .600 .179 .194 .242 
R2 .032 .007 

MeanY 3.900 3.847 
Constant 3.000 2.956 .166 .154 

ll1 .600 .481 .192 .282 

ll2 1.200 1.303 .192 .389 
R2 .103 .123 

McanY 4.800 4.797 

Constant 3.000 3.016 .188 .169 

ll1 1.200 1.266 .217 .163 

ll2 2.400 2.297 .217 .151 
R2 .273 .270 

McanY 5.700 5.580 
Constant 3.000 3.183 .194 .088 

ll1 1:800 1.260 .225 .ll3 

ll2 3.600 3.541 .225 .184 
R2 .415 .414 

• Avc:ragc of 10 Simulation runs. 

Noic: The pllr.Ul>Clc:r values (oonstan~ 1l1.1l2) u$Cd t0 slmulaic dala arc shown wider 
"Th<On!tlcal Values", aDcl !be ordinal)' least sq~ cslim.ates oftbc parameters-
shown u.odec "Simulolion Rcsull!I". 

one of the above four expected values). Consequently, 
dependent variable values in the data set come from four 
Poisson distributions. One hundred cases are generated for 
each group, and least-squares regression is applied to the 
resulting 400 cases in each simulation run. 

A total of 10 simulation runs are performed for each com-
bination of parameter values. The results of the simulation 
experiments with ordinary least-squares estimation are sum-
marized in Table 1 for the eight sets of parameter values 
examined in this study. 

The simulation experiment offers evidence that least-squares 
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regression yields adequate estimates of trip generation param­
eters even when the actual generation process is not com­
patible with its assumptions. The regression method performs 
very well when the theoretical R2 (defined as the ratio of the 
systematic variation of the mean number of trips to the total 
theoretical variance) is higher than 0.10. The only exception 
is the case with a large constant (3.0) combined with small 
slope coefficients (13 1 = 0.3, [32 = 0.6), for which the theo­
retical R2 is only 0.032. Other than this exceptional case, the 
least-squares estimates adequately account for variations in 
trip generation as indicated by the R2 values that are close to 
the theoretically expected values and the parameter estimates 
whose averages accurately replicate the true values used to 
generate the simulated data . 

The estimated standard errors of the coefficient estimates, 
however, do not accurately represent the true standard errors 
obtained by evaluating the standard deviations of coefficient 
estimates from 10 repeated simulation runs. To examine 
whether this is due to heteroscedasticity (a variation in the 
variance of random errors across cases), weighted least-squares 
estimation was performed using as the weight the inverse of 
the square root of the predicted number of trips obtained by 
ordinary least-squares estimation. This weight was theoreti­
cally derived from the fact that the variance of a Poisson­
distributed random variable equals its expectation. 

Weighted least-squares estimation offered some improve­
ment in estimated standard errors, although this improvement 
was at the cost of significantly diminished accuracy of coef­
ficient estimates. The divergence between the estimated and 
true coefficient values was so large that it was only appropriate 
to conclude that the weighted least-squares procedure was not 
suitable for trip generation analysis when the underlying pro­
cesses are composite Poisson processes with relatively small 
means (ranging from 0.1 to 7 trips). Although the reason for 
the poor performance is still undetermined, the parameters 
of trip generation processes may be accurately estimated by 
ordinary least-squares regression when the systematic varia­
tion in the data is reasonably high (with an R2 of, say, 0.1 or 
higher). 

TWO-STAGE TRIP GENERATION MODELS 

Data Set 

In the remainder of this paper the adequacy of linear trip 
generation models is examined by applying an alternative 
model formulation to empirical data . The conventional linear 
regression models and two-stage models described earlier are 
estimated and their relative performance is studied. The intent 
of the effort is to infer the validity of conventional linear 
models and the value of more elaborate models. Note that, 
unlike the simulation analysis above, the true behavioral 
mechanism is not known in this empirical analysis. The valid­
ity of the alternative models is therefore evaluated in the study 
on the basis of its statistical fit. 

