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Foreword 

This Record contains a research paper on highway traffic assignment techniques based 
on an improved behavioral model of drivers' route choice and a paper on dynamic 
assignment in three-dimensional time space. Additional subjects treated in this Record 
are (a) modeling demand diversion to less congested routes within a corridor, (b) the 
adequacy of conventional models in trip generation analysis , (c) assessment of the con­
vergence properties of four traffic assignment algorithms, (d) network evaluation, 
(e) trip generation rate analysis for a state , and (f) the updating of a regional travel 
forecast. 

The paper on techniques of traffic assignment, by Antonisse et al. , presents models 
that are based on evidence of drivers' varying valuations of a number of characteristics 
of roads, are probabilistic, and are based on more variables than used in previous models. 
The models contrast with conventional traffic assignment procedures, which are typically 
based on a single measure of travel impedance. Hamerslag's paper on dynamic assign­
ment assesses traditional assignment models , where cars are assigned to a route and are 
present on all links of that route simultaneously. A three-dimensional model is described, 
and the effect of improved capacity on congestion downstream is shown. 

Demand diversion to less congested routes within a corridor is of increasing importance 
as a result of increasing traffic volumes, congestion, and delays. The paper on demand 
diversion, by Stephanedes et al., develops and describes two models for diversion at the 
trip origin and at freeway entrance ramps . The various factors contributing to diversion 
are also described. 

In the areas of trip generation and traffic assignment, Monzon et al. assess the adequacy 
of conventional linear regression models in trip generation analysis. Simulation exper­
iments designed to examine whether model coefficients can be accurately estimated by 
least-squares estimation when the dependent variable is a nonnegative integer are described. 
Horowitz examines the convergence properties of four popular traffic-assignment algo­
rithms. The paper evaluates the algorithms according to (a) errors associated with insuf­
ficient iterations, (b) arbitrary selection of a starting point, ( c) inexact theory, and 
(d) small variations in data. A third paper in the traffic assignment area, by Barbour 
and Fricker, investigates how the node-balancing solution for a network is affected by 
choice of method, which by implication also means choice of criterion . The paper further 
discusses the two categories of techniques developed to balance the network: algorithms 
and mathematical programming formulations. A comparison was also made between 
these procedures and the maximum-likelihood method. 

Interregional stability of household trip generation rates for the state of New Jersey 
is reported and summarized in the paper by Walker and Olanipekun . Stratification 
schemes are tabulated and analyzed to determine the most appropriate basis for making 
disaggregate trip rate comparisons between regions. 

The paper by Kollo and Purvis describes the process of updating a regional travel­
forecasting model for the San Francisco Bay Area in terms of providing a data base for 
model estimation and validation. The 1981 Bay Area travel survey and the 1980 Census 
Urban Transportation Planning Package were used. 

v 
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Highway Assignment Method Based 
on Behavioral Models of Car Drivers' 
Route Choice 

ROBERT W. ANTONISSE, ANDREW J. DALY, AND MOSHE BEN-AKIVA 

This paper proposes a highway traffic assignment technique 
based on an improved behavioral model of drivers' route choice 
as developed in a recently completed study in the Netherlands. 
Route choice models are developed from data collected in three 
corridors in the Netherlands. The models presented here, which 
are based on evidence of drivers' varying valuations of a num­
ber of road characteristics, are (a) probabilistic and (b) based 
on more variables than were used in previous models. They 
contrast with the underlying route choice models of conven­
tional traffic assignment procedures, which are typically based 
on a single measure of travel impedance (e.g., travel time, 
generalized travel cost). A key feature of the models developed 
in the present study is that they are based on data describing 
the actual routes chosen by individual drivers. The paper 
describes how these models are used to generalize assignment 
methods through the exploitation of a multiclass-user tech­
nique. In an uncongested network, several routes typically will 
be predicted to be used between a given origin and destination; 
as congestion increases, so will the diversity of routes used. 
Several models appropriate for use in varying circumstances 
of data availability are presented and compared. Model inputs 
(e.g., road attribute data) are described, and practical impli­
cations of the underlying structural assumptions are discussed. 
Spatial transferability of the models is appraised on the basis 
of the differing results obtained for the three corridors studied. 
Finally, advantages and limitations of application of the pro­
posed assignment method compared with conventional pro­
cedures are discussed. 

A central element of the traffic assignment procedure is a 
model of the traveler's decision about which route to take 
given the origin, destination, and mode of travel of a trip. 
The problem of route choice for a traveler might be stated as 
follows: Given the other characteristics of the trip to be made­
purpose, time, origin, destination, and mode, for instance­
choose the "best" route through the transportation network 
in terms of some criterion. This best route is most often thought 
of as the one that minimizes travel disutility. Existing traffic 
assignment models often assume single measures of travel 
disutility such as travel time or distance, or some simple for­
mula of generalized travel cost. 

R. W. Antonisse, Operations Directorate, Massachusetts Bay Trans­
portation Authority, Room 4730, Ten Park Plaza, Boston, Mass. 
02116. A. J. Daly, Hague Consulting Group, b.v., Surinamestraat 4, 
2585 GJ The Hague, Netherlands. M. Ben-Akiva, Department of 
Civil Engineering, Massachusetts Institute of Technology, Room 1-
181, 77 Massachusetts Avenue, Cambridge, Mass. 02139. 

In reality, the problem of route choice faced by an auto­
mobile driver is very complex because of 

1. The large number of possible alternative routes through 
even modestly sized road networks, and 

2. The complex patterns of overlap between the various 
route alternatives. 

Realistic replication of the human decision process in route 
choice-which synthesizes many factors about the trip and 
the various possible routes in making a choice-with a math­
ematical model is difficult at present because of the limited 
understanding of the route choice phenomenon, as well as 
limited techniques and computational resources. 

The primary interest of studying car drivers' route choice 
is in improving traffic assignment procedures. In particular, 
accurate predictions of the usage of proposed new infrastruc­
ture are essential to the evaluation of the need for that infra­
structure. The results of the route choice study suggest that 
current methods may underestimate the traffic attracted to 
major new roads. Secondarily, understanding route choice is 
valuable in attempting to redirect traffic streams so as to make 
the best possible use of existing roads. The current study is 
one of very few directed to a better fundamental understand­
ing of this important aspect of behavior and the implemen­
tation of that understanding in practical planning methods. 
The overall objectives were twofold: 

1. To improve current understanding of drivers' route choice 
preferences, and 

2. To develop a practical traffic assignment model that 
reflects this choice process with greater sophistication. 

FACTORS AFFECTING ROUTE CHOICE 
BEHAVIOR 

A major task completed during the first phase of this project 
was an extensive literature review of factors affecting drivers' 
route choice preferences. Ben-Akiva et al. (J) synthesized the 
results of this review as a set of hypotheses that may be broken 
down into the following three categories: 

1. Drivers' knowledge about alternative routes: Several 
authors hypothesize that drivers plan their trips in a hierar-
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chical fashion, building up from lowest-level (local) roads near 
the origin of the trip to expressways at the highest level, which 
they use for the bulk of travel, and back to local streets at 
the end of the trip (2-4). Knowledge may be lacking of local 
road alternatives to expressway portions of trips (5- 7). Driv­
ers often are unable to evaluate simple characteristics of paths 
and thus are unable to find the quickest or shortest route 
(2, 8, 9). 

2. Decision processes: Various hypotheses assert that driv­
ers either plot out their entire route before departure or make 
decisions at road junctions as they encounter them inde­
pendently from previous decisions (that is, they follow a Mar­
kov process), or else they use some combination of these two 
approaches (10) . 

3. Route attributes and preferences: Specific attributes of 
routes to which drivers are attracted include travel time (11-
14), distance (14), number of traffic signals (5), scenery ( espe­
cially for nonobligatory trips, such as social or recreational 
ones) (6,15), time or distance on limited-access highways (15), 
safety (11 ,15), commercial development, congestion (15 ,16), 
road quality, and road signing (17). 

Most of these hypotheses are not reflected in existing traffic 
assignment models. 

NEW MODEL OF ROUTE CHOICE BEHAVIOR 

The earlier work on this project documented by Ben-Akiva 
et al. (1) also included the conceptualization of a two-step 
model of route choice that (a) narrows down the large number 
of possible route alternatives to a choice set 0f a few alter­
natives and (b) chooses a route from this choice set based on 
the characteristics of the trip, driver, and attributes of the 
available alternatives. Survey data were collected for a sample 
of drivers observed to travel between the cities of Utrecht 
and Amersfoort, including information on the driver and on 
the trip itself (including the route actually chosen on the sur­
vey day). A network model of the corridor was used to gen­
erate sets of alternative routes for the sampled drivers, and 
a large number of route choice models was tested. 

The empirical evidence of the first phase of this study showed 
that factors other than time and distance play a significant 
role in interurban route choice. For example, several road 
attributes that one normally associates with major highways­
large capacity, restricted access, high hierarchical level, and 
high speed limit-were found to positively attract route choice. 
Traffic signals, on the other hand, were found to have a neg­
ative effect. 

The estimation results demonstrated the feasibility of the 
two-stage approach to modeling route choice and produced 
a model that reflects the hypothesized structure underlying 
route choice behavior. Finally, a number of market segmen­
tation tests demonstrated that trip purpose, frequency, and 
length can have important influences on route choice. 

OBJECTIVES 

The results of the second phase of this project are presented. 
They are based on a new data collection effort that began in 
1980 in two other road corridors in the Netherlands. The 
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primary objectives of the second phase were 

1. To test the transferability of both stages of the modeling 
process as developed in the first phase (the method used to 
generate the set of alternative routes and the choice model) 
to the other corridors, and 

2. To simplify the choice model as a way to enhance the 
applicability of the model in a wider geographical area and 
under conditions of limited road network data. 

Drivers were surveyed in two different corridors in the 
Netherlands in the spring of 1980-one between Amsterdam 
and Purmerend and the other between Arnhem and Apel­
doorn . All the corridors offer a number of viable route alter­
natives for the many trips between the two cities defining each 
study area. In each case, a cordon of roadside survey points 
was laid out across the corridor. At some survey points, return­
mail questionnaires were handed out to drivers, whereas at 
other points license plate numbers were recorded and regis­
tered owners of the vehicles were sent a return-mail survey 
form at home. The surveys asked respondents to trace the 
route they took on a map provided for the day of the sighting. 
The questionnaires also asked a range of questions about trip 
and personal characteristics: purpose at origin and destina­
tion, frequency of this trip, age, profession, and so on. Mean­
while, network data were collected from engineering sources. 

ROUTE CHOICE MODEL FOR TRAFFIC 
ASSIGNMENT 

This section describes the basic methodological requirements 
and data and computer needs for forecasting route choice 
behavior using the new approach. 

Methodology 

Travel behavior in general and route choice behavior in par­
ticular can be considered as choosing between discrete, mutually 
exclusive alternatives. Discrete choice analysis attaches 
expressions of attractiveness or utility to each of the available 
choice options. The utility expression of each alternative gen­
erally incorporates information on the attributes that may 
either add to or detract from its attractiveness. It is then 
assumed that the decision maker will choose the alternative 
that is most attractive. 

With the primary problem in this case being highway route 
choice, the two major steps in determining behavior are 

1. Identifying a set of route alternatives that the driver can 
choose among, and 

2. Making the choice from this set on the basis of the type 
of driver and trip conditions and the various attributes of the 
route alternatives. 

Because it would be prohibitively time-consuming and 
behaviorally unrealistic to evaluate the attractiveness of all 
possible routes between the origin and destination, a method 
is applied to narrow down the vast number of route possi­
bilities to a few alternatives that may be considered in greater 
detail. 
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Once a set of options has been identified, it is necessary to 
measure the relevant attributes of those options that affect 
their attractiveness. A choice model is used to relate the prob­
ability of choosing each available alternative to its attractive­
ness, which, in turn, is based on the attributes of the alter­
natives. For the predictive tool to be successful in forecasting 
travel behavior under a wide range of circumstances, the choice 
model must be responsive to how changing travel conditions 
and varying perceptions affect the relative attractiveness of 
the available travel options. 

Generation of Route Alternatives 

As discussed above, the first stage of the route choice mod­
eling process involves the generation of a set of candidate 
route alternatives from the myriad of feasible paths through 
the road network. The technique developed in this study is 
called the "labeling" approach because descriptive labels are 
attached to the selected route candidates. Each of these labeled 
routes is optimal with respect to some criterion from among 
all possible routes between the given origin-destination pair. 
For example, "quickest," "shortest," and "most scenic" might 
be criteria used to define three candidates from all route 
possibilities. The criteria to be used may be extracted from 
hypotheses regarding influences on route choice behavior and 
could be considered to constitute a model of drivers' percep­
tions of a road network. 

So that these labels can help determine specific paths through 
the given network, a quantitative descriptor based on avail­
able network data must be selected to measure a route in 
terms of the label criterion. Labeled paths are defined by an 
impedance function that depends on one or more link attri­
butes. A separate function is specified for each label criterion 
to be used. Determining the labeled path for a particular 
criterion is then simply a matter of calculating the associated 
impedance for all links in the network and executing a min­
imum-path algorithm that can efficiently generate labeled paths 
for a large set of origin-destination pairs. Observed chosen 
route data are required in selecting the most reasonable set 
of labels to apply in forecasting route choice. The selected 
set of impedance functions maximizes the frequency of observed 
routes included in the set of the corresponding labeled 
paths. 

At this point, it is useful to describe the network data avail­
able for this study. Two types of data were used in this anal­
ysis: a basic network data base system and sets of extra, detailed 
link attributes. The Dutch Ministry of Transport maintains a 
computerized "Basisnetwerk" system consisting of many node 
and link records that represent the national highway network. 
This system is used extensively in the Ministry's planning and 
management functions. Node records include the junction's 
geographic location. Link records include A- and B-nodes, 
distance, speed code, and road hierarchy level as attributes. 
These basic attributes supply sufficient information for the 
generation of a few important labels. 

A large number of detailed road link attributes was gath­
ered for the detailed study area within each of the data col­
lection corridors. Example attributes include road surface type, 
width of roadway, number of Janes in each direction, zoning 
type of adjacent land, and presence of various types of facii­
ities along the roadside. A large number of alternative labeled 
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paths could then be generated for any driver traveling either 
entirely or partially through the detailed study area. 

In the first phase of the project, 10 labels were selected for 
application. These same labels were designated for applica­
tion to the two new study areas in the second phase. The 
labels chosen and associated quantitative descriptors are 
described briefly as follows: 

• Minimize time: travel time is calculated from information 
on the distance and average speed of the link. 

• Minimize distance: the distance from the link records is 
applied. 

• Maximize travel on scenic roads: the measure of imped­
ance for the route is time spent driving on roads adjacent to 
nonscenic land uses-city center, dense residential, or indus­
trial-as determined from percentage of link distance through 
these types of land use, which is available from detailed attri­
butes. 

• Minimize number of traffic signals: for each link, the 
number of traffic signals was calculated using detailed attri­
bute information and the following formula: 

No. signals = no. signals along link 

+ 0.5 (total signals at nodes) 

• Minimize travel on congested roads: detailed attributes 
allowed calculation of volume:capacity (VIC) ratios for road 
links in the Phase 1 study area. The descriptor is time spent 
on roads with high VIC ratios. Unfortunately, link volume 
data were not available for either the Arnhem-Apeldoorn or 
the Amsterdam-Purmerend study area, and this label had to 
be dropped from the analysis of joint data. 

• Maximize use of expressways: links were classified as 
expressways if the network speed code was the maximum, 
that is, 100 km/hr (approximately 60 mph). Time spent on 
nonexpressway roads was used as a measure of link impedance 
in this case. 

• Maximize travel on high-capacity roads: the impedance 
measure is time spent on low-capacity roads, that is, roads 
that either are less than 9 m (approximately 30 ft) wide or 
have less than two lanes in either direction. 

• Maximize travel in commercial areas: again using land 
use data from the detailed attributes, time spent in noncom­
mercial areas was calculated on the basis of the distance trav­
eled in any land use area other than cities or industrial areas. 

• Maximize road quality: for every link in the study area, 
a road quality rating is available on a scale of 1 (best quality) 
to 3 (worst quality). Time spent on poor-quality roads-those 
with a rating of 2 or 3-was measured. 

• Hierarchical travel: each link includes an attribute for 
road hierarchy level. This label favors travel on the highest­
level roads-generally limited-access highways. Two imped­
ance measures were used: (a) time spent on roads of the lowest 
hierarchy (local roads) and (b) time on roads of moderate 
hierarchy (main roads of regional importance). 

With the label descriptors determined, the next step is the 
specification of the impedance functions. In the case of the 
"minimize time" and "minimize distance" labels, this is sim­
ply the measure itself. For the other labels, however, it was 
possible for the optimal route of the criterion to deviate unrea­
sonably from the minimum time path. To mitigate this prob-
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TABLE 1 LABEL IMPEDANCE FUNCTIONS AND FINAL COEFFICIENT VALUES 

Label Criterion Link Iq>edance Function Initial Coefficients 

(to be minimized) 

Utrecht- Amst-Purm & 

Amers foort Arnhem-Apel 

Hin. Time TIME 

Hin . Di stance DISTANCE 

Max. Scenic TIME + P1CNON-SCENIC TIME) 2.0 2.0 

Hin. Signals TIME + p2(# SIGNALS) 30 sec. 5 min. 1 

Hin. Congestion TIME + P3CHIGH V/C TIME) 3.0 not used 

Max. Expressways TIME + P4CNON-EXP. TIME) 3.0 3.0 

Max. Capacity TIME + P5 CLO~-CAP. TIME) 1.5 2.0 

Max. Coornercial TIME + p6CLO\J-COHM. TIME) 1.5 1.5 

Max. Road Qua l i ty TIME + P7CLO\J-QUAL. TIME) 2.0 2. 0 

Hierarchical TIME + p81 cH1ER. 1 TIME) 5.0, 5.0, 
Travel + p82 cHIER . 2 TIME) 100 100 

1 The value of 5 min. was not tested for Utrecht-Amersfoort. 
However increased values (above 30 sec.) did not show a 
large loss of coverage on that data. 

lem, the impedance functions were specified as a weighted 
sum of the primary criterion measure (e.g., scenic time) and 
total travel time. The only remaining task is the assignment 
of relative weights to the two component measures. Table 1 
shows the impedance functions, specified with weighting coef­
ficients, as applied in this study. 

The label parameters were optimized by finding the set of 
parameter values that maximized the number of observed 
chosen routes for the area under study that are matched or 
"covered" by the label set. A straightforward computer algo­
rithm is used to compare each chosen route with the set of 
labels developed for that origin-destination pair and deter­
mine the existence of a match. Labels were introduced into 
the label set one at a time, optimizing the label 's coefficient(s). 
A final sensitivity analysis ensured that changing any one 
parameter did not reduce the total matching score of the set 
of labels. The final Utrecht-Amersfoort label coefficients are 
shown in Table 1. A similar analysis was carried out in the 
other two study areas, using the Utrecht-Amersfoort coeffi­
cients as initial values. These values are also shown in Ta­
ble 1, indicating the minimal changes between the areas in 
this respect. 

Conditional Route Choice Models 

After the decision maker's set of alternative routes has been 
generated, the next step is specification of the utility functions 

for each of the alternatives. Utility functions include a sys­
tematic component-an expression of how independent vari­
ables affect the attractiveness of the alternatives scaled up by 
their respective estimatable parameters-and a random term 
that accounts for the variability in choice behavior indepen­
dent of the options' attributes. The systematic utility expres­
sions are usually specified as linear combinations of the inde­
pendent variables. 

The "maximum likelihood" method is used to estimate the 
values of the utility function parameters. Simply put, this 
method determines the values of all p<1rameters for which the 
observed choices are most likely to have occurred . The two 
most commonly applied probabilistic discrete choice models, 
logit and probit, differ in their assumptions about how the 
random term of the utility function is distributed [see, for 
example , Ben-Akiva and Lerman (18)]. 

The different mathematical properties of the random vari­
ables mean that each method has its advantages and disad­
vantages. Logit-form models are generally more flexible in 
the feasible number and structure of alternatives in the choice 
problem, and their parameters can be estimated with consid­
erably less computational burden than those of probit-form 
models . Logit-form estimation programs are widely available. 
The package used in the route choice study is ALOGIT (19). 

Two types of independent variables are considered for 
inclusion in the utility functions: (a) "level-of-service" attri­
butes for each route including, for example, measures of travel 
time, distance, and travel cost; and (b) dummy variables that 
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take a value of either 1 or 0 depending on whether an alter­
native meets certain conditions. In this analysis, dummy var­
iables are used to indicate whether the route corresponds 
exactly to one or more of the labels considered. 

Although these variables are objective measures of the routes 
themselves, different drivers perceive these attributes differ­
ently. The most common bases for these differences in per­
ception may be the characteristics of the drivers themselves 
(e.g., age or profession) and characteristics of the trip being 
made (e.g., its purpose and the frequency with which it is 
made). An attempt is made to capture these differences in 
perceptions through estimation of models for various seg­
ments in the population and examination of the variance in 
the respective model parameter estimates. 

Traffic Assignment 

The methods outlined in the preceding sections can be applied 
by an adaptation of a "multiclass-user" (MCU) procedure. 
In a standard MCU method, classes are defined a priori as 
using paths that are minimal with respect to a class-specific 
impedance function. In the models described in this paper, 
the assignment procedures define the classes as users of each 
of the labeled routes. Because the usage of these routes is 
not known a priori and is dependent on the features of the 
routes, additional steps have to be introduced into the assign­
ment procedure to apply the model. The procedure advocated 
is outlined in Figure 1. 

An important feature of the procedure outlined is the inte­
gration of the new choice modeling approach developed in 
this study with the "capacity-restraint" methods that have 
been the subject of many previous studies. This integration 
means that previously developed algorithms, techniques, and 
so on, can be retained and current methods can be seen as 
independent improvement that loses none of the previous 
gains. 

For each O-D pair 

1. Find Lebel use ll'l.llti·cless-user software 
Paths 

2. Find Different eliminate overlaps of the labels 
Label Paths 

3. Skim Path s<in characteristics of links on 
Attributes paths 

4. Apportion Flow (see Figure 2) 
to Paths 

5. Assign to use ll'l.llti-class-user algorithm 
Network 

6. Capacity use classical method as appropriate 
Restraint 

7. Iterate as appropriate 

FIGURE 1 Assignment procedure (overview). 

5 

The procedure involves six steps for each origin-destination 
pair for which a positive traffic flow is predicted . 

Note that the first, third, fifth, and sixth steps, which are 
the most demanding in terms of computer processing, are 
standard MCU assignment steps and are already provided in 
standard packages. The second step is a simple programming 
task. 

The fourth step in the process shown in Figure 1 is novel 
and is illustrated in greater detail in Figure 2. For each origin­
destination pair, an apportionment is made by the model to 
each of the labels. 

Figure 2 provides for a matrix of size (labels * segments) 
to be calculated for each origin-destination pair. It may be 
helpful to note that this procedure would be equivalent to a 
simple MCU procedure if labels and segments were identified , 
that is, if the matrix was simply 1.0 on the diagonal and zero 
elsewhere. The computation necessary to calculate and apply 
the matrix is not excessive. 

In summary, an assignment procedure is proposed that 
requires comparatively minor extensions to existing software . 
Execution of this procedure requires little more computer 
time than a standard MCU method. The procedure is orga­
nized as a generalization of existing capacity restraint pro­
cedures, thus offering an advance without eliminating the 
possibilities resulting from previous studies. 

MODELING RESULTS 

This section summarizes the major quantitative findings from 
this project. The first subsection discusses results from the 
choice set generation using the labeling approach described 
above. The following subsections report and evaluate the final 
choice models that consider sets of six or fewer route alter­
natives . 

Label Set Coverage of Observed Chosen Routes 

With the primary objective of development of an assignment 
tool that can be applied in all three areas studied in this 
project, the parameters of the full set of nine labels are devel­
oped by maximizing matches of the chosen routes in all three 
study areas . More manageable six-label and four-label sets 
were developed for use in the choice modeling stage of the 
analysis. The labels included in these reduced sets were selected 
in part on the basis of the expected availability of the link 
attribute data required for generation of the label. 

A computer network analysis package, SATURN (20), was 
used to build the labels between all chosen origin-destination 
pairs in the three study area networks. A separate computer 
program was written to compare each observed chosen route 
with the set of corresponding labeled routes and to summarize 
the match results. The label parameters developed in the first 
phase of this project (see Table 1) were used as initial values. 
Parameters were adjusted one by one, keeping the others 
fixed, in the direction that increased the number of matches 
to chosen routes. 

Table 2 shows the match results for the initial full-label set 
and the six-label set using both initial and final label coeffi­
cient values . Each row in the main body of the table refers 
to one label and reports the coefficient value(s) and the set 
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For a given 0-D pair 

Volumes: N, N2 Ni NS 
Seg.l Seg.2 . . . Seg.i ... Seg.s Flow on paths: 

Path 1 P11 P21 P;1 Ps1 v, Ls i=1 Ni-pi1 

Path 2 P12 P22 P;2 Ps2 V2 Ls i=1 N; ·pi2 

Path j P11 P2j p_ii Psi ~j Ls i=1 N;·~;j 

Path r P1r P2r P;r Psr vr L\=1 N; ·pir 

Where: is the number of vehicles for this 0-D for segment i 
(input data); 

piJ is the probability of choosing path j for segment i 
(derived from model and path attributes); 

is the predicted volume for path j for this 0-D 
(output to assignment stage). 

FIGURE 2 Path apportionment. 

of match scores for that single label in the various study areas­
U trecht-Amersfoort (full-label set only), Atnhem-Apel­
doorn, and Amsterdam-Purmerend. Three types of match 
scores are reported for each label in the table : 

1. Absolute matches: the total number of chosen paths 
matched by this individual label for corresponding origin­
destination pairs. 

2. Incremental matches: the percentage of chosen routes 
not matched by previous labels but matched by this label for 
corresponding origin-destination pairs. 

3. Marginal matches: the percentage of chosen routes 
matched by this label and not matched by any other label in 
the table. 

It is clear from Table 2 that a significant gain in coverage 
of the observed route choices can be realized by including 
additional criteria besides "minimize time." A comparison of 
the coverage in percentage terms of the time label alone versus 
the final six-label and full-label sets yields the results for the 
three study areas shown in Table 3, in which a four-label 
set-comprising time, distance, signals, and hierarchy labels­
is also presented. Table 3 also shows the decreasing "rate of 
return" from increasing the size of the label set. Note that 
the apparent lower coverage of the full-label set relative to 
the six-label set for the Amsterdam-Purmerend area is explained 
by the use of the initial , nonoptimal set of coefficient values. 

A sensitivity analysis of the label coefficients near their 
initial values showed that the matching rates generally remained 
stable. Nevertheless, some gains were made possible for the 
Arnhem-Apeldoorn and Amsterdam-Purmerend >tudy areas 
by adjusting the parameters for the "minimize signals" and 

"maximize capacity" labels. These adjustments are reflected 
for the six-label set in Tables 2 and 3 and account for the 
apparent decrease in coverage shown for Amsterdam-Pur­
merend in the latter table when progressing from the six- to 
the nine-label set. The match score results in Table 2 as well 
as data availability considerations were used to decide which 
labels were to be eliminated to form the reduced sets. 

The analysis found that many aspects of the labeling meth­
odology were transferable between the three areas studied. 
The values of the label parameters, when optimized on chosen 
routes for the three study areas, also agreed very closely for 
most of the labels, as can be seen from Table 1. 

Choice Modeling Results 

Extensive discrete choice modeling was conducted on sets of 
six and fewer labels. Most of the modeling was done on the 
combined set of chosen route data from the Arnhem-Apel­
doorn and Amsterdam-Purmerend study areas. Alternative 
specifications tested the explanatory power of various com­
binations of level-of-service variables as well as various forms 
for the constants in the utility functions of the alternatives. 

A number of model runs explored the effects of applying 
separate models for various subgroups in the population. 
Information from the survey responses was used to assign 
individual drivers to categories of trip length, trip frequency, 
and trip purpose . A surprising result from the choice modeling 
analysis was the relatively significant effect of geographical 
area that could not be explained in terms of differences in 
trip purpose, length, or frequency profile for the st11cly areas. 

Tables 4 and 5 show, respectively, the six-label and four-



TABLE 2 NUMBERS OF CHOSEN ROUTES MATCHED BY SIX AND NINE LABELS 

Label /J Coef. -------------------------------- Match Scores -------------------------------------

Value(s) Utrecht-Amersfoort Arnhem-Apeldoorn 

Absolute Incremental Absolute Incremental Marginal 

" " " 
Labels not r!19uiring ~ ~rameters 

Time 1505 69.9 1659 56.1 0.3 

Distance 462 1.6 1905 13.6 12.1 

Labels r!19uiring ~ earameters : i ni t i a l val ues 

Scenic 2.0 770 5.7 1288 1.3 1. 1 

Signals 30 sec. 851 2.7 1639 o. 1 0.1 

Capacity 1.5 1058 2.5 1497 0.3 0.3 

Hierarchy 5.0, 100 712 3.3 1299 0.5 0.5 

Total 6 labels 1846 85.8 2179 72.0 

Labels not included in models 

Quality 2.0 1677 0.4 1435 1.6 1.6 

Coomercial 1.5 1506 0 1664 er. 1 0. 1 

Expressway 3.0 501 0. 1 1499 o.o 0.0 

Total 9 labels 1857 86.3 2179 73.7 

Labels regui r ing a earameters : f ina l va lues 

Scenic 2.0 1288 1.3 1. 1 

Signals 5 min. 1639 0.3 0.3 

Capacity 2.0 1497 1.8 1.8 

Hierarchy 5. 0, 100 1299 0.5 0.5 

Total 6 labels 2179 73.6 

TABLE 3 COMPARISON OF LABEL SET COVERAGE 

Study Area 

U trecht-Amersfoort 
Arnhem-Apeldoorn 
Amsterdam-Purmerend 

Time Only(%) 

69.9 
56.1 
67.4 

Four Labels" (% ) 

NIN 
70.7 
77.6 

"Time, distance, signals, and hierarchy labels make up this set. 

Six Labels ( % ) 

85.8 
73.6 
81.2 

Amsterdam-Purmerend 

Absolute Incremental Marginal 

" 

1236 67.4 

357 0.5 

115 0.3 

1233 o. 1 

1170 3.1 

1246 6. 1 

1436 77.5 

1237 0 

887 0.8 

1197 0 

1436 78.3 

115 0.3 

1233 4.5 

1170 3.4 

1246 5. 1 

1436 81.2 

Full-Label Seth (%) 

86.3 
73 .7 
78 .3 

" 

1.4 

0.5 

0.2 

0 

0.4 

6. 1 

0 

0.8 

0 

0.2 

3.4 

0.8 

5. 1 

bJnitial, not optimal, label coefficient values were applied for Arnhem·Apeldoorn and Amsterdam-Purmerend corridors. 
<N/A = not applicable. 
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TABLE 4 ESTIMATION RESULTS FOR REFERENCE SIX-LABEL MODEL 

Variable Coef. Standard T-Ratio 

Estimate Error 

Estimated with separate label-specific dummies by area 

Total travel time (minutes) -0.0979 0.053 -1. 8 

Total distance (kilometers) -0.895 0.099 -9.1 

Scenic time (minutes) 0.0767 0.025 3.1 

Number of traffic signals -0.138 0.041 -3.4 

Expressway distance (km) 0.108 0.022 4.8 

High road quality distance (km) 0.365 0.075 4.9 

Low road hierarchy time (min) -o. 0877 0.017 -5.3 

overall label-specific dummy variables 

Minimum time route 0.119 0.064 1. 9 

Minimum distance route 0.881 0.083 10.7 

Maximum scenic route -0.0527 0.088 -0.6 

Minimum signals route 0.722 0.081 8.9 

Maximum capacity route 0.571 0.077 7.4 

Hierarchical travel route 0.888 0.076 11. 7 

First Run Second Run 

Total number of observations: 3052 3052 

Likelihood with zero coeffs.: -3459.6 -3459.6 

Final Likelihood: -1038.7 -1363.4' 

p 2 (o): 0.700 0.606 

label models resulting from this analysis. These models include 
seven generic level-of-service variables, and Tables 4 and 5 
show the coefficient estimates for all variables included in the 
alternative utility functions. The label-specific dummy vari­
ables take a value of 1 if the indicated label is matched by 
the route alternative in question and 0 otherwise. 

Initial models with generic level-of-service variables and 
label-specific dummies applicable across study areas failed to 
yield significant, correctly signed level-of-service coefficients 
(e.g., total travel time). Thus a two-step estimation process 
was used to develop the models presented in Tables 4 and 5. 
First, a model specification with separate sets of label-specific 
dummies for each area was estimated, producing significant 

level-of-service coefficient values of correct sign and relative 
magnitude. Because this model cannot be applied generally 
with respect to geographic area, a second estimation is required, 
yielding values for a single set of label-specific dummies while 
constraining the level-of-service coefficients to the values 
obtained in the previous estimation. 

Evaluation of Choice Models 

The choice models of Tables 4 and 5 can be compared in 
several terms, including data requirements, chosen route cov­
erage, goodness of fit, and values of model coefficients. 



Antonisse et al. 9 

TABLE 5 ESTIMATION RES UL TS FOR REFERENCE FOUR-LABEL MODEL 

Variable Coef. Standard T-Ratio 

Estimate Error 

Estimated with separate label-specific dummies by area 

Total travel time (minutes) -0.198 0.061 -3.3 

Total distance (kilometers) -0.577 0.101 -5.7 

Scenic time (minutes) 0.145 0.031 4.7 

Number of traffic signals -0.0849 0.052 -1. 6 

Expressway distance (km) 0.0936 0.031 3.0 

High road quality distance (km) 0.206 0.072 2.8 

Low road hierarchy time (min) -0.0824 0.018 -4.4 

overall label-specific dummy variables 

Minimum time route 

Minimum distance route 

Minimum signals route 

Hierarchical travel route 

Total number of observations: 

Likelihood with zero coeffs.: 

Final Likelihood: 

In terms of data requirements , both models require infor­
mation for the seven level-of-service attributes for all alter­
native routes. The only additional difference between the six­
Iabel and the four-label models is that the former requires 
the road capacity data necessary to generate the capacity label. 
In this analysis, capacity was calculated on the basis of num­
bers of lanes and road width. The four-label model requires 
somewhat less computation to run because only four labels 
must be generated for all relevant origin-destination pairs as 
opposed to six for the other model. 

Considering chosen route coverage, the six-label model was 
based on approximately 3 percent more (3,667 versus 3,563) 
chosen route observations than the four-label model. This is 
because the inclusion of two extra labels in the model spec­
ification allowed the analysis of the behavior of an additional 
sample of drivers to take place-namely, those 104 drivers 
who were observed to choose a "maximum scenic" or "max-

0.060 7.4 

1. 64 0.115 14.2 

1.10 0.093 11. 8 

1. 47 0.098 15.0 

First Run Sec ond Ru 11 

2635 2635 

-2434.5 -2434.5 

-726.5 -1087.8 

0.702 0.553 

imum capacity" route that did not overlap the other four 
labeled routes . 

The likelihood and p2-statistics of each model indicate how 
well the implied predictions for models about route choice fit 
the observations for the available sample of drivers. Strictly 
speaking, the p2-values for these two models are not com­
parable because they were not estimated on the same set of 
observations. Nevertheless, keeping these reservations in mind, 
the p2-statistic of the six-label model apparently indicates 
somewhat better fit to the data for the two study areas­
Arnhem-Apeldoorn and Amsterdam-Purmerend. 

The coefficient estimates of the level-of-service variables 
for both models all have the intuitively correct sign. For exam­
ple, one would expect increasing travel time to lead to decreasing 
attractiveness of the alternative, and indeed the travel time 
coefficient has a negative sign. Similarly, road quality, scenic 
time, and distance on expressways are all hypothesized as 
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positive qualities of a route , and these variables have positive 
signs. Another measure that may be used to appraise the 
reasonableness of a model is its implied "value of time ," which 
is calculated here by determining the ratio between the time 
and distance coefficients and factoring in an assumed oper­
ating cost per unit distance. 

Assuming a marginal cost of driving of $0.15 per mile (gas­
oline costs about $2.90 per U.S. gallon in the Netherlands at 
current exchange rates) , the implied vaiues of time for a major 
nonexpress road that is neither scenic nor of high quality are 
$0.61 per hour and $1.92 per hour for the six- and four-label 
models, respectively. For a minor road that is neither scenic 
nor of high quality , the respective values are $1.16 per hour 
and $2.72 per hour. Although all these estimates appear to 
be on the low side, the values of the four-label models agree 
more closely with other sources of value-of-time estimates. 

In conclusion, the differences between the two final models 
are not very great. The six-label model (Table 4) is based on 
more observations and shows better fit to the observed data, 
whereas the four-label model requires fewer data to operate 
and has a more reasonable implied value of time. If a choice 
were to be made between application of one model or the 
other, the six-label model would be recommended unless 
capacity data were difficult to come by or the value of time 
were perceived as too low based on other studies. 

In practice, several of the variables used in these models 
are not likely to be available for the networks to which the 
models are to be applied. For these circumstances , reduced 
models were developed in which the requirements for data 
were substantially reduced or omitted, for example, scenery, 
road quality, and traffic signals . These models are based on 
four or even three labels. The loss of explanatory power of 
these reduced models compared with the models of Tables 4 
and 5 is the inevitable consequence of the omission of the 
relevant variables . Fortunately, some variables other than 
time and distance , such as hierarchical level , speed limit , and 
capacity, are generally available in the Netherlands. 

Other Results 

Apart from the variables incorporated in the models pre­
sented in Tables 4 and 5, several other variables were con­
sidered for inclusion in the models . Some of these could be 
eliminated because of their excessively high correlation with 
variables already included in the models, others because they 
were not found to significantly influence route choice. In par­
ticular, income-dependent effects were carefully tested, but 
no significant influences could be found. 

Further tests were made of differences in behavior among 
drivers traveling for various purposes, making trips of varying 
lengths, or traveling with various frequencies. Although some 
differences of these types were found, they were much smaller 
than the differences with respect to geographical area. 

In general, despite the differences between areas just men­
tioned, a substantial degree of transferability was found among 
the three areas for which data were available. As noted above, 
the labeling procedure was transferable without problems; the 
choice models lost explanatory power in the transfer but still 
gave useful and reliable results . 

Structural tests were also made on the models estimated. 
Again some evidence was obtained of failure of the inde-
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pendence assumption on which the legit model is based, but 
this was not sufficiently serious to cause the structure to be 
abandoned. Moreover , there was no simple way in which the 
structural divergence could be approximated. 

CONCLUSIONS AND RECOMMENDATIONS 

A method has been developed for describing the generai route 
choice behaviors of car drivers. The method is based on the 
" labeling" of alternative routes that provide realistic possi­
bilities for each driver's journey. A probability model then 
represents the choice among these route alternatives. 

The method is based on a fundamental reassessment of the 
choice processes that lead to the selection of routes and the 
analysis of the choices actually made by nearly 7,000 drivers 
observed in three corridors in the Netherlands. 

Several road characteristics other than time and distance 
are found to be important in influencing route choice. Of 
particular relevance to policy is the finding that characteristics 
associated with major roads (restricted access, high speed 
limit, high capacity, hierarchical status) are strongly positive 
in influencing route choice. Scenery (positive) and traffic lights 
(negative) are also found to be relevant. 

Even under uncongested circumstances, several routes are 
used for a given journey. The models estimated identify these 
routes and predict the proportion of vehicles that will use them. 
The fact that these predictions are based on models formu­
lated by observing behavior rather than on an arbitrary basis 
as in some algorithms in current use gives much more con­
fidence in their use. 

Application procedures have been developed for the models. 
These procedures take into account the existing sophisticated 
methods for the treatment of capacity constraint. The appli­
cation of the route choice models would add little to the 
computer time needed to make an assignment and would 
require little additional software. 

Reduced models have been developed to be applied in 
circumstances of reduced data availability. 

Further development of route choice analysis is required 
to account for two important aspects: 

1. The information available to the driver is not currently 
modeled. Apart from fixed sign posting, interest in formu­
lating policy on the dynamic provision of information is grow­
ing, and it is important to know the extent to which drivers 
might be influenced by methods of providing it. 

2. Cost is incorporated into the models only weakly , through 
the distance variables. The policy under consideration includes 
"road pricing," whereby drivers would pay much more directly 
for the use of roads ; the influence of such measures on route 
choice, however, needs to be investigated. 

A third aspect that might be considered is the apparent safety 
of one route compared with another and how that affects route 
choice. 
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Demand Diversion for Vehicle 
Guidance, Simulation, and Control in 
Freeway Corridors 

YoRcos J. STEPHANEDES, ErL KwoN, AND PANOS MrcHALOPOULos 

Rapidly increasing traffic volume, congestion, and excessive 
delay are making the management, control, and guidance ol' 
traffic flow one of the most critical transportation problems 
in urban freeway corridors. Modeling demand diversion to less 
congested routes within a corridor is a necessary part of demand 
modeling efforts for improved simulation and control, as are 
guidance-navigation systems in real time. Models for describ­
ing diversion at the trip origin and diversion at freeway entrance 
ramps are discussed. Data collected in a major metropolitan 
area have shown that diversion at the origin is a function of 
trip time, route length, and the number of intersections along 
the trip. However, trip time is the dominant determining factor 
and can be employed to estimate the decision in the absence 
of additional information. Diversion at freeway entrance ramps 
depends on the perceived trip time on the freeway and arterial 
and the perceived waiting time at the ramp queue. The data 
confirm that socioeconomic indicators do not play a role in the 
diversion decision. The purpose of developing these models is 
for dynamic simulation, on-line freeway corridor control, and 
demand forecasting suitable for guidance and navigation. 

Rapidly increasing traffic volume and the ensuing congestion 
and excessive delay are making the management and control 
(guidance) of traffic flow one of the most critical transpor­
tation problems on urban freeways. To remedy the problem, 
corridor management seeks to divert freeway drivers away 
from the congested segments of freeway corridors to alter­
native routes within a corridor, such as adjacent arterials. The 
diversion can occur at the beginning of the trip, before enter­
ing the freeway ramp, or on the freeway. 

Demand diversion, generally caused by excessive delay and 
ramp queues , is a major problem (1-3) that has not been 
effectively considered in real-time control systems, although 
recently an effort has been made to address the problem ( 4). 
The major difficulty lies in the rapidly changing traffic flow 
conditions; furthermore , substantial instrumentation is required 
to collect data for modeling traffic diversion. Determination 
of realistic control policies and effective guidance-navigation 
schemes for the freeway corridor should include diversion as 
an integral part. Existing literature (1,2) suggests that there 
is a lack of an on-line demand predictor suitable for real-time 
control for interconnected ramps and arterials . However , 
existing demand diversion models are not suitable for effective 
real-time freeway control strategies. Current demand diver­
sion models are based on assumptions that are considered 

Department of Civil and Mineral Engineering, Universi ly o[ Mi n­
nesota, Minneapolis, Minn. 55455. 

unrealistic (5), such as user-optimized equilibrium flow pat­
terns, perfect knowledge of traffic conditions ahead, and infi­
nite storage capacity on surface streets. Diversion is only a 
part of the more general demand prediction problem. 