The results of the 1980 Southeastern Michigan Transpor­
tation Authority survey are used in the estimation of two­
stage trip generation models. This standard home interview 
survey file contains demographic and socioeconomic attri­
butes of the household and its members and records of all 
trips made by each household member (5 years old and over) 
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on the survey day, including trips made by nonmechanized 
modes. The person, rather than the household, is used as the 
unit of analysis in this study. All individuals at least 16 years 
of age are included in the study sample. This particular cut­
off age is selected because individuals can qualify to be licensed 
to drive at this age and become active users of the automotive 
transportation system. 

A wide range of variables is considered in the model devel­
opment to best capture trip generation behavior using the two 
types of models . These variables include age, sex, occupation, 
car availability, household composition, life cycle stage, income, 
residence county, residence area type, and day of the week 
(Table 2) . The age and sex of an individual are known to 
influence trip generation significantly (8, 9) and therefore are 
included in this analysis . In addition, detailed occupation cat­
egories are used in the model development with the antici­
pation that variations in lifestyles can be captured by them. 

Past studies also indicate that household structure influ­
ences trip generation behavior even when the model is for­
mulated at the individual level. For example, a study shows 
that various measures of individual mobility vary significantly 
and meaningfully across subgroups defined by life cycle stages 
(10). Household structure is represented in this study by the 
number of household members by age and sex and by a set 
of five life cycle stages as defined in the data file. 

Because the models are formulated at the individual level , 
car availability, rather than car ownership, is used to explain 
trip generation. The following four levels of car availability 
are defined according to the license-holding status of the indi­
vidual and car ownership of the household: 

Always: the individual holds a driver's license , and the 
number of cars available to the household equals or exceeds 
the number of adults in the household; 

Usually: the individual holds a driver's license and at least 
one car is available to the household, but the number of cars 
available is less than the number of adults in the household; 

Sometimes: the individual does not hold a driver's license 
but at least one car is available to the household; and 

Never: no car is available to the household. 

Combined household income is classified in the data file into 
11 categories . In the analysis these categories are combined 
into four income classes as shown in Table 2. 

The land use type and density variables are introduced to 
account for the possibility that trip generation is influenced 
by the availability of opportunities around the home base. 
The residence county variables are introduced in the belief 
that differences in lifestyles that are not reflected in the house­
hold and person-attribute variables in the data file can be 
captured by these variables. Note, however, that the notion 
that trip generation depends on residence area contradicts the 
commonly held belief that trip generation of a household or 
individual of given characteristics is invariant across areas . 

Estimation Results 

The final model forms and estimation results are summarized 
in Table 3. The dependent variable is the total number of 
person trips generated by an adult household member. All 
regression models are estimated using weighted least squares 
with the weight defined as 0(IYJ)T where 0 and Tare estimated 



TABLE 2 VARIABLES USED IN MODEL FORMULATION 

VARIABLE 

Age and Sex 

AGE:l6-30 
AGE:31-SO 
AGE:Sl-64 
AGE:6s+ 

MALE 
FEMALE 

Occupation 

PRO/TECH 
FARM 
LABORER 
MANAGER 
CLERICAL 
SALES 
CRAFTSMAN 
OPERATOR 
HHLDWORKER 
SERVICE 
Mil.JTARY 
OTHER 

Car Availability 

ALWAYS 

USUALLY 

SOMETIMES 

NEVER 

Household Sttucture 

NADULTS 
NCHILD:0-4 
NCHILD:S-IS 
NCHILD:l6-18 
NMALES 
NFiiMALES 

DEFINTilON 

I if the age is between 16 and 30; 0 otherwUc 
I if the age is between 31 and 50 
I if the age is between SI and 64 
I if the age is 65 or over 

I if male 
I if female 

I if professional or technical 
I if farmer, farm manager. f11111J \aborer, or farm foreman 
I if non-farm laborer 
1 if manager, official. or owner of a business 
I if clerical and similar worker 
I if sales worker 
I if craftsman, foreman, and siinilar worker 
I if equipment opcnltOr or mc;>tor v~hicle ,opcralor 
I if private household wor•er. mllld, butler. etc. 
1 if service worker 
I if in mill tary 
I if other worker 