Modeling of demand diversion is addressed in this paper; 
this modeling was needed to develop a reliable prediction 
algorithm suitable for implementing real-time control policies 
( 6, 7) in freeway corridors. Within this context , diversion is 
an essential element necessary for proper estimation of traffic 
demand as well as for determination and simulation of the 
optimal control strategy or guidance plan. The diversion models 
presented here can be used with a demand predictor (7) to 
simultaneously determine ramp demands and diversion vol­
ume as part of an integrated corridor simulation-control-guid­
ance process in real time. 

The models should be appropriate for employment in guid­
ance-navigation systems that use information on current traffic 
conditions for selecting optimal routing in real time. In such 
systems the models are needed to estimate the impact that 
the guidance-navigation information has on drivers . In par­
ticular, guidance-navigation systems are expected to respond 
to drivers' queries by providing information on freeway and 
arterial delays, freeway ramp queues, and the resulting ramp 
delays as freeway conditions and ramp metering rates change 
with time. 

A critical review of the most widely accepted research on 
the diversion problem is presented first. This review includes 
a summary of model features that emphasize effectiveness 
and drawbacks of each approach from the limited tests found 
in the literature. Subsequently, two utility-based demand 
diversion models are developed , one for the diversion at the 
trip origin and one for the diversion at freeway ramps. The 
models are tested with data from the I-35W freeway corridor 
in the south area of the Twin Cities-Minneapolis and 
St. Paul, Minnesota . 

Consistent with expectations, the model specifications indi­
cate that trip time is the dominant factor determining diver­
sion at the trip origin , whereas route length and the number 
of intersections along the trip also play significant roles. 
Diversion at freeway entrance ramps depends on the per­
ceived trip time on the freeway and arterial and the perceived 
waiting time at the ramp queue. The data confirm that socio-· 
economic indicators do not play a role in the diversion deci­
sion. Further , for commuter trips shorter than 1 hour , freeway 
drivers consider only one diversion alternative, a preferred 
arterial, and do not divert to downstream ramps . The diver­
sion models require only limited data for implementation. 



Stephanedes et al. 

BACKGROUND 

Freeway corridor models have considered diversion within 
the context of control and assignment by determining the long­
term equilibrium flow pattern that satisfies Wardrop's prin­
ciple within a given time slice or by employing self-assignment 
(i.e., assuming that omniscient drivers can find the quickest 
route at each decision point of their trip). Although some 
researchers determined the flow pattern through a combi­
nation of models, others sought to increase computational 
efficiency and avoid potential modeling inconsistencies by 
developing a single modeling approach. Further, earlier meth­
ods (8) may, by assumption, limit diversion to occur only at 
the trip origin, whereas more recent methods offer the flex­
ibility of allowing diversion at multiple points during the trip. 

Diversion methods that are based on a combination of models 
are older. Lieberman (9) developed a freeway corridor sim­
ulation program, SCOT, by combining DAFT, a macroscopic 
corridor simulation model, with UTCS-1. Traffic flow on non­
freeway links is treated as a collection of individual vehicles, 
each processed every second of simulated time; in contrast, 
the freeway flow is described macroscopically, which permits 
the grouping of vehicles into platoons and the use of a coarser 
time step. With the origin-destination (0-D) demand matrix 
or turning movements at each node specified by the user, 
traffic is routed following the minimum-time path, which the 
user recalculates successively by selecting the time interval. 

Another composite model that incorporates diversion within 
a freeway corridor simulation, CORQlC, was proposed by 
Orthlieb and May (10). CORQlC allows diversion from the 
freeway to arterials only for the "flexible" users whose des­
tinations are within the corridor boundaries, whereas other 
users have fixed 0-D routes. The model combines FREQ3 
and TRANSYT5 to simulate the diversion following a linear­
programming decision process that selects the optimal ramp 
metering rates. The corridor assignment associated with the 
optimal rates maximizes the total trip time savings for the 
flexible users of the freeway. In each 15-min time slice, after 
all fixed-route demand has been distributed, the decision process 
incrementally assigns the optimal flexible-route demand sub­
ject to corridor capacity constraints. For each optimization 
increment, a constant value of time savings for the flexible 
users is estimated from simulating the previous traffic loadings 
in the corridor. After each optimization, the resulting opti­
mized volume is assigned and the new value of time savings 
is found . This method assumes that diversion is possible only 
at the trip origin. 

In contrast to the earlier methods, FREQ7PE (11) is based 
on a single program rather than a combination of programs. 
At each 15-min time slice the method calculates the optimal 
ramp metering rates for the given 0-D ramp volumes that 
optimize freeway objectives. The resulting diversion is deter­
mined by estimating the equilibrium flow pattern in the cor­
ridor for each time slice. An iterative assignment procedure 
is performed until the travel time difference between any 
alternative routes for each 0-D pair is within an acceptable 
range. Evidently this procedure allows for diversion at several 
alternative ramps. 

The models in the CORQ (12) family use a form of microas­
signment corridor technique with the given 0-D zone demand 
divided by 15-min time slices. For each time slice, a minimum­
time path is constructed for all 0-D pairs, and an incremental 
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assignment is performed by iteratively updating the link cost. 
The remaining demand at each time slice is stored at the 
upstream node of a link where it is queued and assigned at 
the next time slice with the new demand and updated mini­
mum-time path. CORCON (13) extended the minimum path 
assignment algorithm of CORQ by incorporating turn pro­
hibitions and a traffic diversion procedure from the queueing 
link to the nonqueueing alternative on the basis of travel cost 
(time) difference. However, both models assume unlimited 
queue storage capacity of arterials and drivers' perfect knowl­
edge of the existing traffic condition in the network. Although 
these assumptions are not realistic , the ability to determine 
and keep track of queues is an advantage over the previous 
methods. 

INTEGRA TION-1 (14) is a microscopic corridor simula­
tion model, which, unlike previous methods, considers the 
behavior of traffic flow in terms of individual vehicles that 
have self-assignment capabilities. The model is not based on 
the time-slice approach; rather, it assigns individual vehicles 
sequentially to a network that is already loaded with any 
previous departures that have not reached their destination . 
The turning movement of each vehicle at each node and instant 
is dictated by the minimum-path tree table existing at that 
instant and is recalculated every 6 sec. The main difference 
between CORQ and INTEGRATION-1 is that CORQ con­
siders vehicle flow rates for an entire time slice, whereas 
INTEGRATION-1 treats individual vehicles on a continuous 
basis. The departure times of all trip demands are given, and 
drivers are assumed to have full knowledge of the existing 
traffic conditions on the entire network. 

In addition to the above methods , a number of models 
developed for network simulation implicitly consider diver­
sion. Of these, TRAFLO (15) and SATURN (16 ,17) are worth 
mentioning because of their extensive use by government and 
private organizations. These composite models implicitly con­
sider diversion irt the larger context of simulation and assign­
ment. In particular, TRAFLO combines an equilibrium 
assignment model with four different simulation models that 
estimate the expected performance of the assigned flows. 
However, the assignment model does not have the feedback 
function that can employ the refined travel time and queue 
size estimates to update and correct the initial traffic assign­
ment assumptions. Although SATURN adopts an iterative 
procedure to correct and update the network parameters for 
the assignment, it currently uses all-or-nothing assignment ; 
further, it assumes a cyclic flow profile, only suited for sig­
nalized arterials. Such assumptions limit its applicability for 
freeway corridor analysis. 

To effectively control the traffic flow in a corridor, the 
estimation of the time-dependent flow pattern of the diverting 
traffic is of critical importance. As the above review indicates, 
existing diversion methods determine the equilibrium flow 
pattern satisfying Wardrop's principle at each time slice either 
macroscopically or by employing the self-assignment tech­
nique, thus assuming that drivers can find the quickest route 
at each decision point with perfect knowledge of traffic con­
ditions ahead. However, it has been argued that Wardrop's 
principle is not applicable to the dynamically changing traffic 
environment mainly because of the human nature of drivers; 
that is, drivers are not well informed or are not sufficiently 
skilled to choose the best route (5). 

Understanding commuter reactions to ramp control strat-
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egies and guidance-navigation information on freeway and 
arterial trip characteristics is essential in estimating and con­
trolling corridor flow to decrease congestion. This paper pro­
poses a utility-based approach for the dynamic diversion prob­
lem, which. when combined with an appropriate filter, will 
more realistically model the commuter diversion process for 
simulation, control, and guidance-navigation in congested 
freeway corridors. 

For the purposes of this analysis we assume that diversion 
occurs at two points: the trip origin and the entrance to the 
freeway ramp. Although diversion can occur at any point 
during the trip, all intermediate decision points were included 
in the stated two because of time and data limitations and the 
need to immediately employ a diversion model that addresses 
the points where most drivers make a route diversion decision. 
The following sections summarize the model formulation and 
the parameter estimation results. 
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MODEL FORMULATION 

The structure of the overall diversion-control-guidance mod­
eling approach can be analyzed at several levels of detail. At 
the most general level, it may be pictured as a sequential 
process (Figure 1) with the freeway corridor performance 
sector acting as a link between traffic diversion and changes 
in freeway controls and guidance-navigation information. For 
instance, at the trip origin, trip makers select either the free­
way or the arterial route, depending on their corresponding 
perceived trip times, which are functions of known variables 
such as volume and capacity. Their perception is enhanced 
with the updated information they receive from radio and 
TV and from guidance-navigation systems, if such are in 
operation. 

Even though the initial route of choice may be the freeway, 
at the entrance ramp the freeway commuter can still decide 
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Control 

I 
Arterial 

Capacity 
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FIGURE 1 Demand diversion, control, and guidance-navigation. 
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FIGURE 2 Sample freeway corridor. 

not to enter; rather, the vehicle can divert to an arterial street 
depending on the ramp traffic situation. This decision is again 
enhanced by any additional information the driver has been 
receiving from guidance-navigation or other communication 
systems. The diversion decision of each driver affects the 
overall volume on the freeway and arterial(s) and, thus, the 
performance of the freeway corridor. In turn, the corridor 
performance is used as a basis for setting the control in the 
corridor, such as ramp metering rate and arterial signals, fur­
ther affecting the corridor performance. 

Communications and guidance-navigation systems pick up 
the current performance information and transmit it to the 
drivers, who can update their diversion decisions, and the 
process continues full circle. Therefore, the traffic diversion 
process reflects the short-term reaction of traffic flow to the 
control and guidance schemes, and the resulting congestion 
patterns in the dynamically changing traffic environment. 

Tracing the diversion, control, and guidance-navigation 
interactions through time is done on the basis of component 
equations that are used to model the diversion, filter the traffic 
flow measurements, and set the desired control and guidance 
strategy. In this paper, we focus on the development of the 
diversion equations . 

Because of the limitations of the existing models, dynamic 
freeway diversion equations were developed that fulfill the 
requirements of the time-sensitive approach followed in this 
work. Assuming for the purposes of this discussion that the 
freeway model and all other component equations are com­
plete, the diversion equations apply the conservation principle 
to the freeway ramp and adjacent arterial(s) to determine the 
traffic volume as a function of known inputs and outputs and 
the state of the system. As a reference to the diversion equa­
tions, Figure 2 shows an example corridor system consisting 
of a freeway with an entrance ramp, a frontage road , a parallel 
one-way arterial street, and cross streets connecting the arte­
rial with the freeway entrance ramp. For simplicity, the front­
age road is used only for the diversion from the ramp, and 
the diverted traffic volume directly joins the arterial flow . 

Applying the conservation principle to the ramp and arterial 
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link, respectively, for a suitably small length of time slice t, 
the state evolution equations for the ramp and the arterial of 
corridor component (i, i + 1) can be written: 

XRi(t) = XR;(t - 1) + DR;(t) - CR;(t) 

XA;(t) = XA;(t - 1) + IA;(t) - CA;(t) 

where 

XR;(t) = number of vehicles on ramp i at time slice t, 
DRi(t) = vehicles entering ramp i at t, 
CRi(t) = vehicles exiting ramp i at t, 
XA 1(t) = vehicles on arterial link (i, i + 1) at t, 

(1) 

(2) 

IA;(t) = vehicles entering arterial link (i, i + 1) at t, and 
CA1(t) = vehicles exiting arterial link (i, i + 1) at t. 

Then, on the basis of the concept of utility , the input vol­
umes for the entrance ramp and the arterial link are 

DRi(t) = DF;(t). PR;(t) 

IA;(t) = CAi . 1(t) * Q,(t) + DA;(t) + Dn;(t) 

where 

DF1(t) = D(t) * exp[V F{t)]/Iexp[V'(t)) 

(3) 

(4) 

= freeway trip demand at trip origin at t, (5) 

PRi(t) = exp[UR(t))/lexp[U'(t)] 
= portion of DF1(t) entering ramp i at t, (6) 

DA1(t) = D(t) * exp[VA(t))/lexp[V'(t)) 
= arterial trip demand diverted from 

origin at t, (7) 

Dn;(t) = D(t) * exp[VF(t))/lexp[V'(t)) * [1 - PR;(t)] 
= diverted volume at entrance ramp to 

arterial at t, 

Q,(t) = portion of CA1_i(t) entering arterial link 
(i, i + 1) at t, 

D(t) = total demand originating from this corridor 
section at t, 

(8) 
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V(t) =utility of freeway (VF) or arterial (VA) route 
for diversion at origin at t (see Table 2), and 

U(t) = utility of entering ramp (Un) or diverting ( U 0 ) 

to arterial at entrance of freeway ramp at t 
(see Table 4). 

The above model assumes that the state evolution is first 
order. with the diverting volume estimated from disaggregate 
data collected in the study area. The exit volume C(t) can be 
estimated as a function of the link volume and the physical 
characteristics of the link, or, in real-time application, the 
actual measured volume can be used to update the model 
parameters using filtering techniques (18). The model implic­
itly assumes that time slice t is suitably small or the link is 
relatively long. 

Using the proposed model, the optimal control in the free­
way corridor minimizing total system travel time for the given 
time period can be formulated as follows: 

find optimal control policy u(t) to minimize 

(subject to corridor flow standards and management 
constraints) 

where 

XF(t) = number of vehicles in freeway section at time slice 
I, 

ot = size of time slice, and 
T = number of time slices in optimization period. 

We are now validating the proposed model using corridor 
traffic data. In this paper we report the estimation results of 
the utility functions for the diversion decisions. The compre­
hensive validation results will be presented in a forthcoming 
paper. 

PARAMETER ESTIMATION 

Route Diversion at Trip Origin 

Before their departure, commuters make their initial decision 
on which route to take for their trip to work. In general, this 
decision considers two major determining factors-the set of 
alternative routes for the trip and the characteristics of each 
route . In this work we assume that the set of possible trip 
routes consists of a freeway and an arterial. Our extensive 
surveys indicate that very few commuters (less than 3 percent) 
seriously consider a third alternative and, even then, they 
select that alternative only in low-likelihood circumstances 
(e.g., in a severe snowstorm). 

We estimated the route diversion at the origin by specifying 
a binary logit model for the freeway and arterial alternatives. 
For this model, we define the freeway alternative (and, sim­
ilarly, the arterial) as a trip route that is at least 80 percent 
freeway. Model variables can be of two types-trip related 
and socioeconomic. The three trip-related variables are 

• travel time (T) in minutes, the one-way trip time in the 
vehicle; 
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• route length (L) in miles, the one-way trip distance; and 
• number of intersections (!), the number of intersections 

crossed by the vehicle along the one-way trip . (If the exact 
number is not available, a range of values can be used; e.g. , 
suggested range is low at I < 15, medium at 15 < I < 45, 
high at 45 < /.) 

Management and control policies can directly affect the 
above variables. For instance, for the same trip route, changes 
in ramp metering rates and in the number of freeway lanes 
available will affect the travel time. Similarly, ramp closings 
and construction detours will increase the route length. Reduced 
access at intersections will decrease the number of intersec­
tions experienced by the trip maker on the priority access 
road. Of course, changes that are of a more substantial nature, 
such as bridge reconstruction, a new bypass, or a new ramp, 
may develop new alternatives for a subset of drivers; in such 
cases, the new values for the above variables must be entered 
in the diversion specification. 

Drivers are expected to know the value of each of the above 
variables for the two major commuting alternatives. Such 
values rarely change, bul when lhey Ju, uµualeu information 
is likely to become widely known to commuters because it is 
routinely communicated through newspapers, radio, and 
television. Up-to-the-minute information on changes resulting 
from unforeseen events, such as freeway incidents, is also 
commonly available through special radio or TV announce­
ments and would be part of guidance-navigation systems in 
urban areas. Real-time information on incidents is smoothed 
by the departing driver depending on the planned trip depar­
ture time, a subject that we are currently analyzing. 

In addition to the above trip-related variables, we tested 
annual household income, a socioeconomic variable proposed 
by Abu-Eisheh and Mannering (19) for the route choice pro­
cess. However, we did not expect, and our tests did not indi­
cate, this variable to play a role in the diversion. 

A questionnaire survey of 500 households was conducted, 
and individual characteristics were recorded for the com­
muters with trips originating in the south I-35W corridor in 
November 1987 (see Figure 3 for an illustration of this freeway 
corridor crossing the Twin Cities in a north-south direction). 
Following data treatment, 105 employees having a common 
destination were selected as the sample commuters. All com­
muters in the sample had the choice of driving in a northerly 
direction using a predominantly freeway route or an adjacent, 
one-way arterial (Park Avenue, see Figure 3). Although the 
data treatment resulted in a decreased sample size, the improved 
quality of the treated sample contributed to an increased sig­
nificance and robustness of the estimated model parameters. 

Each employee was asked to draw his or her freeway and 
arterial routes on the map, indicating the initial choice and 
expected travel time for each route under normal conditions. 
From this information, the detailed trip characteristics includ­
ing route length, number of intersections, and number of turns 
were obtained. Further, the socioeconomic characteristics of 
each driver were provided from the questionnaire (Table 1). 
Sample commuters were evenly distributed in the study area, . 
and most sample characteristics were almost-Gaussian dis­
tributed (number of intersections was missing the left tail) . 

Three disaggregate models to estimate diversion at the trip 
origin were derived from the Twin Cities data (Table 2). 
Model Ml tests the hypothesis that trip time affects the diver-
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FIGURE 3 I-35W study area. 

sion decision, and the estimation results indicate that it is, 
indeed, a significant factor (99 percent significance level). 
Model M2 indicates that, although travel time is a dominant 
factor in diversion, the number of intersections and route 
length also play a highly significant role. All coefficients have 
the expected sign; further, model M3 confirms our expecta­
tion that the socioeconomic indicator (income) does not influ­
ence the diversion . 

The estimation results show that when freeway and arterial 
are the two alternatives, and collection of data on number of 
intersections and route length is exceedingly costly, model Ml 
can be employed to estimate diversion at the origin based 
only on travel time. Model users who wish to employ model 
M2, either to gain the additional predictive power or because 
it is necessary for policy purposes, do not have to know the 
exact number of intersections along the commuter trip. As 
indicated at the bottom of Table 2, an approximation of the 
value of this variable can be used to facilitate model imple­
mentation. 

Ramp Diversion 

Commuters approaching the freeway entrance ramp can opt 
to divert to an alternative route before entering the ramp. 
Their decision depends on the set of available alternatives 
and the traffic conditions at the ramp. Our surveys indicate 
that, for the corridor under study, only a small percentage 
(l.ess than 4 percent) of drivers divert to a downstream ramp, 
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while the vast majority of diverting drivers select the arterial 
option. Based on this finding, we have limited the set of route 
alternatives at the ramp entrance to two (freeway and arterial) 
and estimated the diversion by specifying a binary-choice logit 
model. 

Model variables can be of two types-trip related and so­
cioeconomic. However , based on our conclusions from mod­
eling the diversion at the origin, and after confirming those 
conclusions with the data we collected for the ramp diversion, 
we eliminated all socioeconomic vari<tbles Erom the ramp 
diversion model. Our final hypothesis included four trip-related 
variables: 

• Freeway travel time (FTT) in minutes, the one-way trip 
time from the point of entering the freeway proper to 
destination. 

• Arterial travel time (ATT) in minutes, the one-way trip 
time from the point of diverting at the ramp entrance to 
destination. 

• Waiting time (WT) in minutes, the one-way waiting time 
at the freeway ramp prior to entering the freeway proper. 

• Total travel time (TTT) in minutes, equals WT + FTT 
for the freeway alternative; if the driver diverts , TTT = ATT. 

Freeway management and control strategies can dir ctly 
affect the above variable . For example, ramp metering rate 
have an immediate effect on WT and in indirect effect on the 
main traffic stream on the freeway. Drivers approaching the 
ramp perceive changes in WT by considering the queue length 
but can only gue . about any changes in FTT and A TT by 
considering the traffic situation (such as speed and density) 
in the vicinity of the ramp entrance. Lane closings and main­
tenance work can affect both FTT and ATT, but such infor­
mation is either known to drivers at the origin or not known 
at all. Additional information on these conditions can be pro­
vided through other mean of communication, including rou­
tine radio announcements and new guidance-navigation 
systems. 

A return-mail questionnaire survey of 600 drivers actually 
commuting via the I-35W freeway corridor was conducted at 
three northbound freeway entrance ramps in November 1987. 
From the 195 usable responses, data were obtained on driver 
individual characteristics such as trip origin and destination , 
departure and arrival times, maximum tolerable waiting time 
and queue size before diverting to the arterial route, travel 
time of the alternate route from the diverting point, and so­
cioeconomic information (Table 3). 

Two disaggregate models of the diversion at the freeway 
ramp were derived from the data of the corridor sample (Ta­
ble 4). Models Dl and D2 test the hypothesis that trip time 
affects the decision to divert at the ramp. Although the results 
from model Dl indicate that trip time is a significant factor 
(99 percent level), inspection of model D2 indicates that this 
variable should be treated as alternative specific rather than 
generic-a consideration that improves the estimation power 
of the model from 59 to 71 percent. 

All estimated coefficients have the expected sign and a high 
statistical significance. The specifications reflect our belief 
that, for commuting trips of the nature encountered in the 
Twin Cities, the competition between freeway and arterial 
times should not follow a linear rule . In particular, the diver­
sion should be highly sensitive to trip times that are very short 



TABLE 1 SUMMARY STATISTICS OF SAMPLE COMMUTERS AT ORIGIN 

Group 1 Group 2 

Sample size 74 31 

Annual household income($) 39000 3'1000 

Age 39.5 35.0 

Years in area 7 . 8 yrs 6 . 0 yrs 

Route type Freeway Arterial 

Primary Route length 7 . 2 mi. 6.6 mi. 

Route Travel time 17.0 min . 20. ]'. min . 

# Intersections 18 40 

# Turns 5 . 4 7.4 

Route type Arterial Freeway 
Al tern-
ate Route length 8 . 8 mi. 7.8 mi. 

Route Travel time 23.3 min . 21. 6 min . 

# Intersections 58 24 

# Turns 6 . 9 8.7 

TABLE 2 ESTIMATED LOGIT COEFFICIENTS FOR DIVERSION AT ORIGIN 

Variable 

Constant (freeway only) 

Travel Time (min . ) 

Travel Time * Annual 
Household Income ($1000) 

Number of Intersections 
* Route Length 

Sum of Chosen Probabilities 

Sum Prob . Ratio 

Initial Log Likelihood (Lo) 

Final Log Likelihood (Le) 

p2 - 1 - [ Le / L0 l 

t-statistic 

For DI be t ween 15 and 45, 
if DI < 15 then -0 . 0232 
if DI > 45 then -0.0362 

Model Ml Model M2 Model M3 

0.238 · 0 . 348 -0 . 432 
(0.83)* ( · 0.95) ( · l.13) 

-0 . 260 -0 . 212 -
(-4.46) (-3.58) 

- -0.00513 
(-3.46) 

- -0 . 00401** -0.00462 
(·2.59) (-2.86) 

73.6 76. 7 76 . 5 

0 . 72 0 . 75 0.75 

-70 . 7 -70 . 7 -70.7 

-44 . 3 - 39 . 5 -39.6 

0.37 0 . 44 0.44 

where DI - Intersections in Arterial Route - Intersections in 
Freeway Route . 
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TABLE 3 SUMMARY STATISTICS OF SAMPLE COMMUTERS FOR RAMP DIVERSION 

Max. Wait Max. Queue 
Access Time Freeway Travel Arterial Time on Size on 

Sample to Ramp Time Travel Time Ramp Ramp 
Location Size (min) (min) (min) (min) (no. of cars) 

51st Street 64 5.4 18.8 26.3 7.5 13.0 
46th Street 88 6.7 17.5 23 .2 5.8 17.9 
35th Street 43 7.1 17.2 23 .7 8.3 16.9 
Total or average 195 6.4 17.8 24.2 6.9 14.8 

TABLE 4 ESTIMATED LOGIT COEFFICIENTS FOR RAMP DIVERSION 

Constant 
. 

TTT 

DTT/FTT• 

DTT/ATT•• 

Sum of Chosen Probabilities 

Sum Prob. Ratio 

Initial Log Likelihood L 
0 

Final Log Likelihood Le 

Pz - 1 . [ Le / Lo ) 

DTT - ATT · (WT+FTT) 

Freeway only, else 0. 

Arterial only, else 0 . 

t-statistic 

but not as sens1t1ve to those that are long. The improved 
estimation and statistical performance (in terms of !-statistic 
and p2-value) of model D2 is not surprising because com­
muters are known to attach different values to their time, 
depending on whether they are traveling on a route where 
the speed is expected to be high (the freeway) or on one 
where no such expectation exists (the arterial). 

Although implementation requires only limited data, an 
additional analytical step is needed before the above models 
become fully operational in a real-time traffic environment. 
In particular, relationships should be developed between the 
value of the model variables, which are perceived by drivers , 
and the value of variables that could be routinely measured 
by traffic engineers . For instance, a specification should be 
developed for the relationship between the length of the ramp 
queue (or the number of cars in queue) and the ramp waiting 
time perceived by approaching drivers . Such relationships are 
now under development. 

Model Dl Model D2 

-0.751 -2 . 31 
(-4.03)··· (-6.42) 

-0.123 . 
(-5.52) 

. -4.71 
(-5.29) 

. -18.60 
(-7.13) 

76.7 92.3 

0.59 0. 71 

-180.2 -180.2 

-158.6 -115. 3 

0.12 0.36 

SUMMARY OF THE RESULTS 

The rapid increase in the volume of traffic, congestion, and 
excessive delays is making the management, control, and 
guidance of traffic flow one of the most critical transportation 
problems in urban freeway corridors. Modeling demand 
diversion to less congested routes within a corridor is part of 
demand modeling efforts for improved simulation and control 
as well as guidance-navigation systems in real time . In this 
paper two such diversion models were developed. The first 
model described the diversion at the trip origin, and the sec­
ond, the diversion at freeway entrance ramps. 

From a survey of approximately 1,100 commuters in the 
south I-35W corridor of the Twin Cities Metropolitan Area, 
two logit specifications were estimated. The data indicated 
that diversion at the origin is a function of trip time, route 
length , and the number of intersections along the trip . How­
ever, trip time is the dominant determining factor and can be 



20 

employed to estimate the decision in the absence of additional 
information. Diversion at freeway entrance ramps depends 
on the perceived trip time on the freeway and arterial and 
the perceived waiting time at the ramp queue. Further, the 
data confirmed that socioeconomic indicators do not play a 
role in the diversion decision . It was also determined that, 
for commuter trips shorter than one hour, freeway drivers 
consider only one diversion alternative, that is, a preferred 
arterial, and do not divert to downstream ramps. 

Although the models were based on data collected from 
only three freeway ramps in a specific metropolitan area and 
have not yet been transferred to other areas, it is expected 
that, for trips of a similar nature, the behavioral principles 
underlying the models generally would be applicable to other 
areas as well. Ongoing work seeks to validate the models and 
further extend them to make them operational in a real-time 
environment in conjunction with demand predictors under 
development. The purpose of developing these models is for 
dynamic simulation, on-line freeway corridor control, and 
demand forecasting suitable for guidance and navigation. 
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Convergence Properties of Some 
Iterative Traffic Assignment 
Algorithms 

ALAN J. HOROWITZ 

This paper examines the convergence properties of four pop­
ular traffic assignment algorithms: Frank-Wolfe decomposi­
tion for fixed-demand equilibrium assignment, an ad hoc vari­
ation of the Evans algorithm for elastic-demand equilibrium 
assignment, fixed-demand incremental assignment, and elas­
tic-demand incremental assignment. The algorithms were eval­
uated according to errors associated with insufficient itera­
tions, arbitrary selection of starting point, inexact theory, and 
small variations in data. Each of the four algorithms reached 
its intended solution, but did so very slowly. Elastic-demand 
incremental assignment emerged as the preferred technique, 
principally because of its more accurate response to small vari­
ations in data and its adaptability to various models of travel 
demand. 

The most popular traffic assignment algorithms may be thought 
of as logical extensions to traditional iterative capacity restraint. 
That is, the algorithms consist of a series of all-or-nothing 
assignments interspersed with computations to improve esti­
mates of link impedances and, perhaps, link volume. Some 
of these algorithms, such as the Frank-Wolfe decomposition 
method for fixed-demand assignment (1) or Evans's method 
for elastic-demand assignment (2), have a strong theoretical 
basis. Other algorithms are ad hoc. In spite of the large body 
of theoretical work on traffic assignment, transportation plan­
ners have had little guidance about the algorithm that yields 
the best performance within the usual limits on resources. In 
addition, there is little accurate information on how to employ 
an algorithm most effectively once a choice has been made. 
Many common rules-of-thumb are seriously misleading. 

REVIEW OF THE ALGORITHMS 

The purpose of this paper is to reevaluate a few existing 
algorithms rather than to break new theoretical ground. The 
following are brief descriptions of the algorithms considered: 

• Iterative capacity restraint: Iterative capacity restraint is 
still popular, despite its terrible convergence characteristics. 
This algorithm is included in this comparison because it has 
aptly served as a "straw man" in studies by other researchers. 

• Equilibrium: This fixed-demand, equilibrium assignment 
technique, available in most major planning packages, is an 
implementation of Frank-Wolfe decomposition . 

• Modified Evans: Modified Evans is an ad hoc variation 

Center for Urban Transportation Studies, University of Wisconsin­
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of the Frank-Wolfe decomposition algorithm that recalculates 
demand at each iteration. It resembles the Evans algorithm 
in both purpose and performance. 

• Fixed-demand incremental: Incremental traffic assign­
ment loads a fraction of the trip table at each iteration using 
all-or-nothing assignment. This technique can be imple­
mented as a slight variation of equilibrium assignment. 

• Elastic-demand incremental: At each iteration, the trip 
table is recalculated and a portion of it is loaded to the net­
work. This algorithm can be implemented as a slight variation 
of the modified Evans algorithm. 

Occasional reference will be made to Evans's precise algo­
rithm for elastic-demand equilibrium assignment. Although 
the Evans algorithm is not explicitly evaluated , it is possible 
to determine the extent to which the other algorithms differ 
from the results of a true elastic-demand equilibrium assign­
ment-the intended product of the Evans algorithm. The 
Evans algorithm was dropped from consideration because of 
its comparatively large computational requirements on mul­
tipurpose networks. 

The algorithms were tested on two networks. The first was 
the five-zone UTOWN network, developed for testing the 
equilibrium assignment in the Urban Transportation Planning 
System (UTPS). The second was the a.m. peak-hour network 
for East Brunswick, N.J. The East Brunswick network con­
tained 129 zones, and it gives a good indication of how algo­
rithms would perform in actual practice . Both networks had 
five trip purposes. The tests were performed with an exper­
imental version of QRS II running on a Zenith Z-248 (IBM 
PC-AT compatible). 

Convergence Error 

Generally, assignment error is the difference between assigned 
and actual volumes. Unfortunately, we can never measure 
actual volume with sufficient accuracy to use it as a criterion 
in evaluating the differences between assignment algorithms 
because the results are far too similar. 

Total error is quite large. Various studies have shown (3, 
4) that root mean square (RMS) errors can regularly exceed 
50 percent. Established guidelines for error (5) take into con­
sideration the better performance on high-volume links, but 
a 20 percent error is still considered acceptable. 

Convergence error, a component of total error, can be 
measured by comparing the results of two assignments, assum­
ing that one of the assignments is essentially perfect. For 
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example, a network can be run through a huge number of 
iterations of equilibrium assignment to obtain a nearly perfect 
solution to the fixed-demand problem. This solution becomes 
a standard for comparison. Because the primary purpose of 
an assignment algorithm is to forecast volumes on links, it 
makes sense to measure convergence error as the RMS dif­
ference in volume between the test algorithm and the standard 
algorithm. The RMS difference is analogous to standard error 
and is in units of vehicles, so it is easily interpreted. 

Other researchers have attempted to measure convergence 
error by monitoring the objective function of the equilibrium 
assignment algorithm: 

U = L (v; t;(v) dv 
all Jo 

links 

(1) 

where t; (v) is the functional relationship between travel time 
and volume on link i, and V; is the assigned volume. Since 
the equilibrium solution is achieved when U is minimized, an 
experienced individual can roughly judge the progress of an 
algorithm by comparing U at successive iterations. However, 
this objective function is deceptive. Surprisingly large changes 
in volume can be associated with very small changes in U. It 
is known (at least for the fixed-demand problem) that smaller 
values of U are better, but it is difficult to determine how 
much better or how fast the solution is improving. 

A related criticism applies to monitoring the RMS change 
in volume between successive iterations [see paper by Sheffi 
and Powell (6) for an example]. The algorithms, as a group, 
converge slowly. It is not possible to determine the ultimate 
amount of change in volume by the change from a single 
iteration. 

A given level of convergence error can be either important 
or unimportant, depending on the purpose of the forecast. 
To understand the role of convergence error in forecast valid­
ity, it is first necessary to list various forms it can take. 

1. Insufficient iterations: Solutions generally improve at 
each new iteration. There can be significant convergence error 
associated with terminating an algorithm prematurely. 

2. Resolution: An algorithm should be able to reach the 
same solution to a given problem each time that it is run. 
Since an algorithm is trying to replicate real-world processes, 
we would also expect it to produce similar solutions to similar 
problems. If it cannot do this, the algorithm is flawed. 

3. Starting point: An algorithm should arrive at the same 
solution regardless of how it is started. Practically speaking, 
the solutions produced by all algorithms are affected by the 
choice of starting point. Insensitivity of an algorithm to its 
starting point is an important characteristic. 

4. Ad hoc algorithm: An ad hoc algorithm could fail to 
converge or it could converge to a solution that is inconsistent 
with assignment theory. The justifications for choosing an ad 
hoc algorithm are potentially less error due to insufficient 
iterations and potentially better resolution . 

It is important to keep these errors in perspective. Assign­
ment algorithms are highly imperfect models of travel behav­
ior. Much more significant errors stem from our poor under­
standing of route choice behavior, limited knowledge of 
impedance functions, problems in collecting demographic and 
network data, and our inability to show the network as it 
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actually exists. Imperfections in theory and data are much 
more serious than imperfections in algorithms to implement 
the theory. 

Test Conditions 

To the best of their ability , tests were representative of plan­
ning practice. Neither the UTOWN nor East Brunswick net­
work was modified in any way. With the exceptions of the 
assignment algorithm and the number of iterations of the trip 
distribution model, all parameters were set to the defaults for 
ORS IL 

A doubly constrained entropy-maximizing model was used 
for trip distribution. For the UTOWN network, the attraction­
end constraints were satisfied by 10 iterations of the trip dis­
tribution model. Trip distribution on the East Brunswick net­
work was iterated only three times. 

A Fibonacci search was used to find the averaging weights 
for the equilibrium and modified Evans algorithms, which 
minimize U. The Fibonacci search was permitted to run for 
21 iterations, assuring four significant digits in the weights. 

Only links that would normally carry traffic were compared 
for error. Centroid connectors and other artificial network 
elements were ignored. Also ignored were links that received 
no volume in any of the assignments. 

Relationship Between Equilibrium and Incremental 
Assignments 

Each iteration of equilibrium assignment consists of (a) an 
all-or-nothing assignment, (b) an averaging of volumes, and 
(c) a recalculation of link travel times given the averaged 
volumes. The averaging step consists of finding a weighted 
average between the all-or-nothing assignment and the results 
of the previous iteration such that U is minimized. Each iter­
ation has a different weight, and it is impossible to know ahead 
of time what those weights will be . 

It is easy to give the algorithm a predetermined series of 
weights. Although it will not necessarily converge to the equi­
librium solution, the algorithm runs faster, behaves more pre­
dictably, and is easier to explain to those outside the field. 
One particular sequence of weights yields an incremental 
assignment: 

w = 1/(i + 1) (2) 

where Wis the weight given to the all-or-nothing assignment 
that is calculated at iteration i. Regardless of the number of 
iterations, each all-or-nothing assignment (including the one 
from the 0th iteration that starts the algorithm) is weighted 
equally in the final average. Running the equilibrium algo­
rithm with this particular fixed series of weights is a form of 
incremental assignment, in which the link travel times for the 
next increment are calculated from extrapolations of the par­
tial volumes that have already been assigned (7). 

Incremental assignment, as described in this paper, is a case 
of the method of successive averages (MSA) (6, 8) . As a group, 
algorithms based on MSA are not as precise as purer optimi­
zation methods but have a greater range of applicability. 

The close relationship between equilibrium and incremental 
assignment suggests that their solutions would be similar. It 
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TABLE 1 COMPARISON OF ITERATIVE CAPACITY RESTRAINT 
WITH MODIFIED EV ANS ALGORITHM (UTOWN NETWORK) 

Iteration 
% RMS Difference 
in Link Volumes 

% of Optimal 
Objective Function 

0 
1 
2 
3 
4 
5 

10 
20 

84 
156 
134 
104 
133 
119 
135 
144 

413 
407 
559 

1110 
540 
631 
561 
777 

Modified Evans' algorithm was run for 200 
iterations. 

is expected that equilibrium assignment would converge faster 
when measured by iterations, but equilibrium assignment might 
well be slower when measured by total computer time. 

Straw Man: Iterative Capacity Restraint 

It is important to understand that an ad hoc algorithm can be 
either good or bad, depending on its design. A popular ad 
hoc algorithm is iterative capacity restraint. As implemented 
in QRS II, each iteration consists of (a) calculation of a trip 
table with travel times from the previous iteration, (b) an all­
or-nothing assignment, and (c) a recalculation of link travel 
times. Thus, the algorithm can be considered "elastic demand"; 
it attempts to find a trip table that is consistent with link loads. 
Travel times are recalculated with the Bureau of Public Roads 
(BPR) speed-volume function. To provide some stability to 
the algorithm, link travel times were damped. That is, link 
travel times were taken as a weighted average of the results 
of the BPR function (25 percent) and the link travel times 
from the previous iteration (75 percent). 

The UTOWN network was run for the 7:00 to 8:00 a.m. 
peak hour through 20 iterations of iterative capacity restraint. 
These results were compared with those of the modified Evans 
algorithm. The modified Evans algorithm is also ad hoc, but 
(as will be seen later) converges nicely . The comparison vol­
umes were taken from the 200th iteration . 

As expected, Table 1 shows that iterative capacity restraint 
performs poorly. Link volumes oscillate wildly. RMS error 
never becomes better than 84 percent; the value of the Frank­
Wolfe objective function, U, never falls below its starting 
value. 

The weaknesses of iterative capacity restraint are well doc­
umented, so these results are not totally unexpected. The 
especially poor performance seen in Table 1 illustrates that 
the UTOWN network can be hostile to ad hoc algorithms. 

Ad Hoc Error of the Modified Evans Algorithm 

Evans's algorithm correctly solves an elastic-demand assign­
ment problem. It produces a solution consisting of (a) link 
volumes that are consistent with both link travel times and 
the trip table and (b) a trip table that is consistent with path 

travel times. In practice, the Evans algorithm looks like a 
variation of equilibrium assignment. Each iteration consists 
of computation of a trip table, an all-or-nothing assignment, 
an averaging step, and a recalculation of link travel time from 
the averaged volumes. The major obstacle to implementation 
of Evans's algorithm is the objective function of its averaging 
step. It requires far more computation and memory than reg­
ular equilibrium assignment, especially on large, multipurpose 
networks. 

The elastic-demand equilibrium algorithm in QRS II replaces 
Evans's objective function with Equation 1. Consequently, 
QRS II is ensured of converging to a slightly wrong solution. 
It is possible to estimate the size of the error by the following 
procedure. 

1. Run the modified Evans algorithm through enough iter­
atio~s that link volumes are no longer changing. The selected 
nunrt>er of iterations for the UTOWN network was 1,000. 
The assignment for the East Brunswick network was termi­
nated at 100 iterations. 

2. Save the trip table at the final iteration. 
3. Run a fixed-demand equilibrium assignment for the same 

large number of iterations on this same network using the 
saved trip table. 

4. Compare the volumes from the two assignments. 

To control computation errors in the trip table, the trip 
distribution model was iterated 20 times (for each assignment 
iteration) on the UTOWN network and 10 times (for each 
assignment iteration) on the East Brunswick network. 

The comparison is not a tautology. The modified Evans 
algorithm does not converge to the exact solution because the 
averaging weights disregard information about trip distribu­
tion. As the algorithm progresses, an inconsistency develops 
between the averaged volumes and the trip table, which is 
recomputed at each iteration. If this inconsistency is small, 
then final path travel times and, thus, the final iteration trip 
table are at the equilibrium solution. However, the final assigned 
volumes partially come from trip tables that were not at the 
equilibrium solution. The inconsistency can be measured by 
locking the trip table at its known equilibrium solution and 
running an exact, fixed-demand equilibrium assignment. 

With UTOWN the link volumes differed (RMS) by 1.1 
percent. With East Brunswick, the link volumes differed by 
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TABLE 2 PERCENT RMS ERROR FROM INSUFFICIENT !TERA TIONS 
(UTOWN NETWORK) 

Modified Fixed-Demand Elastic-Demand 
Iteration Evans' Equilibrium Incremental Incremental 

1 64.4 46.8 70.4 84.9 
2 55.3 35.6 48.0 53.6 
3 34.2 32.5 39.7 41. 3 
4 28.1 24.9 29.5 34.3 
5 25.1 21. 8 25.2 27.6 

10 15.9 14.8 15.6 18.7 
20 9.1 9.3 10.7 11. 3 
50 3.7 4.0 4.5 4.3 

100 1. 4 1. 3 2.0 1. 5 

TABLE 3 EQUILIBRIUM OBJECTIVE FUNCTION BY ITERATION (UTOWN NETWORK) 

Modified Fixed-Demand Elastic-Demand 
Iteration Evans' Equilibrium Incremental Incremental 

1 21. 533 14.466 178.018 208.939 
2 13.398 11. 291 32.121 36.710 
3 11.188 10.553 15.356 16.801 
4 10.679 10.147 11. 732 12.947 
5 10.484 9.985 10.652 11. 226 

10 9.940 9.745 9.817 9.965 
20 9.708 9.616 9.632 9. 710 
50 9.578 9.525 9.505 9.563 

100 9.546 9.485 9.466 9.535 
200 9.532 9.464 9.447 9.525 

Units are 100,000 vehicle-minutes. Fixed-demand trip 
tables were taken from the 20th 

0.4 percent. Some of this error may be due to rounding. The 
small differences in assigned volumes indicate that the ad hoc 
error of the modified Evans algorithm, when used with a 
doubly constrained trip distribution model, is unimportant. 

These comparisons were repeated using elastic-demand 
incremental assignment. For the UTOWN network the RMS 
difference in link volumes was 0.8 percent. When the East 
Brunswick network was subjected to the same comparison, 
the RMS difference in link volumes was 0. 7 percent. The ad 
hoc error of elastic-demand incremental assignment is similar 
to that of the modified Evans algorithm. 