I if the individual has a driver's license and the number of 
cars is no less than the number of adults in the household 
1 if the individual has a driver's license and the number of 
cars is less than the number of adults in the household 
1 if the individual does not have a drivcr's license and the 
household has at least one car available 
I if no car is available to the household 

Number of adults ~ 18 ycus old) in the household 
Number of children or 0 ta 4 years old 
Number of children of S to 15 years old 
Number of children of 16 to 18 years old 
Number of males in the household 
Number of fcrmles in the bowehold 

Household Llfccycle Stage 

NOCHLD-YNG 

NOCHLD-MID 

NOCHLD-OLD 

PRESCHOOL 

SCHOOLAGE 

Household Income 

LOW 
MID-LOW 
MID-HIGH 
HIGH 

Residence County 

DETROIT 
WAYNE 
OAKLAND 
MACOMB 
WASHTilNAW 
MONROE 
STCLAIR 
LIVINGSTON 

Residence AJQ Type 

I if head of household less than 35 years of age, and no 
children in the household less than 18 years ofage 
I if head of household 35 years of age or older, but less 
than 65 years of age, no children in the household 
1 if head of household 6S yean of age or older, no children 
in the household less than 18 years of age 
1 if the youngest chi ld in the household is less than 6 
years or age, {er head or household or any age 
1 if the yOllngest child in the household is 6 ycm; o( age 
or older. for head or household of any age 

1 if household annual income is less than $10,000 
1 if household annual income is between $10,000 and $20,999 
1 if household annual income is between $21,000 and $34,999 
1 if household annual income is $35,000 or more 

I if residence wne is in Detroit 
1 if residence rone is in Wayne County 
1 if residence rone is in Oakland County 
1 if residence wne is in Macomb County 
1 if residence rone is in W11$htenaw County 
I if residence wne is in Monroe County 
I if residence zone is in SL Clair County 
1 if residence zone is in Livingston County 

COMMEROAL 1 if 10 or more employees per acre ofusable land 
HIDENSITY 1 if less than 10 employees and more than S dwelling units 

per acre of usable land . 
MIDDENSITY I if less than 10 employees and from 0.5 to 5.0 dwelling 

units per acre of uublc llllld 
LOWDENSITY I if less tblln 10 cmployeeund less than O.S dwelling Ullits 

per ! ere or usable loru! 

DayofWeek 

MONDAY 
TUESDAY 
WEDNESDAY 
THURSDAY 
FRIDAY 

1 if Monday 
1 if Tuesday 
1 if Wednesday 
1 if Thursday 
1 if Friday 

TABLE 3 TWO MODELS OF TOTAL PERSON-TRIP 
GENERATION 

Cooventional Two-Sragc Model System 
Linear Model 

Probit Conditiooal 
Trip Cl!oic:e Trip GeoerabJ 

(WLS) (ML) (WLS) 

ll ll B 

AGE:31-SO -.113 -1.33 -.302 -5.23 
AGE:Sl-04 -.608 -6.SI -.608 -10.24 
AOE:6.5+ -.820 -7.34 -.753 -10.68 

MALE .326 6.80 -.411 -S.30 

PRO/TEOI .661 5.78 .290 3.36 
LABORER -.398 -2.68 
MANAGER .927 5.38 .453 3.29 .305 1.79 
CLERICAL .476 3.37 .391 3.71 -.232 -1.68 
SALES .381 2.25 .122 1.03 
CRAFTSMAN .238 1.91 -.388 -2.66 
SERVICE .693 3.68 .469 3.34 
OTHER -.385 -2.39 

ALWAYS .• 912 9.26 .206 3.92 .368 4.14 
USUALLY .439 4.58 
NEVER -.392 -3.46 

NADULTS -.058 -1.84 .109 2.98 
NCHILD:0-4 -.039 -.44 
NCHILD:S-15 .133 3.09 .ISi 3.82 
NCHILD:l6-18 .205 3.17 -.236 -2.7S 
NMALl!S -.117 -2.67 
NFEMALES .f176 1.55 