Convergence Rates of Iterative Algorithms 

An important attribute of an algorithm is its speed of con­
vergence-often measured as the number of iterations nec­
essary to reach a convergence criterion. Convergence speed 
was tested on four algorithms: equilibrium, modified Evans, 
fixed-demand incremental, and elastic-demand incremental. 
The first tests concerned performance on the UTOWN net­
work. The volumes from various iterations of each algorithm 
were compared with volumes from 200 iterations of the same 
algorithm. The RMS differences are summarized in Table 2. 

The convergence rates of all the algorithms were remark­
ably slow. Regardless of the algorithm, it took approximately 
20 iterations before the convergence error fell below 10 per­
cent. A convergence error of less than 5 percent required 

iteration of modified Evans'. 

nearly 50 iterations. Interestingly, the variable-weight algo­
rithms (equilibrium or modified Evans) did not significantly 
outperform either incremental assignment algorithm. Some 
of the slow convergence can be attributed to the hostility of 
the UTOWN network. 

Table 3 gives the values of the equilibrium objective func­
tion, U, at each iteration. Note that fixed-demand and elastic­
demand assignments approach slightly different values of the 
objective function, as expected. Table 3 illustrates the decep­
tive nature of the objective function. By the fifth iteration, 
U is changing only by about 1 percent per iteration, but the 
link volumes are nowhere near their equilibrium values. 

The incremental algorithms did surprisingly well; after 20 
iterations their objective functions were lower than their vari­
able-weight counterparts (equilibrium and modified Evans). 
Furthermore, the incremental assignments required consid­
erably less time to reach the same number of iterations. For 
example, 10 iterations of the modified Evans algorithm took 
406 sec of elapsed time; 10 iterations of elastic-demand incre­
mental assignment took just 225 sec. 

Similar tests were performed on the East Brunswick net­
work. The comparison assignments were obtained from the 
50th iteration of each algorithm. These results are shown in 
Table 4. Convergence rates, as measured by percent RMS 
difference in link volumes, were twice as fast as with the 
UTOWN network. Nonetheless, it took approximately 10 
iterations to achieve a 10 percent error. Usually a 10 percent 
computational error is considered unacceptable. 
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TABLE 4 PERCENT RMS ERROR FROM INSUFFICIENT ITERATIONS (EAST 
BRUNSWICK NETWORK) 

Modified 
Iteration Evans' Equilibrium 

1 34.8 36.3 
2 22.9 23.2 
3 16.6 17.4 
4 15.7 15.4 
5 13.1 11. 9 

10 8.7 7.6 

TABLE 5 EQUILIBRIUM OBJECTIVE FUNCTION BY 
ITERATION FOR FIXED-DEMAND ASSIGNMENTS (EAST 
BRUNSWICK NETWORK) 

Iteration 

1 
2 
3 
4 
5 

10 
50 

Equilibrium 

2.373 
2.448 
2.359 
2.286 
2.247 
2.161 
2.057 

Fixed-Demand 
Incremental 

3. 013 
2.496 
2.465 
2.325 
2.282 
2.178 
2.078 

Unit s are 100,000 vehicle-minutes. 

This research did not evaluate methods of accelerating equi­
librium assignment (9) , so these tests may somewhat under­
state its potential. Similar acceleration techniques would also 
apply to the original Evans algorithm; however, one would 
guess that the amount of acceleration is insufficient to over­
come the algorithm's large computational requirements on 
meaningfully complex networks. 

Ad Hoc Error of Incremental Assignment 

The previous results show that the two incremental algorithms 
run at about the same rate (measured by iterations) as equi­
librium assignment. As a further comparison, the East Bruns­
wick network was run with fixed-demand incremental assign­
ment for a total of 50 iterations. These results were compared 
with 50 iterations of equilibrium. The RMS difference in link 
volumes was 1. 7 percent. Table 5 shows that the values of U 
for the two assignments were also close after the third iteration. 

A similar comparison has already been seen in Table 3. 
The last line shows that at 200 iterations on the UTOWN 
network, incremental assignment actually outperformed equi­
librium assignment. Incremental assignment was slightly closer 
to the equilibrium solution. The RMS difference in link vol­
umes was 1.0 percent. The superior performance of incre­
mental assignment on this network should be considered 
unusual. 

Resolution Error 

In many planning situations, a serious concern is the ability of 
an algorithm to produce similar results from similar networks. 
For example, a small change in a single zone's trip production 

Fixed-Demand Elastic-Demand 
.Incremental Incremental 

34.8 33.6 
29 . 3 32.4 
25 . 4 22.4 
17.5 16.2 
13 . 7 13 .1 
7.1 6.4 

should have just a small effect on volume. Table 6 shows the 
behavior of the several assignment algorithms when 1,000 dwelling 
units are added to a single zone of the UTOWN network. 
Each line in the table compares the volumes obtained from 
the base network with the volumes from the modified network 
when run through the same number of iterations of the same 
algorithm. 

The first line in Table 6 should be considered the correct 
answer. It compares the two networks after 200 iterations of 
the modified Evans algorithm. It is seen that the addition of 
1,000 dwelling units causes a 4.2 percent RMS change in 
assigned volumes. 

The other algorithms, if they are working properly, should 
always show a smaller RMS change than all-or-nothing assign­
ment. The other algorithms are inherently multipath, so the 
additional trips are split among a greater number of links. As 
expected, the comparison using all-or-nothing assignment 
(line 4) is larger than that obtained with 200 iterations of the 
modified Evans algorithm. 

The remaining lines in Table 6 show that the other algo­
rithms are not working properly. They all overestimate the 
amount of change. The most accurate was the modified Evans 
algorithm at 20 iterations (overestimating the change by 
1.3 percent of average link volume); the least accurate was 
elastic-demand incremental at 10 iterations (overestimating 
the change by 6.9 percent of average link volume). 

Given these disturbing results, a more elaborate series of 
tests was run on the East Brunswick network ; the results are 
summarized in Table 7. As with the tests of the UTOWN 
network, each cell in the table represents a comparison of 
two slightly different networks, which were run on exactly the 
same algorithm. Each pair of networks differed by the addi­
tion of 84 dwelling units to a single zone of one network. Five 
separate zones were arbitrarily chosen for investigation . The 
iterative assignment algorithms were run for just 10 iterations. 

The RMS difference using all-or-nothing assignment gives 
a slight overestimate of the expected change. At most, the 
addition of 84 dwelling units to Zone C resulted in an (RMS) 
impact of 2.6 percent. Three of the five zones had impacts of 
less than 1 percent . 

All of the iterative assignment techniques estimated the 
impact badly. For example , we know from the all-or-nothing 
assignments that the correct impact for Zone A is less than 
0.5 percent. However, the iterative assignment algorithms 
yielded impacts between 1.6 and 7 .2 percent. The elastic­
demand incremental algorithm behaved best for every zone . 

It appears that resolution error is largely a consequence of 
error due to insufficient iterations. This convergence error 
has both random and systematic components. The systematic 
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TABLE 6 PERCENT RMS DIFFERENCE IN VOLUME AFTER 1,000-
DWELLING UNIT INCREASE IN ONE ZONE (UTOWN NETWORK) 

Percent RMS 
Algorithm Iterations Difference 

A. Modified Evans' 200 4.2 
B. Modified Evans' 10 7.9 
c. Modified Evans' 20 5.5 
"' All - er-Nothing 0 6.1 u. 

E. Equilibrium 10 6.5 
F. Equilibrium 20 7.5 
G. Elastic-Demand Incremental 10 11.1 
H. Elastic-Demand Incremental 20 7.6 

TABLE 7 PERCENT RMS DIFFERENCE IN VOLUME AFTER 84-DWELLING 
UNIT INCREASE IN SINGLE ZONE (EAST BRUNSWICK NETWORK) 

All-or- Modified Elastic-Demand 
Zone Nothing Evans' Equilibrium Incremental 

A 0.5 7.2 2.0 1. 6 
B 0.6 7.0 2.6 2.4 
c 2.6 7.1 3.3 2.1 
D 2.5 7.9 4.3 3.0 
E 0.7 9.4 2.2 1. 6 

TABLE 8 PERCENT RMS DIFFERENCE IN VOLUME FROM VARIOUS 
STARTING POINTS (UTOWN NETWORK) 

Total 
Iterations 

10 
20 

Modified 
Evans' 

10.6 
6.3 

component vanishes in the comparison; the random compo­
nent does not. As seen here, large amounts of random error 
can mask the actual impact. Comparing the errors in Table 4 
with those in Table 7 shows that the convergence error in the 
modified Evans algorithm is almost entirely random, whereas 
the convergence error in elastic-demand incremental assign­
ment has a large systematic component. 

The distinction between random convergence error and sys­
tematic convergence error is critical to the selection of an 
assignment algorithm. The nature of transportation planning 
is to compare alternatives. During such comparisons the only 
important errors are random . Random convergence error can 
be attenuated only by running additional iterations. 

Starting Point Error 

All iterative assignment algorithms require an initial estimate 
of link travel times. In practice, the results of assignment 
algorithms depend on this estimate. 

Table 8 shows the effect of the starting point on the UTOWN 
network. Each cell in Table 8 compares two assignments for 
the identical network on an identical algorithm. The two 
assignments differ only by the method of estimating the initial 
link travel times. One assignment uses free travel time; the 

Equilibrium 

15.7 
12.1 

Elastic-Demand 
Incremental 

10.8 
6.2 

other assignment uses travel times estimated from volumes 
resulting from an all-or-nothing assignment. 

Starting point errors are almost as large as errors due to 
insufficient iterations. Interestingly, the two ad hoc algorithms 
(modified Evans and elastic-demand incremental) were shown 
to be far less sensitive to the starting point than equilibrium 
assignment. 

There exists a rule of thumb that a good initial estimate of 
link travel times will produce a better assignment than an 
inaccurate initial guess. Although partially correct, this rule 
of thumb is not very helpful. Table 9 shows the effect of an 
optimal set of initial travel times on the objective function 
( U) of the modified Evans algorithm. The optimal link travel 
times were taken from the 200th iteration of the same algo­
rithm. A comparison of Table 9 with the first column of Ta­
ble 3 shows that optimal link travel times were essentially 
useless. Any early advantage was erased by the 20th iteration. 
Similar results were obtained with the other algorithms. 

CONCLUSIONS 

All algorithms tested, with the exception of iterative capacity 
restraint, are derived from Frank-Wolfe decomposition. For 
practical purposes, they all converge to their intended solu-
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TABLE 9 EQUILIBRIUM OBJECTIVE FUNCTION 
FOR OPTIMAL STARTING POINT OF MODIFIED 
EV ANS ALGORITHM (UTOWN NETWORK) 

Iteration 

1 
2 
3 
4 
5 

10 
20 

Optimal Start 

11. 582 
10.610 
10.314 
10.188 
10.082 
9.911 
9.736 

units are 100,000 vehicle-minutes. 

tions at about the same rate, as measured by iterations. How­
ever, this convergence rate is unexpectedly slow. An unac· 
ceptable 10 percent convergence error remains after 20 iterations 
on the UTOWN network and after 10 iterations on the East 
Brunswick network. A more reasonable error of 5 percent is 
reached after about 50 iterations on the UTOWN network. 
Given these slow convergence rates, it is more appropriate 
to refer to "near-equilibrium" solutions, that is, solutions 
within some acceptable error limit. 

The most disturbing aspect of convergence error is its ran­
dom component. Even a small amount of random error can 
completely invalidate comparisons of close alternatives; the 
only proven method of reducing random error is to run more 
iterations. Incremental assignment algorithms appear to have 
much smaller random components in their convergence errors, 
suggesting that fewer iterations are required. 

The existence of convergence error should force planners 
to adopt innovative methods of assignment. For example, it 
is sometimes possible to forecast only the increment of traffic 
due to site development. Such a forecast will have more valid­
ity if the random error can be confined to the increment, 
while treating any errors in background volumes as entirely 
systematic. 

Ad hoc algorithms are not necessarily bad. It is possible 
for an ad hoc algorithm to greatly outperform a rigorously 
derived algorithm, given the same computer budget. Because 
ad hoc algorithms do not come with a pedigree, confidence 
in an ad hoc algorithm must be established through extensive 
testing. 

If the results of a simulation are to be readily accepted, its 
algorithms must be lucid. Given the choice, planners should 
pick an assignment algorithm that can be easily explained to 
decision makers. The elastic-demand incremental algorithm 
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is conceptually simple; Evans's algorithm is conceptually com­
plex. Both algorithms produce essentially the same answer. 

The existence of several algorithms that can consistently 
produce near-equilibrium solutions to a given traffic model 
should enhance prospects of improving the model. Model 
developers should concentrate on incorporating better traffic 
theory and not be overly concerned with finding an algorithm 
that delivers the intended solution. The algorithm appearing 
to adapt most easily to different traffic models is elastic-demand 
incremental assignment. 

Overall, the tests indicate that elastic-demand incremental 
assignment produces the best solutions. The method is easy 
to implement, it can be quickly modified to handle a variety 
of demand models, and it converges reasonably well. Its speed 
of convergence is no worse than that of more precise algo­
rithms; its ad hoc error is insignificant; it is relatively insen­
sitive to the starting point; it has the best resolution among 
the tested algorithms; and it is easy to understand. The rel­
ative success of elastic-demand incremental assignment con­
tributes evidence of the resiliency of incremental (or succes­
sive average) methods. 
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Dynamic Assignment in Three­
Dimensional Time Space 

RUDI HAMERSLAG 

In traditional assignment models, cars are assigned to a route 
and are therefore present on all links on that route simulta­
neously. Calculations from this type of model give few positive 
results. If the assignment is done in space with time as a third 
dimension, this problem can be overcome. The first part of 
the paper gives a simple example of the equilibrium assignment 
model showing that, in some parts of the network, congestion 
is unrealistically calculated as a consequence of bottlenecks 
upstream. The second part of the paper gives a description of 
the three-dimensional assignment models. The proposed algo­
rithm conforms with existing two-dimensional assignment 
models, although details in the algorithm are different. ~he 
effect of improving the capacity of bottlenecks on congestion 
downstream is shown. A computer model of the assignment 
model works under MS-DOS on a microcomputer. 

In traditional assignment models two-dimensional (2-D) 
origin-destination (0-D) matrices are assigned to two­
dimensional networks. Cars between each 0-D pair are assigned 
to the links belonging to a certain route. Because these links 
do not have a time dimension, the implicit assumption is made 
that cars are present on all links at the same time. So cars 
that in reality are caught in a particular bottleneck can also 
be considered in the calculation the cause of congestion down­
stream. To improve the assignment process, a time dimension 
is added to the traditional 2-D assigned space. A three-dimen­
sional (3-D) 0-D matrix is assigned to a three-dimensional 
network. 

The following are discussed in this paper: 

1. The problems with the 2-D assignment, 
2. The principles of dynamic assignment in 3-D time space, 
3. The principles of the algorithm used, 
4. The increase in capacity downstream from the bottle­

neck, and 
5. A few remarks about computing. 

TRADITIONAL ASSIGNMENT MODELS 

In traditional 2-D assignment models [e.g., that of van Vliet 
(J)], networks are defined by links. These links connect two 
models (e.g., j and k). Each node j (1, 2, 3, ... ) and k (1, 
2, 3, ... ) has coordinates xi;yi and xk;Yk· Each link has a 
certain length (z k) with a distance, time, or generalized time 
dimension. In this paper, time will be used as a dimension. 
The shortest routes are calculated between each 0-D pair. In 

Departments of Civii Engineering and of Technical Mathematics and 
Informatics, Delft Technical University, Stevinweg 1, 2600 GN Delft, 
The Netherlands. 

the all-or-nothing assignment program, all cars between each 
0-D pair are assigned to the shortest route. 

The equilibrium method (2,3) can be used ifthere are over­
loaded links in a network. The time on every link jk (zik) is 
calculated by using a delay function: 

zik = F(qik• Cik• zjko) 

where 

qik = the traffic flow on link jk, 
cjk = the capacity of link jk, 

(1) 

zikO = the time of a link jk in an unloaded network, and 
zik = the time of link jk in a loaded network. 

See Brandston's overview (4). 
The value of q k is calculated by an iterative process. Equi-' . . librium will be reached when the flow on all routes m use is 

equal and when there are no more unused links (Wardrop's 
principle). To reach equilibrium, the linear approximation 
method can be used (3). The flow in iteration i (qjk) is cal­
culated as a linear combination of qj/; 1 and qit. The value 
qit is the assigned traffic to the shortest routes in the network 
with zj1: 1 = F[q}Jc- 1l, Cik]. 

The next example was inspired by the traffic system south­
west of Rotterdam where a bridge limits the traffic crossing 
the river. The 0-D matrix in Table 1 was assigned to the 
network in Figure 1. The traffic flows run from right to left. 
Figure 1 shows an all-or-nothing assignment and an equilib­
rium assignment. The equilibrium model shows that part of 
the cars are assigned to routes 4-10-9 and 2-1-8. This assign­
ment is made because of congestion on links 3-2 and 5-8. In 
reality this congestion does not appear because the cars are 
held in bottleneck 7-6. The equilibrium assignment model 
gives fewer satisfactory results in this example. 

ASSIGNMENT IN TIME SPACE 

The main problem of the assignment models is that traffic is 
assigned to a network without a time dimension. To improve 
these methods, a time dimension has been added. Links are 
defined by nodes jk and period p. 

Instead of time on a linkjk, the time on linkjk is introduced 
during period p. A period capacity is used instead of an hour 
capacity. The traffic flows are also defined by nodes jk and -
period p. The routes are calculated on the surface and in 
space, so a 3-D time space is used. _ 

If a link is overloaded, then the path (a) will switch to a 
route along other nodes as in the 2-D space , (b) will switch 
to a route in a later period, or (c) both. 

The delay on the links is also determined in time space and 
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TABLE 1 ORIGIN-DESTINATION MATRIX 

From 

To 

8 

9 

sum 

4 

1250 

1250 

2500 

7 

3750 

3750 

7500 

Flows in overloaded links 

link 

7 - 6 

6 - 5 

3 - 2 

2 - 9 

8 - 5 

Flow 

7500 

7500 

5000 

5000 

5000 

sum 

5000 

5000 

capacity 

4000 

4000 

4000 

4000 

4000 

may be different from period to period. At the end a 3-D 
0-D matrix is assigned to a 3-D network. This method, 
"Dynamic Assignment in the Three-Dimensional Time­
space," was first published in 1987 (11). 

An Example 

The example in Figure 1 is now represented in 3-D time space. 
Figure 2 gives the flows during the successive eight periods. 
Traffic is held in the upstream bottleneck, links 7-6 and 6-5. 
There is no congestion in links 3-2 and 5-8 downstream, as 
in 2-D space. The less logical routes of the equilibrium assign­
ment in 2-D space do not appear in 3-D time space; conse­
quently, the difficulties with the 2-D equilibrium assignment 
model are solved in 3-D space. 

Other Methods 

The essential differences between the present method and the 
well-known CONTRAM and SATURN methods are the fol­
lowing: 

• In the SATURN method (5,6), trip-dependent 0-D ma­
trices are assigned to independent networks for various periods. 

• In the CONTRAM assignment method (7,8), a limited 
number of cars are sequentially assigned to independent net-

ALL-OR-MOTHIMG 
ASSIGltMEMT 

EQU IL !DR IUM 
ASSIGMMEMT 
Iteration 0 

/" 
9 

FIGURE 1 Assignment of 0-D matrix in Table 1 to 
a network with the all-or-nothing method (top) and 
the equilibrium method (bottom). (In the following 
figures, links loaded between 85 and 95 percent of 
capacity are lightly shaded, and links that are loaded 
more than 95 percent of capacity are shaded more 
darkly.) 
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works. Overloaded links lead to an overflow to the links in 
another period. 

Kroes et al. (9) mentioned a method called "equilibrium 
assignment in the timespace," which was also developed in 
the Netherlands. In addition to the road network, a network 
with shadow links was made that represented the alternative 
of driving at other than peak-period times. With a 2-D equi­
librium model, part of the traffic is assigned to this network. 
Although the name is similar, this method is different from 
the method presented in this paper. 

In the method proposed by Ben-Akiva et al. (JO), an equi­
librium method is used to change the departure times and 
link times. The method can be used only for a very small 
hypothetical network. The 3-D assignment method in this 
paper uses 3-D 0-D matrices and networks with departure 
times that are not affected by congestion. A study has been 
started to integrate our method with those of Kroes et al. (9) 
and Ben-Akiva et al. (JO). 

THE ALGORITHM 

Three-dimensional assignment can be formulated as a 3-D 
equilibrium model. The algorithm consists of the following 
steps: 

1. Read a 2-D network. 
2. Determine the 3-D 0-D matrix. 
3. Determine the period capacity of the links. 
4. Calculate the delay in the links. 
5. Calculate the shortest routes in 3-D space. 
6. Assign the 3-D 0-D matrix to the shortest routes . 



FIC=Fllllli'Capaclty Period 1 
Period s - .95 < FIC 

~ .BS ( FIC ( .95 

-~ CJ FIC ( .US 

9 

1/'l 3 

Period 2 
Period 6 

Period 3 
Period 7 

Period 
Period e 

FIGURE 2 Example of an assignment in time space of the 0-D matrix of Table 1. 
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7. Load the network. 
8. If the stop criterion has not been reached, return to 

Step 4. 

Although the 3-D algorithm, generally speaking, is similar 
to the algorithm in 2-D space, there are some important dif­
ferences on a more detailed level: 

1. Read the 2-D 0-D matrix and the 2-D network. Existing 
2-D networks can be used in the 3-D calculations; conse­
quently there is no need for conversion or extra input of data. 
This factor is a practical advantage of the method. 

2. Determine the 3-D 0-D matrix. The 3-D matrix is deter­
mined by splitting up the 2-D 0-D matrix into periods defined 
by the departure time fractions. This system is a good way to 
approximate the peak periods. For longer periods (e.g., hol­
iday traffic), more complicated methods should be used to 
determine the 3-D matrix. 

3. Determine the period capacity. The period capacity of 
the link can be determined as a fraction of the hourly capacity. 
The capacity is multiplied by the ratio of period length and 
60 min. It is also possible to reduce some of the period capac­
ities to account for delays caused by highway construction. 

4. Determine the link delay. A 3-D delay function is used 
to determine the delay in 3-D links . This function is similar 
to that in 2-D space. 

(2) 

where 

q1kp the number of cars on link kj during period p, 
Qfkp the number of waiting cars from previous periods, 
cfkp the capacity (cars per unit) during period p, 
z;kp the time on the unloaded link jk during period p , 

and 
z1kp = the time on the loaded link jk during period p. 

In general, z1kp will have different values for the various 
periods. The overloaded links in previous periods influence 
the delay in the later periods. 

5. Determine the shortest routes in 3-D space. Figure 3 
shows a 3-D network with a string of links. Link 2-3 has a 
lower capacity than the other links. The Y-axis is the time 
scale. The Jinks of the successive time periods are shown. The 
dashed lines are the 3-D paths of the first and last cars in each 
period. The last car in the first period is the same as the first 
car in the second period, and so on . 

The departure time of the first car in the first period equals 
zero. This car uses links in period 1. The departure time of 
the last car in the first period equals 10. This car uses the 
links in the second period. Some of the cars that depart between 
the first and last cars are using links during the first and the 
second periods. The departure time of the first car of period 
3 is 20 min. Because of a delay in node 2-3 caused by conges­
tion, the car arrives in node 3 more than 10 min later. This 
car also uses links in different periods . 

So the departure times are established in increments of 10 
(0, 10, 20, 30, etc.), instead of zero as in 2-D assignment. 
The point at which the nodes are passed depends on delays, 
which may be different from period to period. In addition, 
the cars use links in different periods. 

In 3-D space, the determination of routes from the origin 
is similar to that in 2-D space. It is possible to use the Moore 

oJlll!..---........... 111111 -- ---
minutes -- --; -------

1 o -. ... --1 ........... _. 
~-- ------ J! -----... ----- --..... 

20 -----1·----· ---

40-..--~---------.. 111111!!..i ......... _ --------... ---------------
50 ......... -~----­, 2 3 nodes 4 

periods 

2 

3 

4 

5 

6 

FIGURE 3 Example of the 3-D assignment 
in time space of a network. 
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or the Dijkstra algorithms. The difference is that this route 
determination is done for all the periods , rather than just one 
period, as in 2-D space. Another important difference is that 
the routes in 3-D space are found by comparing space paths 
and time paths simultaneously, which enables a comparison 
of routes between origin and destination. 

6. Assign the 3-D 0-D matrix to the shortest 3-D routes. 
The important difference is that in the 2-D space all car trips 
of an 0-D pair are assigned to all links along the shortest 
route . Because in the 3-D space links are used during different 
periods, the cars must be assigned to different periods. The 
cars that depart in the first period use link 3-4 in the first and 
second periods. The ratio of the car trips that are assigned to 
link 3-4 in the first and second periods is proportionate to the 
areas marked 1 and 2 (Figure 3). The car trips of the third 
period are partly assigned to link 2-3 in the third and fourth 
periods. The ratio is proportionate to the areas marked 3 and 
4. 

7. Load the network. Loading the network is done by part 
of the all-or-nothing assignment flows just calculated and with 
flows from the previous iteration. As in the 2-D space, it can 
be done in various ways. 

Two methods have been tested . The first method is similar 
to the linear approximation method of the equilibrium method. 
The first experience with this method was not very successful, 
as was reported at the UTSG conference in London (12) in 
1988. However, the method is being improved, so linear 
approximation may be useful after all . Some research is still 
required to make this suitable for publication. 

The second algorithm uses the equation 

(3) 

The value of g; depends on the number of iterations (i) and 
will also be chosen in such a way that there are no overloaded 
links. 

(4) 

EXAMPLE OF UPSTREAM CONGESTION 

It is possible to gain insight into the problem of new congestion 
that appears after improvements upstream. The example in 
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Figure 2 is used to demonstrate the effect of increased capacity 
of links 7-6 and 6-5. Although the congestion on these links 
disappears, new congestion arises on links 2-3 and 5-8 down­
stream. Some traffic uses routes 3-4-10-9-2 and 2-1-8 (in period 
3, 4, 6, 7) to avoid the congestion. 

The calculation sho\vs the influence of upstream bottle­
necks on downstream congestion. It seems possible that down­
stream congestion can be prevented by delaying the traffic 

can give better insight into the ability of this method to improve 
the working of the traffic system. 

COMPUTING 

The system runs as part of the TFTP workbench on 
OLIVETTI M21 and PC-AT and PC-386 with EGA cards for 
small networks (13). The assignment of large networks is also 
possible. However, 3-D calculation needs more computer time 
than 2-D assignment. The calculation time is the product of 

• The number of iterations, 
• The number of time periods, and 
• The time necessary for the calculation of an all-or-nothing 

assignment. 

The calculation time necessary will be about 100 times a 
2-D all-or-nothing assignment or 10 times an equilibrium 
assignment. 

To improve the calculation speed, a special processor is 
being developed so the system can be used for very large 
networks. The first prototype of this processor is about 200 
times faster than a Microvax. An even faster execution is 
possible (14). Because of these improvements it is expected 
that a longer calculation time will not be required for very 
large networks. 

CONCLUDING REMARKS 

Since the traditional 2-D assignment methods have some 
shortcomings, a time dimension has been introduced to improve 
this method. The algorithm, generally speaking, is similar to 
the 2-D variant. However, on a detailed level there are some 
differences that cannot be neglected: the method can be used 
for large networks; the existing 2-D networks can be used as 
input for the calculations; the calculation time is longer; and 
the development of computer hardware makes the method 
suitable for very large networks. 

In conclusion, the dynamic assignment in 3-D time space 
can be used for the following purposes: 
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• A more realistic assignment of traffic on congested 
networks; 

• Acquisition of new insights into new downstream conges­
tion after improving capacity upstream; 

• Ability to calculate, based on downstream congestion, 
the influence of decreases in capacity caused by such factors 
as road construction, road maintenance, and accidents; 

• Ability to calculate the areawide effect of feeding cars 
into a net\vork system on certain strategic chosen links; and 

• Ability to use the program as part of a delay warning 
system during road congestion. 
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Balancing Link Counts at Nodes Using a 
Variety of Criteria: An Application 
in Local Area Traffic Assignment 

REFAT BARBOUR AND ]ON D. FRICKER 

A study of the impact of a major change in a campus street 
network began with the collection of link flows before the 
change. Despite the care with which the link counts were made, 
conservation of flow at each node was not satisfied. Therefore, 
the flows through the nodes had to be "balanced." This paper 
discusses the variety of techniques developed to balance the 
network. The techniques fell into two categories: algorithms 
and mathematical programming formulations. A comparison 
was made between these procedures and the maximum· 
likelihood method advocated in the literature. It became evi­
dent that the node-balancing solution depends on the criteria 
chosen to evaluate the solution, which in turn can offer guid­
ance as to the specific method to choose or develop. 

Recently, the street network in the northeast portion of the 
Purdue University campus underwent a major change. The 
main entrance to the university was permanently closed to 
permit construction of a new academic building. Before this 
change took place, link flows in this portion of campus and 
on the urban streets immediately adjacent to it (a study area 
hereafter referred to as "Campus NE") were observed and 
recorded during the afternoon peak hour. The intent was to 
provide the basis for a forecast of the link flows after the 
network change and thereby identify potential traffic bottle­
necks. Therefore, all street facilities used by vehicles in the 
area of interest were represented by links in the network 
abstraction of Campus NE. Because of this level of detail, 
and because the study area was less than 1 mi 2 in size, we use 
the phrase "local area traffic assignment" to distinguish our 
activity from that of the traditional city- or regionwide travel 
demand modeling process. In fact, our work could be con­
sidered a type of site impact analysis, although our initial 
emphasis was on route choice behavior, with signal timing 
confined to a subsequent phase of the project. 

NODE-BALANCING ALGORITHMS 

Despite the data collectors' best efforts to be accurate in 
recording the link flows and turning movements they observed, 
when the information was put into the link-node model of 
the network, it was clear that the recorded flows at most of 
the intersections violated the conservation of flow require-

R. Barbour, Strand Associates, Inc., 910 West Wingra Drive, Mad­
ison, Wis. 53715. J. D. Fricker, School of Civil Engineering, Purdue 
University, West Lafayette, Ind. 47907. 

ment, which is that the sum of flows in equals the sum of 
flows out. In other words, these intersection nodes were 
"unbalanced" with respect to their recorded flows. 

Since the origin-destination (0-D) table estimation and 
traffic assignment models available to us required balanced 
link counts, we had to improve the traffic count data to restore 
conservation of flow at all nodes (1, 2). We found the node­
balancing (NB) method presented previously (1) to be the 
principal alternative to a manual trial-and-error adjustment 
of link flows. This method assumes that observed flows are 
Poisson distributed and then employs a maximum-likelihood 
method (MLM) to find the most likely set of link flows from 
the many possible solutions. Although we accepted the idea 
behind the MLM, we believed that if we were going to write 
any computer code, we would be more comfortable trying to 
apply some familiar network algorithms to adjust the unbal­
anced link flows than trying to convert the ideas described 
elsewhere (1) into FORTRAN. We were also curious about 
the impact of various objectives or solution criteria on the 
solution itself. In the next section we report on the evolution 
of the NB algorithms we developed. In later sections, we 
present a set of optimization procedures and some compar­
ative evaluations. 

Method NBI: Automated Trial and Error 

Method NBl automates a form of the trial-and-error method 
that we might have used manually. It was encoded to provide 
a basis of comparison against what we anticipated would be 
more sophisticated methods. In the steps below, V(in) and 
V( out) are the inflow and outflow rates at an unbalanced node 
u, and l(u) is the amount of the imbalance at a node u, I(u) 
= V(in) - V(out). At any iteration k > 1, node u is consid­
ered to be approximately balanced if the absolute value of 
I(u) is either (a) less than or equal to 1 or (b) within 1 percent 
of 0.5 * (V(in) + V(out)]. 

Method NBl 

Step 0. k = 0. 
Step 1. k = k + 1. Identify all nodes j in the network that 

are not origin or destination centroids but have unbalanced 
flows and place them in the set of unbalanced nodes ( U) in 
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order of their original node numbers. If all nodes are bal­
anced, go to Step 4. 

Step 2. If set U is empty, go to Step 1. Otherwise remove 
the first node in set U and call it the "u-node ." 

Step 3. (a) If I(u) > 0, decrease each inflow by p(i,u) * 0.5 
* J(u)-, where p(i,u) is the proportion of all inflows that enter 
node u via link (i,u). For example, if /(14) = +36, and node 
14 receives 25 percent of its inflow from link (4,14) , then 
V(4 ,14) will be reduced by 0.25 * 0.5 * 36 = 4.5 vehicles. 
Likewise, each outflow will be increased by p(u,i) * 0.5 * I(u), 
where p(u,i) is the proportion of outflows that depart node 
u via link (u,i). (b) If /(u) < 0, add -p(i,u) * 0.5 * /(u) to 
each inflow link (i,u) and subtract -p(u,i) * 0.5 * I(u) from 
each outflow link (u,i). [Note: the minus sign before "p" is 
necessary because I(u) < O.] (c) If any of these flow adjust­
ments would cause a link flow to become negative, leave that 
link's flow unchanged and redefine p(u,i) or p(i,u) among the 
remaining links involved. ( d) Go to Step 2. 

Step 4. (a) Identify those noncentroid nodes u that are 
approximately (but not exactly) balanced. (b) If /(u) > 0, 
find the centroid Z nearest u. If Z is an origin centroid, 
subtract I(u) from each liuk uJJ lhe shortest path between Z 
and u. If Z is a destination centroid, add I(u) to each link 
between u and Z. (c) If l(u) < 0, find the centroid Z nearest 
u. If Z is an origin centroid, add -J(u) to each link between 
Zand u. If Z is a destination centroid, subtract - I(u) from 
each link between u and Z . (d) Stop. 

Discussion of Method NfJJ 

Method NBl is admittedly crude, but it is fairly easy to pro­
gram . The relaxed definition of "balanced" in Step 1 after 
iteration k = 1 is a recognition that exact balance for all 
nodes may never result from this method. Our experience 
indicates that, after about 20 iterations, all nodes are in 
approximate balance and further iterations are of little value. 
Therefore , Step 4-a housecleaning step-is used to avoid 
the creation of minicentroids by making very minor changes 
to the T(i) and T(j) values we have collected at the parking 
facilities and the study area boundaries. 

Method NB2: Minimum-Weight Paths 

For the minimum-weight path method, we introduce link 
weights defined in terms of the difference between the original 
observed link flows V 0 and the improved flows Vb that exist 
on a link during the NB process. For each link (i,j), 

d = IV0 - Vbl £ v + 0 
0 

(1) 

where E
0 

is a very small number , such as 1 x 10-6 . This 
second term in the expression is necessary to prevent d = 0 
on all links at the start of the process and on any link not yet 
adjusted . As link flow adjustments take place, the first term 
begins to dominate the second. 

Method NB2 

Step 1. Identify all nodes j in the network that are not origin 
or destination centroids but have unbalanced flows and place 
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TABLE 1 SIGN OF UNIT FLOW CHANGE FOR NB2 STEP 6 

/(u) z Flow Change Along Path Link Flow Change" 

>0 p 1 Jess from Z to u -1• 
A 1 more from u to Z + 1• 

<O p 1 more. from Z to u + 1• 
A 1 Jess from u to Z -1• 

•Change in !low on each link along path (Z,u) or (u ,Z) . 
•rf direction of link is opposite that of path flow change, sign of link flow 
change should be reversed. 

them in the set of unbalanced nodes ( U) in order of their 
original node numbers. 

Step 2. If set U is empty, stop. Otherwise, remove the first 
node in set U and call it the "u-node." 

Step 3. Calculate the link weights d(i,j) for each link in the 
network using Equation 1. 

Step 4. Using an appropriate shortest-path algorithm (3) 
and the link weights d(i,j), find the minimum-weight paths 
from the current u-node to all centroids, treating all links as 
two-way links, regardless of their actual orientation. 

Step 5. Identify the centroid Z having the smallest path 
weight from the u-node. This path from u to Z has the least 
accumulated differences along it. 

Step 6. Send one unit of flow along the path (u,Z). This 
unit of flow will be positive or negative , depending on the 
sign of I(u), the orientation of each link along the path, and 
whether the centroid Z is an origin (P) or a destination (A) 
(see Table 1). Update I(u) such that jl(u)I = jl(u)j - 1. 

Step 7. If I(u) = 0, go to Step 2. Otherwise, go to Step 3. 
An example implementation of Step 6 may be helpful at 

this point. Figure l shows the minimum-weight path from u 
to the centroid Z identified in Step 5. Let us say that /(u) = 
+ 1 and the centroid Z is an origin (P) node. This path con­
tains 2 two-way links, (u,9) and (7 ,Z), and 2 one-way links, 
(8,7) and (8,9). We do not know which of the four links 
incident to node u has the faulty counts that caused I(u) to 
be nonzero, so we will transfer this flow imbalance J(u) to 
the nearest (in terms of link d-weights) centroid. Since Z is 
a P-node in this illustration, Table 1 indicates that one unit 
of flow must be deducted from all links on this path from Z 
to u, unless this direction violates a link orientation. Such a 
violation occurs for link (8 ,7), so flow on this link is increased 
by one unit in its only permitted direction . 

In accordance with Table 1, we make the following adjust­
ments to the link flows along the minimum-weight path in 
Figure 1: V(Z,7) = V(Z,7) - 1; V(8,9) = V(8,9) - 1; V(9,u) 
= V(9,u) - 1; but V(8,7) = V(8,7) + 1. At node 9, one 
less unit of flow is received from node 8, but one less flow 
unit is sent on to node u, so the previous value of 1(9) is 
preserved. At node 7, which is one end of the "backwards" 
link (8 ,7), one less flow unit is received from node Z, but one 
more unit is received from node 8, thereby preserving /(7). 
Likewise, node 8 is preserved by sending one more unit to 
node 7, but one unit less to node 9. If Z were a destination 
(A) centroid, the direction offlow adjustment would be reversed 
(see row 2, Table 1) and link (8,9) would be the backwards 
link. It would have its flow reduced by 1, whereas the "for­
ward" links along the path from u to Z would have a flow 
change of + 1. The reader is invited to verify that, in this case 
and for the cases of rows 3 and 4 of Table 1, the link flow 
changes along the minimum-weight path produce the desired 
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FIGURE 1 Example of NB2 Step 6. 

results: I(u) moves toward zero and /(i) for all other nodes i 
is unchanged. 

Discussion of Method NB2 

We found several features of NB2 appealing. Once au-node 
is balanced, it stays balanced. By sending flows through the 
network from the current u-node to a centroid in accordance 
with Step 6 (Table 1), every intervening node i-some of 
which may have already been balanced-has its J(i) value 
unchanged. (See the case of node 9 in Figure 1 for the first 
example presented above.) Unlike NBl, where convergence 
is not guaranteed and the choice of the number of iterations 
can affect the outcome, NB2 "visits" each u-node only once, 
balances it, and moves on to the next u-node. We have devised 
an effective system for adjusting link volumes in a way that 
disturbs as few link counts as possible-and primarily those 
links with their Vb values still close to their V

0 
values. This 

would seem to bias the flow changes in a favorable way­
toward smaller eventual network-wide error (goodness-of-fit) 
measure values. 

A possible inefficiency in NB2 is its use of a unit flow 
adjustment. In cases where l(u) could approach 100-any 
greater imbalance in our network would probably be due to 
a data collection or processing error-it might be wiser to 
use a larger flow adjustment. An adjustment of perhaps 0.5 
* J(u) could be used in at least the first several applications 
of Step 6. However, we did not adopt this procedure for two 
reasons: 

1. A belief that too many vehicles might be sent along the 
smallest minimum-weight path, thereby distorting the link 
d-weights for the remainder of NB2 and precluding the best 
fit of Vb versus V0 • Until an adequate investigation of the best 
fraction of J(u) to send-and to what extent it may change 
from network to network-is carried out, we prefer the unit 
flow adjustment. 

2. A desire to build from simplicity. The unit flow adjust­
ment may be somewhat inefficient, but unless this potential 
flaw becomes a detriment in real applications, its current form 
appears suitable for comparison with other methods. 

Method NB3: Minimax Variation 

The minimax variation method is designed to pay closer atten­
tion to the d-weights of certain individual links on the mini-
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mum-weight paths from the u-node to the various centroids. 
The idea behind NB3 is to change flows on links that have 
been changed relatively little earlier in the balancing process 
and avoid those links that have had relatively large changes. 
Method NB3 is a minor variation of NB2; only Step 5 is 
different. 

Method NBJ 

Steps 1-4. Same as those in Method NB2. 
Step 5. (a) Find the link with the largest d-weight on each 

of the minimum-weight paths found in Step 4. Call these links 
"maxilinks." (b) Select the minimum-weight path having the 
maxilink with the smallest d-weight and call its associated 
centroid Z. 

Steps 6 and 7. Same as those in Method NB2. 

Discussion of Method NBJ 

The selection rule in Step 5 can be best explained using an 
example. The minimum-weight paths from the u-node to three 
centroids are shown in Figure 2. Method NB2 would choose 
path (u,zl) at its Step 5, because that path's total weight (0.08) 
is smaller than 0.12 for path (u,z2) and 0.10 for path (u,z3). 
However, the maxilinks on these three paths have d-weights 
0.08, 0.04, and 0.06, respectively. Thus, the second path, 
(u,z2), has the minimum maxilink and would be chosen by 

l.o~ 
{;\ 0. 00 (."\ 
~----0 

0.04 / 

f.:\/ 0.08 t:";\ 
~--------6 

~(.\ 0-----{,\ 0 • 0 4 r::::.. 
0.04 \!_/------ei 

FIGURE 2 NB3 Step 5. 
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NB3 at its Step 5. Whereas Method NB2 would make changes 
to one link with d-weight 0.08, Method NB3 would cause 
changes on three links, each with d-weight 0.04 in this exam­
ple. Until tests are conducted, it is not clear which method 
would be generally superior. 

Method NB4: Minimum d-Weight Links 

The minimum d-weight link method extends the evolution 
begun with NB2 and continued with NB3. As in NB3 , the 
links on the minimum d-weight paths found in Step 2 are 
modified to find a path between the current u-node and each 
centroid that has links with d-weights as small as possible. 
Whereas NB3 identifies a maxilink on each minimum d-weight 
path, NB4 is allowed to modify the minimum d-weight path 
itself if a link on that path can be replaced by a link having 
a smaller d-weight. This is accomplished through an adap­
tation of the "triple operation" used in Floyd's shortest-path 
algorithm (3). Floyd replaces the subpath (i,k) with the sub­
path (i,j,k) if w(i,j) + w(j,k) < w(i,k), where w(i,j) is the 
current smallest cost or distunce from node i to node j. Method 
NB4 replaces link (i,k) on the minimum d-weight path with 
the subpath (i,j,k) if Max{d(i,j),d(j,k)} < d(i,k) . This pro­
cedure modifies a good (namely, minimum d-weight) path to 
produce a path that is better with respect to a specific objec­
tive: to avoid involving links that already have large !percent 
Vb - percent V0 I values in the balancing process. 

Steps 1-4. Same as those in Methods NB2 and NB3. 
Step 5. Along each minimum d-weight path from the cur­

rent u-node to all centroids, replace a link (i,k) with the 
subpath (i,j,k) if d(i,k) > Max{d(i,j), d(j,k)}. 