NOCHLD-YNO -.299 -S.IS .284 2.81 
SCHOOLAGB .332 3.77 .237 4.06 

LOW -.248 -2.78 -.436 -6.63 
MID-LOW -.117 -2.01 
HIGH .124 1.65 

WAYNE -.158 -1.10 -.21S -4.18 
OAKLAND .349 2.49 .291 3.01 
MACOMB .203 1.28 .195 1.66 
WASH!l!NAW .601 3.14 .842 4.95 

HIDENSITY -.188 -1.97 -.352 -3.86 
MIDDENSITY .182 2.18 .114 1.37 

MONDAY -.203 -2.25 -.155 -1.62 
TUESDAY .166 3.09 -.1S4 -1.74 
WEDNESDAY -.148 -1.58 
FRIDAY .098 1.00 .108 1.77 .053 .SI 

Correction Tenn• .485 3.97 

Constant 2.231 1.172 2.834 

R2 .138 .079 
F (df) 34.07 (24.S 109) 15.85 (21,3884) 
-2[L(B)-L(O)] (df) 2594.2 (24) 
-2[L(8)-L(C)] (df) 1040.0 (23) 
N 5134 5f177 3906 

•Introduced to correct for J':lssible biu es due to the com:lation between the error term of 
the pro bit choice model an that of the conditional trip generation model. 

WLS: Weighted leut squares regression 
ML: Maximum likelihood estimatioo 
df: de~ or &tcdom 
L(O): g·llkclihood with all cocflklcnu constrained to 0 
L(c): Log-likelihood with the consrant term elonc 
L(8): Log·lll<ollhood with no constraints 
N: SllDlplc siz.e 

-2[L(B)-L(O)] and -2[L(ll)·L(O)J have chi-square diooibudou with indicated degrees or 
freedom. rcspccdvely. The former can be used to test the coUcctive iWclificancc or ell 
model cocfficienlS, and the laner to test tho sigiUC'icance of the model eot clcnts C>1Cludin1 
the constant term. 
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by regressing the squared residual on the predicted number 
of trips (unlike the simulation analysis above, practically no 
differences emerged in this case between the ordinary least­
squares and weighted least-squares estimation results). 

Columns 1 and 2 of Table 3 present the estimated model 
coefficients and t-statistics of the conventional linear regres­
sion model. The coefficients of the age variables show the 
well-established relationship that trip generation declines as 
age increases. The results also suggest that white-collar work­
ers tend to make more trips, that the presence of school-age 
children increases the adult members' trip generation, and 
that low-income families make fewer trips. The car availability 
variables are highly significant, indicating that trip generation 
increases with car availability . 

The two sets of variables that are not normally included in 
trip generation models, residence county and day of the week, 
are both significant. The day-of-the-week variables suggest 
that trip generation is suppressed on Mondays. The coefficient 
for Friday trip generation is positive, although insignificant . 
This finding is consistent with earlier results that trip gener­
ation increases toward the end of the week (11), but statis­
tically is not as conclusive. 

The set of residence county variables suggests that residents 
of suburban counties tend to make more trips. This area­
specific effect is in addition to those represented by the income 
variables or-by the land-use type variables, the latter of which 
indicate that residents in the area with 0.5 to 5 dwelling units 
per acre make more trips. Although it is not possible to pin­
point the reasons for the significance of the county variables, 
it is conceivable that these variables act as proxies for unob­
served and geographically correlated factors such as ethnic 
backgrounds. 

The pro bit trip choice model includes a set of variables that 
is similar to that of the conventional model. However, the 
effect of income variables is more pronounced, whereas car 
availability variables are less dominant in the probit choice 
model. The sex variable is significant in the probit model and 
indicates that a man makes trips on any given day more fre­
quently than does an equally situated woman. Importantly, 
no land use type variable is present and only one residence 
county variable is included in the model. This result suggests 
that the choice of whether to make trips at all does not vary 
substantially by geographical area. 