Steps 6 and 7. Same as those in Methods NB2 and NB3. 

COMPARATIVE ANALYSIS 

As Methods NBl to NB4 were being developed, a discussion 
appeared ( 4) of a computer program written in BASIC to 
implement the NB scheme outlined elsewhere (1,5). We wel­
comed the opportunity to test our four methods against some­
thing besides each other. We started with the example prob­
lems cited previously ( 4, 6) and compared the results of our 
methods with those just mentioned. 

Measures of Merit 

On what basis should the methods be compared? Clearly, the 
only frame of reference we have is the original link counts 
V0 • Although we need to balance the nodes to prepare the 
data for our traffic assignment model, we should do so by 
revising the V0 -valµes as little as necessary. Therefore, we 
considered several measures of merit for our comparative 
analysis. 

1. Root Mean Square Error (RMSE). The RMSE standard 
measure for comparing a generated value with its target takes 
the form of 
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This measure, of course, assesses disproportiontely larger 
penalties to greater differences between Vb and V 0 • 

2. Mean of the absolute percent difference between Vb and 
V0 (mean abs % diff). For each link, the percent difference 
(PD) between Vb and V0 is calculated as 

V. - V 
PD = . u 

1
' x 100 

" y 0 

which leads to 

1 
mean abs % diff = - L J PD(i,j) J 

n i,i 

This is a more intuitive measure of the differences occurring 
between Vb and V 0 than is RMSE. 

3. Maximum percent absolute difference (max% diff). This 
measure identifies the worst single match of Vb to V0 at the 
end of the NB procedure, based on the expression for PD 
above. 

4. Number of links with absolute difference greater than 
X percent (links > X% ). An NB method may produce one 
or two poor matches of Vb to V0 for measure 3 but for most 
links provides a good match. This measure offers a more 
specific description of this kind of behavior than the others. 
For the size of the networks we tested, we thought it best to 
set X at approximately one-half the mean value of "max % 
diff" observed for the methods being tested. 

5. Mean difference (mean diff). One might expect that little 
or no change in total link volumes would result from an NB 
procedure, but that is not the case. The flow adjustment pro­
cess may have to add or deduct flows from links to restore 
conservation of flow at each node . Thus, the mean value of 
(V0 - Vb) with the sign of this difference for each link retained 
is a rough indication of the change in vehicle miles of travel 
that accompanies the NB procedure. 

6. Worst-case computational complexity. The MLM method 
was analyzed as having a worst-case complexity of O(n3). For 
NBl, it was O(k*n), where k equals the number of iterations 
needed to reach convergence. For NB2 and NB3, it was 
O(W * n2

), where W = I,,l!(u)I. Finally, NB4 was evaluated 
at O(W * n3

). 

These measures have been introduced in order of their 
importance to us in assessing the performance of the various 
methods. The parenthetical abbreviations for the measures 
correspond to the column headings in Tables 2 and 3, which 
summarize our tests on the two sample problems. 

Discussion 

In both problems, Methods NB3 and NB4 accomplish what 
they were designed to do-minimize the worst case (max% 
diff). However, the actual computer time for NB4 was con­
siderably longer than that for the other methods, making it 
unlikely that NB4 would be practical on a microcomputer. 
Considering all the measures in Tables 2 and 3, Methods NB2 
and NB3 performed moderately well on the smaller problem 
and not so well on the larger problem. What was surprising 
to us was the behavior of Method NB1, Automated Trial and 
Error, which did poorly on the small network but quite well 
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TABLE 2 COMPARATIVE RESULTS FOR SAMPLE PROBLEM 1 

Measure of Merit 

(2)Mean Abs (3)Max % (4)Links (5)Mea n 
Method (l)RMSE % Diff Diff >9.5% Di ff 

MLM 38.5 10.7 20.0 8 + 4.6 
NBl 54 .8 14.1 -30.2 10 - 14.7 
NB2 46.8 12.1 -16.8 7 + 5.9 
NB3 43 .2 12.1 - 14.2 10 + 4.9 
NB4 44.6 12.3 -14.2 11 + 7.0 

NoTE: Six nodes (3 cent roids), 12 links, mean VD = 337.8, W = 631. See paper by Beagan ( 4). 

TABLE 3 COMPARATIVE RESULTS FOR SAMPLE PROBLEM 2 

Measure of Merit 

(2)Mean Abs (3)Max % (4)Links (5)Mea n 
Method (l)RMSE % Diff Diff >9.5% Di ff 

MLM 169.4 3.8 - 8.8 10 + 5.9 
NBl 169.7 3.7 - 9.2 9 + 0.03 
NB2 168.8 4.5 -10.1 12 -16.6 
NB3 178.8 4.6 - 7.2 18 +27.6 
NB4 186.6 4.3 - 7.2 17 +34.7 

NoTE: Twenty-three nodes (5 centroids), 32 links, mean VD = 3303.7, W = 2486. See presentation 
by Beagan ( 6). 

TABLE 4 COMPARATIVE RESULTS FOR CAMPUS NE NETWORK 

Measure of Merit 

(2)Mean Abs (3)Max % 
Method (l)RMSE % Diff Di ff 

MLM 37.3 8.2 64.0 
NBl(lO) 38.1 7. 1 - 59.1 
NBl(lOO) 68.1 13.2 -143.1 
NB2 48.7 13.8 - 63 .8 
NB3 45 .0 17.7 75.0 

NOTE: Fifty-four nodes (21 centroids), 128 links, mean VD = 291.69. 

on the larger one. In fact, Method NBl outperformed the 
MLM procedure (Table 3) in three of the first five measures. 

Already some hypotheses can be formulated . These pertain 
to the influence of network size (number of nodes, links, and 
centroids), initial magnitude of W = ~.11 " IJ(u)I, and mean 
link flow values (V0 ) on the performance of an NB method. 
We applied the MLM method and Methods NBl through NB3 
to the network that required node balancing in the first place, 
Campus NE. The results are summarized in Table 4. 

The format of Table 4 is a variation of that of Tables 2 and 
3, brought about by the behavior of Method NBl on Campus 
NE. As the number of iterations increases, the nodes become 
more nearly balanced. In the process, however, the difference 
between the improved link flows vb and the observed flows 
V0 tends to increase. Thus, we list two versions of Method 
NBl: NBl(lO) has gone through 10 iterations and NBl(lOO) 
has been carried through 100 iterations. Also , the measures 
of merit used in Tables 2 and 3 are augmented by two that 
reflect the true objective of the methods. These are 

7. Number of nodes still unbalanced (nodes with I(u) > 
1). We define "unbalanced" here as having an imbalance l(u) 
of more than one vehicle. 

(4)Links (5)Mean (7)Nodes wi th (8)Max 
> 10% Di ff J(u) "'= 1 l(u) 

24 + 3.8 11 +1, -1 
20 + 4.4 22 - 14 
36 + 27.4 24 - 6 
51 + 1.7 0 0 
67 + 5.2 0 0 

8. Maximum absolute imbalance (max IJ(u)I). This is thought 
to be an indication of the balancing work left undone and 
perhaps an early indication of cases in which convergence is 
impossible. 

Comparing NBl(lO) and NBl(lOO) without these new 
measures would lead us to conclude that 10 iterations are 
better than 100, but measures 7 and 8 indicate otherwise. 
These new measures also point out the superiority of methods 
NB2 and NB3. In one well-organized iteration, they produced 
a set of link flows in which each node had I(u) = 0. Fur­
thermore, their first five measures are competitive with 
methods NBl(lO) and NBl(lOO) . 

MATHEMATICAL PROGRAMMING 
APPROACHES 

Having acquired some experience with the criteria (measures 
of merit) by which NB methods might be evaluated, we began 
to think of each of these criteria as the basis for an NB method. 
The result was six mathematical programming (MP) formu­
lations, identified as NBS through NBlO. Each MP formu-
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TABLE 5 SUMMARY OF MP RESULTS FOR EXAMPLE 1 

Measure of Merit 

Method 8 3 

MLM 58.0 - 20.0 
NB3 78.0 - 14.2 
NBS - 47.7 19.5 
NB6 78.1 14.0 
llt.TD'7 .-,1 A n 111() (\ 
J."l.LJI JJ."t.U J.VU.V 

NBS -404.5 -159.3 
NB9 -184.0 - 73.6 
NBlO 184.0 63.2 

NOTE: Example 1 has 6 nodes, 12 links. 

lation included the conservation-of-flow constraints. In each 
formulation, the objective function was written simply as min 
z. What distinguished the six formulations were the rest of 
the constraints, which also defined z in the objective function. 
In the following, the objective function for each MP formu­
lation is written in words, followed by the constraint equations 
that define z. 

NBS: Minimize the largest absolute link volume change. 

for each link i,j 

(MP formulation NBS has its basis in measure of merit 8.) 
NB6: Minimize the largest percent absolute link volume 

change. 

for each link i,j 

(See also measure of merit 3.) 
NB7: Minimize the average link volume change . 

( 
.. ) _ V"(i j) - Vb(i,J) 

C l,j - V (' r\ 
0 l,]J 

for each link i,j 

z = 2: c(i,j) 
l,J 

(See also measure of merit S.) 
NEB: Minimize the average percent link volume change. 

c(i,j) 
V0 (i,j) - Vi.(i j) 

Vo(i,j) 

z = 2: c(i,j) 
1, j 

for each link i,j 

This is a variation of measure of merit S. Let "average percent 
link volume change" be measure of merit 9. 

NB9: Minimize the average absolute link volume change. 

c(i,j) = IVoCi,j) - Vb(i,j)I 

z 2: 2: c(i,j) 
l,j 

for each link i,j 

Another variation of measure of merit S, "average absolute 
link volume change" becomes measure of merit 10. 

NBJO: Minimize the average percent absolute link volume 
change. 

( . ') - IV,,(i,j) - Vb(i,j) I 
CI,] - V (' ') 

<> 1,J 
for each link i,j 

z 2: 2: c(i,j) 
l ,j 

(MP method NBlO is based on measure of merit 2.) 

5 9 10 2 

4.6 0 35.1 10.8 
4.9 0 40.9 12.1 

13.3 2.9 45.1 14.2 
14.8 2.9 41.7 12.2 

" -0.4 87.7 31.5 v 

26.3 0 156.2 49.2 
-5.3 -3.1 25.4 9.2 
25.4 8.3 25.4 8.3 

These six formulations were applied to Example 1, with the 
results summarized in Table S. That method NBS was designed 
to optimize the NB solution with respect to measure of merit 
8 is borne out by the best entry (underlined) in column 2, 
row 3. Likewise, NB6 performs best with respect to measure 
of merit 3. The results for the MLM and NB3 methods used 
earlier in this paper are included here for comparison. This 
is because MLM is the "literature standard," but we prefer 
the objective built into NB3. 

Although space limitations prevent a link-by-link listing of 
each solution, we can report that only NBS and NB6 had sets 
of balanced link flows that were similar. There were consid­
erable differences in Vb(i,j) values produced by the various 
methods. Table S indicates that NB7 and NBS perform poorly 
for any measure of merit other than their own, and this was 
confirmed in other tests. Unless measure of merit S or 9 is 
the only important one, these methods should not be used 
and are omitted from the remainder of this paper. 

The results of the surviving methods in Example 2 are tab­
ulated in Table 6. Again, a method performed best where it 
was designed to; methods NB7 and NBS were clearly and 
consistently inferior elsewhere and have been omitted from 
Table 6, and the earlier methods (MLM and NB3) are 
competitive. Also, NBS does not seem to perform well in 
this example, which is a simplification of a real highway 
corridor. 

For our final example, we return to Campus NE, an exact 
representation of a network with S4 nodes and 12S links. Table 
7 shows that NB6 performs well for its own measure of merit 
(3), whereas NBS is among the two worst surviving methods 
for four of the five criteria for which it was not designed. 

CONCLUSIONS 

We have sought to investigate how the NB solution for a 
network is affected by choice of method, which by implication 
also means choice of criterion. We have found that it is pos­
sible to find an optimal solution with respect to one criterion, 
but that the solution may be unacceptable according to other 
reasonable alternative criteria. On the basis of our tests, math­
ematical programming methods NBS through NBS lack ver­
satility in this respect, whereas NB9 and NBlO do fairly well. 
Also doing well for most criteria are the standard MLM method 
and our NB3 algorithm. 

It is interesting to note that NB3 and NB6 are designed to 
pursue the same objective: minimize percent link volume 
change. As an optimization routine, NB6 is always superior 
to NB3 for criterion 2, usually by a small margin. For most 
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TABLE 6 SUMMARY OF MP RESULTS FOR EXAMPLE 2 

Measure of Merit 

Method 8 3 s 9 10 2 

MLM 418.0 -8.8 S.9 0.1 116.2 3.5 
NB3 482.0 -7.2 27.6 0.7 130.0 4.6 
NBS 2S7.S 100.0 S7.2 9.4 175.4 17.l 
NB6 489.0 -7.1 7.S 3.0 135.8 S.2 
NB9 -SlS .O 64.3 4.3 0.4 103.0 8.4 
NBlO -614.0 -12.S 24.7 0.2 113.5 2.2 

NOTE: Example 2 has 23 nodes, 32 links. 

TABLE 7 SUMMARY OF MP RESULTS FOR CAMPUS NE 

Measure of Merit 

Method 8 3 s 9 10 2 

MLM 228.0 64 .0 3.8 1.3 19.4 8.2 
NB3 21S.O 75.0 5.2 S.4 32.S 17.7 
NBS 172.0 - sso.o -1.9 -5.8 66.5 63.8 
NB6 724.1 60.S 179.8 5S .8 182.2 58.2 
NB9 -324.0 -241.4 -0.3 -0.2 14.0 8.2 
NBlO 3S6.0 100.0 0 0 16.9 3.5 

Norn: Campus NE has 54 nodes, 128 links. 

TABLE 8 SUGGESTED RANKINGS BY CRITERION 

Method by Criterion 

Rank 2 

Best MLM NB3 
Second NB3 MLM 
Third NB9 NBlO 
Fourth NBlO NB9 

of the other criteria, NB3 is usually superior and usually by 
a large margin. 

Any of the four surviving methods (MLM, NB3, NB9, and 
NBlO) has exhibited adequate versatility in our tests, but in 
the event that one or more of our six criteria take on special 
importance, we rank the four methods for each criterion in 
Table 8. Of course, the MP-based method formulated for a 
specific criterion will provide the optimal solution if the size 
of the problem does not exceed time or storage constraints . 
Another finding is that a simple algorithmic method such as 
NB3 seems to provide NB solutions that are of high enough 
quality to be comparable with the MLM. We are convinced 
that any competent (not necessarily advanced) computer pro­
grammer can convert the steps described for method NB3 in 
this paper into a usable computer code in a short time. 
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Trip Generation Models for 
Infrequent Trips 

JosE MONZON, KONSTADINOS GOULIAS, AND RYUICHI KITAMURA 

The adequacy of conventional linear regression models in trip 
generation analysis is examined in this study. Simulation exper­
iments are conducted to determine whether model coefficients 
can be accurately estimated by least-squares estimation when 
the dependent variable is a nonnegative integer. Following this, 
nonlinear, two-stage model systems are estimated by using an 
empirical data set to examine whether more elaborate repre­
sentation of the decision process underlying trip generation 
will lead to improved prediction. The results of this study 
indicate that linear regression models of trip generation offer 
consistent coefficient estimates and accurate predictions, and 
improved performance may not be obtained by adopting more 
complex model systems. 

The most frequently used statistical methods for trip gener­
ation analysis are the least-squares estimation of linear regres­
sion models and trip rate analysis based on cross-classification 
of households on the basis of a few grouping variables. Both 
methods draw on principles that are relatively easy to under­
stand, and models can be estimated using commonly avail­
able statistical software packages. However , these methods 
involve certain assumptions and limitations that need to be 
well understood for valid formulation of trip generation 
models. 

Sample size requirements usually limit the number of 
grouping variables that can be used in cross-classification anal­
ysis, leaving least-squares regression the standard method used 
whenever an adequate data set and statistical package are 
available. Linear regression analysis is based on the assump­
tion that the dependent variable (number of trips) is an 
untruncated continuous variable. Also important is the typical 
assumption that one model structure explains the entire range 
of trip generation behavior. 

These assumptions may not be entirely satisfied in typical 
trip generation analyses. The dependent variable in this case 
is a nonnegative discrete variable, not an untruncated con­
tinuous variable . Trip generation behavior may result from a 
two-stage decision process in which a decision to make trips 
on a given day is made first; then , given that trips will be 
made at all, the number of trips is determined. This can be 
most typically seen in trip generation by purpose (e.g., the 
number of shopping trips on a given day) or by mode (e.g., 
the number of transit trips). 

The question that naturally arises is whether linear least-

J. Monzon, Dcparuncnt of Clvil Enginccd ng. Univcrshyof ali fo rn ia 
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squares regression can be used successfully in trip generation 
analysis when its assumptions are not satisfied. The latter is 
especially the case when models are formulated for infrequent 
trips whose observed frequencies are zero for many behavioral 
units. The dependent variable will then be heavily truncated 
and the underlying decision process may involve more than 
one stage that cannot be adequately represented by a single 
model. 

The objective of this paper is to shed light on the following 
two questions . 

1. Is the linear regression method suited for trip generation 
analysis in which the dependent variable (number of trips) is 
a nonnegative integer rather than an untruncated continuous 
variable? 

2. Can a single regression model capture trip generation 
behavior that may involve multistage decision processes? 

The first question is examined through simulation experi­
ments in which the number of trips made by an individual has 
a Poisson distribution . In the simulation , discrete numbers 
are generated from Poisson distributions as the number of 
trips generated, the parameters of the distributions are esti­
mated by least-squares regression, and the accuracy of the 
parameter estimates is examined against the true values used 
in the simulation to generate the data. Timmermans (J) offers 
a comprehensive discussion of trip generation analysis by 
examining a set of alternative trip generation model formu­
lations, including Poisson regression models, and testing their 
goodness-of-fit empirically. The emphasis in this study is on 
the extent of estimation errors that result from the application 
of linear regression models to Poisson data (linear regression 
models are misspecified in this case). 

The second question is examined by estimating two models 
on empirical data and comparing their relative fits. The first 
model is a regular linear regression model . The second is 
based on the assumption that the trip generation process con­
sists of two stages: in the first stage the decision is made 
whether to make trips of a given type; then in the second 
stage the number of trips is determined. 

The rest of this paper is organized as follows. Trip gener­
ation models used in this study are briefly described. The 
results of simulation experiments are presented after that 
together with the discussion on whether linear regression models 
can be successfully used with discrete and truncated depen­
dent variables. The next two sections offer a description of 
the data used to address the second question, the results of 
the empirical analysis , and a comparison of the two models . 
The final section summarizes the study. 
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TRIP GENERATION METHODS 

Cross-classification analysis of trip generation is based on the 
premise that each group of households, defined in terms of 
a set of grouping variables, has an average trip rate that remains 
stable over time. The grouping variables are categorical, and 
groups of households can be defined by combinations of their 
categories. An important advantage of this straightforward 
method is its capability to represent the interaction effect of 
the classification variables, that is, systematic variation in trip 
rates that is uniquely associated with a particular combination 
of categories. 

For example, let S and T be the grouping variables, and 
let s and t be categories of S and T, respectively. In the case 
of household trip generation, variable Smay represent house­
hold size and T, the number of cars available to the household. 
Let the set of values S be assumed to be {l, 2, 3, 4, 5, 6 or 
more} and that for T be {O, 1, 2, 3 or more}. Let the mean 
trip rate, Y(st), of the group of households with S = s and 
T = t be 

Y(st) = µ + V(s) + W(t) + Z(st) 

where 

µ= 
V(s) and W(t) 

Z(st) 

grand mean, 
the effects of category s of variable S and 
category t of variable T, respectively, and 
interaction effect of category s and cat­
egory t. 

V(s) and W(t) represent the effects that are attributable to S 
and T, respectively, whereas effect Z(st) is the contribution 
of the particular combination of categories. The statistical 
significance of these models can be tested by analysis of vari­
ance (ANOV A), available in most statistical packages. 

In a linear regression model, the expected number of trips 
made by household i is represented as 

where 

13 model coefficient, 
H; number of persons in household i, and 
A; number of cars available to household i. 

In this formulation, 131 represents the average number of trips 
generated per household member, and 132 the average number 
of trips per automobile. The number of trips is linearly related 
to the explanatory variables, and no interaction effect is assumed 
in this formulation. 

Interaction effects can be represented in a linear regression 
model by introducing terms representing combinations of cat­
egories. Possible nonlinear effects of an explanatory variable 
can also be included in a linear model by using nonlinear 
transformation of the variable (including a step function rep­
resented by a set of dummy variables). Although it is limited 
to the case in which the model is linear in terms of its coef­
ficients, the least-squares method can be used in a variety of 
cases involving nonlinear relations or interaction effects. 

A critical limitation of the least-squares approach to trip 
generation may stem from the assumption that the random 
variation in the dependent variable can be represented by a 
random error term that has a continuous, untruncated dis­
tribution. The dependent variable of trip generation analysis, 
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the number of trips, is a nonnegative integer. Ideally this 
variable can be modeled by using a discrete distribution, such 
as a Poisson or negative binomial distribution (1,2). Appli­
cation of the least-squares method, therefore, assumes that 
this discrete distribution can be replaced by a continuous 
distribution. 

Problems arise when the expected number of trips is close 
to 0. For example, suppose the expected value is 0.2 trip. 
Then possible values that the error term may assume are 
- 0.2, 0.8, 1.8, 2.8, and so on. The error distribution is trun­
cated at - 0.2 with the probability mass associated with this 
error value equaling the probability that no trip will be made. 
If the number of trips has a Poisson distribution with a mean 
of 0.2, this probability will be 0.819 and the distribution of 
the error term will be heavily skewed. 