Columns 7 and 8 of Table 3 show the conditional trip 
generation model that accompanies the probit trip choice 
model. Quite notable is the result that the age variables and 
income variables, both significant in the probit choice model, 
are excluded from the conditional trip generation model 
because of their insignificance. On the other hand, the land 
use type variables, which are not included in the probit 
model, are included in the conditional trip generation model. 

It is also notable that when a variable is included in both 
models, its coefficient values tend to contradict each other. 
For example , the sex variable (MALE) is positive and sig­
nificant in the probit model, but negative and significant in 
the conditional trip generation model. These values imply that 
women have a higher probability of not making any trips on 
a given day, but given that they make trips at all, they tend 
to make more trips than men . 

The two-stage model system thus offers indications that the 
choice of making trips at all and the determination of the 
number of trips are influenced by overlapping but different 

TABLE 4 PREDICTION RESULTS 

Model 

Linear 
Two-Stage 

Total Trips 

0.1297 
0.1253 
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Shopping Trips 

0.0276 
0.0268 

sets of factors . New behavioral insights are offered by the 
model system. However, the indications are not so clear-cut 
as to reject the conventional linear model as an inferior for­
mulation. In fact, the coefficients of the linear model are 
consistent with those of the two equations in the two-stage 
model system when viewed collectively. The same conclusions 
have been obtained from a similar analysis of shopp~ng trips. 

The explanatory powers of the two alternative model for­
mulations are evaluated by examining the correlation between 
the observation and prediction. The correlation is estimated 
by regressing the observed number of trips on the predicted 
number of trips. The results, summarized in Table 4 {n terms 
of R2, indicate that the two formulations have virtually iden­
tical fits to the observation, with the two-stage models showing 
slightly inferior fits for both total person trips and shopping 
trips. The conventional linear regression models are capable 
of accounting for as many variations in trip generation as are 
the more elaborate two-stage model systems . 

CONCLUSION 

The adequacy of conventional linear regression models in trip 
generation analysis has been the subject of this study. The 
following two issues have been addressed as possible factors 
that may invalidate linear regression analysis: (a) the incom­
patibility between the continuous, untruncated error term of 
a linear regression model and the discrete and nonnegative 
number of trips generated by a household or individual and 
(b) the possibility of a two-stage decision mechanism in which 
the choice of making trips at all is first made, and then the 
number of trips is determined given that trips are made . 

Simulation experiments were conducted to address the first 
issue. In the simulation, trips were generated assuming Pois­
son distributions . Although the resulting error distributions 
were heavily truncated, the analysis indicated that model 
parameters can be consistently estimated and the expected 
number of trips can be forecast accurately by using the linear 
model and ordinary least-squares estimation method. The 
estimated standard errors of model coefficients were biased. 
The analysis indicated that weighted least-squares could not 
be applied to the simulated data to solve this problem because 
of the inaccurate coefficient estimates that the method pro­
duced. Further research is needed to identify the reason for 
the poor performance of weighted least-squares regression . 

Two-stage model systems were estimated by using an 
empirical data set and then compared with linear regression 
models . The results indicated that the choice of making trips 
at all and the determination of the number of trips to make 
are influenced by overlapping, but different, sets of factors . 
However, the linear regression models offered essentially 
the same characterization of trip generation behavior as the 
two-stage models. Furthermore, the explanatory powers of 
the two alternative model formulations were found to be 
identical. The two-stage models provided some additional 
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behavioral insights, but failed to show any improvement in 
fit despite their complex model structure, which involves an 
increased number of parameters and an elaborate estimation 
procedure. 

The results of this study have indicated that linear regres­
sion models of trip generation offer consistent coefficient esti­
mates and produce as accurate predictions as a more complex 
two-stage model system. The ordinary least-squares estima­
tion is appropriate for generation models of infrequent trips 
for which the assumptions underlying the estimation method 
are unlikely to hold. Improvement in trip generation analysis 
may not be obtained by adopting more complex model 
systems. 
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