The validity and usefulness of the least-squares estimation 
and resulting trip generation models may be severely limited 
when there are many zeroes in the observation. This situation 
arises when models are formulated by purpose or by mode. 
Another example is the case in which models are specified at 
the person level rather than at the household level. In these 
instances, the probability is much higher that no trip of a 
given type will be generated by a given behavioral unit. The 
effect of error truncation may become significant, and the 
quality of estimated model coefficients and test statistics may 
deteriorate. This problem exists in addition to the more obvious 
problem of producing negative values as predicted numbers 
of trips. The possible extent of this problem is discussed later 
by using simulation examples. 

As a second example, it may not be possible to properly 
capture travel behavior with one linear model. Trip genera­
tion behavior may be a result of a two-stage decision process 
in which a decision is first made to make, or not to make, 
trips of a given type at all on a given day; then, given trips 
will be made, and the number of trips is chosen in the second 
stage. If this is the case, it is probable that the decision to 
make trips at all is governed by a different causal mechanism 
than is the choice of the number of trips. For example, con­
sider the case in which a transit trip generation model is devel­
oped at the household level. The primary determinants of the 
first-stage decision may include household car ownership and 
the number of nondrivers, whereas the second-stage decision 
may be described as a function of the number of household 
members and number of workers. 

In the analysis of this study, this possible two-stage decision 
mechanism is represented by a system of two models: a binary 
probit model that represents the decision to make a trip of a 
given type at all, and a linear regression model applied to the 
number of trips, given that trips are made. Formally, the 
model system can be presented as 

Y; = 0 if A; :s 0 

Y; = 13' Z; + V; if A; > 0 

where 

A; = latent variable underlying the binary choice, 
Y; = number of trips made, 

ex' and 13' = coefficient vectors, 
X; and Z; vectors of explanatory variables, 

U; and V; normal random error terms, and u; is assumed 
to have a unit variance. 



42 

The two vectors of explanatory variables, X; and Z;, may 
contain the same variables. The binary choice probability is 
given as 

Pr[Y; >OJ = <1>(-cx'X;) 

where the lefthand side is the probabihty that trips will be 
made at all, and <I> on the righthand side is the standard 
cumulative normal distribution function. 

The number of trips, Y;, is defined w be 0 if A; :s 0. Given 
that trips are made at all (A; > 0), the expected number of 
trips is 13 'Z;. The unconditional expected number of trips can 
be obtained as ' 

E[Y;] = E[Y; I Y; = OJ Pr[Y; = OJ + E[Y; I Y; >OJ Pr[Y; >OJ 

= E[Y; I Y;> OJ Pr[Y;> OJ 

= 13' Z;<I>( -ex' X;). 

The model system can be estimated simultaneously using 
the maximum likelihood method. Use of this method, how­
ever, requires the development of a computer code to estimate 
the coefficients. Alternatively, the model system can be esti­
mated equation by equation using easily available binary probit 
and linear regression codes. A problem arises when the error 
term of the pro bit trip choice model ( u;) and that of the linear 
trip generation model (v;) are correlated. Possible biases in 
coefficient estimates are avoided in this study by introducing 
a correction term into the linear regression model. Further 
discussions of this method are given elsewhere (3- 7). 

LINEAR REGRESSION ON SIMULATED 
POISSON TRIP DATA 

The question of whether the least-squares regression approach 
will produce adequate model coefficients and test statistics is 
addressed in this section. Simulated data sets are generated 
assuming that trip generation is a Poisson process, the values 
of the parameters used to generate the data are then estimated 
by least-squares regression, and the quality of the parameter 
estimates is examined. 

Trip generation is simulated as follows. For each case sim­
ulated, the expected number of trips is assumed to be 

m; = 130 + 13uXi; + l32;X2; 

where 

m; = expected number of trips for case i, 
Xi; and X 2; = independent variables, and 

130, 131, and 132 = model parameters to be estimated later 
by least-squares regression. 

In the simulation, Xi; and X 2; are assumed to be 0-1 binary 
variables. Therefore, each case has one of the following four 
possible expected values: 130, 130 + 13,, 130 + 132, 130 + 131 + 
132 • The number of trips, Y;, is simulated using the following 
Poisson probability: 

Pr[Y; = nJ = exp(-m;)m;"/n! n = 0, 1, 2, ... 

where m; is the expected number of trips for case i as defined 
above. 

In each simulation run, cases are evenly divided into four 
groups, each having fixed values of the Xs (and therefore 
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TABLE 1 ORDINARY LEAST-SQUARES ESTIMATES OF 
THE PARAMETERS OF SIMULATED POISSON TRIP 
GENERATION 

Theoretical Simulation Estimated True 
Values Results• S.E.• S.E. 

MeanY .550 .547 
Constant .100 .109 .121 .040 

f31 .300 .285 .139 .083 

f32 .600 .593 .139 .056 
R2 .170 .165 

McanY 1.000 0.980 
Constant .100 .126 .084 .062 

ll1 .600 .553 .097 .136 

ll2 1.200 1.160 .097 .091 
R2 .310 .310 

McanY 1.900 1.889 

Constant .100 .ll5 .083 .072 

ll1 1.200 1.204 .097 .165 

ll2 2.400 2.385 .097 .133 
R2 .486 .498 

MeanY 2.800 2.771 
Constant .100 .098 .140 .064 

ll1 1.800 1.801 .162 .188 

ll2 3.600 3.547 .162 .126 
R2 .591 .604 

McanY 3.450 3.337 
Constant 3.000 3.217 .168 .ll5 

ll1 .300 .052 .194 .122 

ll2 .600 .179 .194 .242 
R2 .032 .007 

MeanY 3.900 3.847 
Constant 3.000 2.956 .166 .154 

ll1 .600 .481 .192 .282 

ll2 1.200 1.303 .192 .389 
R2 .103 .123 

McanY 4.800 4.797 

Constant 3.000 3.016 .188 .169 

ll1 1.200 1.266 .217 .163 

ll2 2.400 2.297 .217 .151 
R2 .273 .270 

McanY 5.700 5.580 
Constant 3.000 3.183 .194 .088 

ll1 1:800 1.260 .225 .ll3 

ll2 3.600 3.541 .225 .184 
R2 .415 .414 

• Avc:ragc of 10 Simulation runs. 

Noic: The pllr.Ul>Clc:r values (oonstan~ 1l1.1l2) u$Cd t0 slmulaic dala arc shown wider 
"Th<On!tlcal Values", aDcl !be ordinal)' least sq~ cslim.ates oftbc parameters-
shown u.odec "Simulolion Rcsull!I". 

one of the above four expected values). Consequently, 
dependent variable values in the data set come from four 
Poisson distributions. One hundred cases are generated for 
each group, and least-squares regression is applied to the 
resulting 400 cases in each simulation run. 

A total of 10 simulation runs are performed for each com-
bination of parameter values. The results of the simulation 
experiments with ordinary least-squares estimation are sum-
marized in Table 1 for the eight sets of parameter values 
examined in this study. 

The simulation experiment offers evidence that least-squares 
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regression yields adequate estimates of trip generation param­
eters even when the actual generation process is not com­
patible with its assumptions. The regression method performs 
very well when the theoretical R2 (defined as the ratio of the 
systematic variation of the mean number of trips to the total 
theoretical variance) is higher than 0.10. The only exception 
is the case with a large constant (3.0) combined with small 
slope coefficients (13 1 = 0.3, [32 = 0.6), for which the theo­
retical R2 is only 0.032. Other than this exceptional case, the 
least-squares estimates adequately account for variations in 
trip generation as indicated by the R2 values that are close to 
the theoretically expected values and the parameter estimates 
whose averages accurately replicate the true values used to 
generate the simulated data . 

The estimated standard errors of the coefficient estimates, 
however, do not accurately represent the true standard errors 
obtained by evaluating the standard deviations of coefficient 
estimates from 10 repeated simulation runs. To examine 
whether this is due to heteroscedasticity (a variation in the 
variance of random errors across cases), weighted least-squares 
estimation was performed using as the weight the inverse of 
the square root of the predicted number of trips obtained by 
ordinary least-squares estimation. This weight was theoreti­
cally derived from the fact that the variance of a Poisson­
distributed random variable equals its expectation. 

Weighted least-squares estimation offered some improve­
ment in estimated standard errors, although this improvement 
was at the cost of significantly diminished accuracy of coef­
ficient estimates. The divergence between the estimated and 
true coefficient values was so large that it was only appropriate 
to conclude that the weighted least-squares procedure was not 
suitable for trip generation analysis when the underlying pro­
cesses are composite Poisson processes with relatively small 
means (ranging from 0.1 to 7 trips). Although the reason for 
the poor performance is still undetermined, the parameters 
of trip generation processes may be accurately estimated by 
ordinary least-squares regression when the systematic varia­
tion in the data is reasonably high (with an R2 of, say, 0.1 or 
higher). 

TWO-STAGE TRIP GENERATION MODELS 

Data Set 

In the remainder of this paper the adequacy of linear trip 
generation models is examined by applying an alternative 
model formulation to empirical data . The conventional linear 
regression models and two-stage models described earlier are 
estimated and their relative performance is studied. The intent 
of the effort is to infer the validity of conventional linear 
models and the value of more elaborate models. Note that, 
unlike the simulation analysis above, the true behavioral 
mechanism is not known in this empirical analysis. The valid­
ity of the alternative models is therefore evaluated in the study 
on the basis of its statistical fit. 

The results of the 1980 Southeastern Michigan Transpor­
tation Authority survey are used in the estimation of two­
stage trip generation models. This standard home interview 
survey file contains demographic and socioeconomic attri­
butes of the household and its members and records of all 
trips made by each household member (5 years old and over) 
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on the survey day, including trips made by nonmechanized 
modes. The person, rather than the household, is used as the 
unit of analysis in this study. All individuals at least 16 years 
of age are included in the study sample. This particular cut­
off age is selected because individuals can qualify to be licensed 
to drive at this age and become active users of the automotive 
transportation system. 

A wide range of variables is considered in the model devel­
opment to best capture trip generation behavior using the two 
types of models . These variables include age, sex, occupation, 
car availability, household composition, life cycle stage, income, 
residence county, residence area type, and day of the week 
(Table 2) . The age and sex of an individual are known to 
influence trip generation significantly (8, 9) and therefore are 
included in this analysis . In addition, detailed occupation cat­
egories are used in the model development with the antici­
pation that variations in lifestyles can be captured by them. 

Past studies also indicate that household structure influ­
ences trip generation behavior even when the model is for­
mulated at the individual level. For example, a study shows 
that various measures of individual mobility vary significantly 
and meaningfully across subgroups defined by life cycle stages 
(10). Household structure is represented in this study by the 
number of household members by age and sex and by a set 
of five life cycle stages as defined in the data file. 

Because the models are formulated at the individual level , 
car availability, rather than car ownership, is used to explain 
trip generation. The following four levels of car availability 
are defined according to the license-holding status of the indi­
vidual and car ownership of the household: 

Always: the individual holds a driver's license , and the 
number of cars available to the household equals or exceeds 
the number of adults in the household; 

Usually: the individual holds a driver's license and at least 
one car is available to the household, but the number of cars 
available is less than the number of adults in the household; 

Sometimes: the individual does not hold a driver's license 
but at least one car is available to the household; and 

Never: no car is available to the household. 

Combined household income is classified in the data file into 
11 categories . In the analysis these categories are combined 
into four income classes as shown in Table 2. 

The land use type and density variables are introduced to 
account for the possibility that trip generation is influenced 
by the availability of opportunities around the home base. 
The residence county variables are introduced in the belief 
that differences in lifestyles that are not reflected in the house­
hold and person-attribute variables in the data file can be 
captured by these variables. Note, however, that the notion 
that trip generation depends on residence area contradicts the 
commonly held belief that trip generation of a household or 
individual of given characteristics is invariant across areas . 

Estimation Results 

The final model forms and estimation results are summarized 
in Table 3. The dependent variable is the total number of 
person trips generated by an adult household member. All 
regression models are estimated using weighted least squares 
with the weight defined as 0(IYJ)T where 0 and Tare estimated 



TABLE 2 VARIABLES USED IN MODEL FORMULATION 

VARIABLE 

Age and Sex 

AGE:l6-30 
AGE:31-SO 
AGE:Sl-64 
AGE:6s+ 

MALE 
FEMALE 

Occupation 

PRO/TECH 
FARM 
LABORER 
MANAGER 
CLERICAL 
SALES 
CRAFTSMAN 
OPERATOR 
HHLDWORKER 
SERVICE 
Mil.JTARY 
OTHER 

Car Availability 

ALWAYS 

USUALLY 

SOMETIMES 

NEVER 

Household Sttucture 

NADULTS 
NCHILD:0-4 
NCHILD:S-IS 
NCHILD:l6-18 
NMALES 
NFiiMALES 

DEFINTilON 

I if the age is between 16 and 30; 0 otherwUc 
I if the age is between 31 and 50 
I if the age is between SI and 64 
I if the age is 65 or over 

I if male 
I if female 

I if professional or technical 
I if farmer, farm manager. f11111J \aborer, or farm foreman 
I if non-farm laborer 
1 if manager, official. or owner of a business 
I if clerical and similar worker 
I if sales worker 
I if craftsman, foreman, and siinilar worker 
I if equipment opcnltOr or mc;>tor v~hicle ,opcralor 
I if private household wor•er. mllld, butler. etc. 
1 if service worker 
I if in mill tary 
I if other worker 

I if the individual has a driver's license and the number of 
cars is no less than the number of adults in the household 
1 if the individual has a driver's license and the number of 
cars is less than the number of adults in the household 
1 if the individual does not have a drivcr's license and the 
household has at least one car available 
I if no car is available to the household 

Number of adults ~ 18 ycus old) in the household 
Number of children or 0 ta 4 years old 
Number of children of S to 15 years old 
Number of children of 16 to 18 years old 
Number of males in the household 
Number of fcrmles in the bowehold 

Household Llfccycle Stage 

NOCHLD-YNG 

NOCHLD-MID 

NOCHLD-OLD 

PRESCHOOL 

SCHOOLAGE 

Household Income 

LOW 
MID-LOW 
MID-HIGH 
HIGH 

Residence County 

DETROIT 
WAYNE 
OAKLAND 
MACOMB 
WASHTilNAW 
MONROE 
STCLAIR 
LIVINGSTON 

Residence AJQ Type 

I if head of household less than 35 years of age, and no 
children in the household less than 18 years ofage 
I if head of household 35 years of age or older, but less 
than 65 years of age, no children in the household 
1 if head of household 6S yean of age or older, no children 
in the household less than 18 years of age 
1 if the youngest chi ld in the household is less than 6 
years or age, {er head or household or any age 
1 if the yOllngest child in the household is 6 ycm; o( age 
or older. for head or household of any age 

1 if household annual income is less than $10,000 
1 if household annual income is between $10,000 and $20,999 
1 if household annual income is between $21,000 and $34,999 
1 if household annual income is $35,000 or more 

I if residence wne is in Detroit 
1 if residence rone is in Wayne County 
1 if residence rone is in Oakland County 
1 if residence wne is in Macomb County 
1 if residence rone is in W11$htenaw County 
I if residence wne is in Monroe County 
I if residence zone is in SL Clair County 
1 if residence zone is in Livingston County 

COMMEROAL 1 if 10 or more employees per acre ofusable land 
HIDENSITY 1 if less than 10 employees and more than S dwelling units 

per acre of usable land . 
MIDDENSITY I if less than 10 employees and from 0.5 to 5.0 dwelling 

units per acre of uublc llllld 
LOWDENSITY I if less tblln 10 cmployeeund less than O.S dwelling Ullits 

per ! ere or usable loru! 

DayofWeek 

MONDAY 
TUESDAY 
WEDNESDAY 
THURSDAY 
FRIDAY 

1 if Monday 
1 if Tuesday 
1 if Wednesday 
1 if Thursday 
1 if Friday 

TABLE 3 TWO MODELS OF TOTAL PERSON-TRIP 
GENERATION 

Cooventional Two-Sragc Model System 
Linear Model 

Probit Conditiooal 
Trip Cl!oic:e Trip GeoerabJ 

(WLS) (ML) (WLS) 

ll ll B 

AGE:31-SO -.113 -1.33 -.302 -5.23 
AGE:Sl-04 -.608 -6.SI -.608 -10.24 
AOE:6.5+ -.820 -7.34 -.753 -10.68 

MALE .326 6.80 -.411 -S.30 

PRO/TEOI .661 5.78 .290 3.36 
LABORER -.398 -2.68 
MANAGER .927 5.38 .453 3.29 .305 1.79 
CLERICAL .476 3.37 .391 3.71 -.232 -1.68 
SALES .381 2.25 .122 1.03 
CRAFTSMAN .238 1.91 -.388 -2.66 
SERVICE .693 3.68 .469 3.34 
OTHER -.385 -2.39 

ALWAYS .• 912 9.26 .206 3.92 .368 4.14 
USUALLY .439 4.58 
NEVER -.392 -3.46 

NADULTS -.058 -1.84 .109 2.98 
NCHILD:0-4 -.039 -.44 
NCHILD:S-15 .133 3.09 .ISi 3.82 
NCHILD:l6-18 .205 3.17 -.236 -2.7S 
NMALl!S -.117 -2.67 
NFEMALES .f176 1.55 

NOCHLD-YNO -.299 -S.IS .284 2.81 
SCHOOLAGB .332 3.77 .237 4.06 

LOW -.248 -2.78 -.436 -6.63 
MID-LOW -.117 -2.01 
HIGH .124 1.65 

WAYNE -.158 -1.10 -.21S -4.18 
OAKLAND .349 2.49 .291 3.01 
MACOMB .203 1.28 .195 1.66 
WASH!l!NAW .601 3.14 .842 4.95 

HIDENSITY -.188 -1.97 -.352 -3.86 
MIDDENSITY .182 2.18 .114 1.37 

MONDAY -.203 -2.25 -.155 -1.62 
TUESDAY .166 3.09 -.1S4 -1.74 
WEDNESDAY -.148 -1.58 
FRIDAY .098 1.00 .108 1.77 .053 .SI 

Correction Tenn• .485 3.97 

Constant 2.231 1.172 2.834 

R2 .138 .079 
F (df) 34.07 (24.S 109) 15.85 (21,3884) 
-2[L(B)-L(O)] (df) 2594.2 (24) 
-2[L(8)-L(C)] (df) 1040.0 (23) 
N 5134 5f177 3906 

•Introduced to correct for J':lssible biu es due to the com:lation between the error term of 
the pro bit choice model an that of the conditional trip generation model. 

WLS: Weighted leut squares regression 
ML: Maximum likelihood estimatioo 
df: de~ or &tcdom 
L(O): g·llkclihood with all cocflklcnu constrained to 0 
L(c): Log-likelihood with the consrant term elonc 
L(8): Log·lll<ollhood with no constraints 
N: SllDlplc siz.e 

-2[L(B)-L(O)] and -2[L(ll)·L(O)J have chi-square diooibudou with indicated degrees or 
freedom. rcspccdvely. The former can be used to test the coUcctive iWclificancc or ell 
model cocfficienlS, and the laner to test tho sigiUC'icance of the model eot clcnts C>1Cludin1 
the constant term. 
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by regressing the squared residual on the predicted number 
of trips (unlike the simulation analysis above, practically no 
differences emerged in this case between the ordinary least­
squares and weighted least-squares estimation results). 

Columns 1 and 2 of Table 3 present the estimated model 
coefficients and t-statistics of the conventional linear regres­
sion model. The coefficients of the age variables show the 
well-established relationship that trip generation declines as 
age increases. The results also suggest that white-collar work­
ers tend to make more trips, that the presence of school-age 
children increases the adult members' trip generation, and 
that low-income families make fewer trips. The car availability 
variables are highly significant, indicating that trip generation 
increases with car availability . 

The two sets of variables that are not normally included in 
trip generation models, residence county and day of the week, 
are both significant. The day-of-the-week variables suggest 
that trip generation is suppressed on Mondays. The coefficient 
for Friday trip generation is positive, although insignificant . 
This finding is consistent with earlier results that trip gener­
ation increases toward the end of the week (11), but statis­
tically is not as conclusive. 

The set of residence county variables suggests that residents 
of suburban counties tend to make more trips. This area­
specific effect is in addition to those represented by the income 
variables or-by the land-use type variables, the latter of which 
indicate that residents in the area with 0.5 to 5 dwelling units 
per acre make more trips. Although it is not possible to pin­
point the reasons for the significance of the county variables, 
it is conceivable that these variables act as proxies for unob­
served and geographically correlated factors such as ethnic 
backgrounds. 

The pro bit trip choice model includes a set of variables that 
is similar to that of the conventional model. However, the 
effect of income variables is more pronounced, whereas car 
availability variables are less dominant in the probit choice 
model. The sex variable is significant in the probit model and 
indicates that a man makes trips on any given day more fre­
quently than does an equally situated woman. Importantly, 
no land use type variable is present and only one residence 
county variable is included in the model. This result suggests 
that the choice of whether to make trips at all does not vary 
substantially by geographical area. 

Columns 7 and 8 of Table 3 show the conditional trip 
generation model that accompanies the probit trip choice 
model. Quite notable is the result that the age variables and 
income variables, both significant in the probit choice model, 
are excluded from the conditional trip generation model 
because of their insignificance. On the other hand, the land 
use type variables, which are not included in the probit 
model, are included in the conditional trip generation model. 

It is also notable that when a variable is included in both 
models, its coefficient values tend to contradict each other. 
For example , the sex variable (MALE) is positive and sig­
nificant in the probit model, but negative and significant in 
the conditional trip generation model. These values imply that 
women have a higher probability of not making any trips on 
a given day, but given that they make trips at all, they tend 
to make more trips than men . 

The two-stage model system thus offers indications that the 
choice of making trips at all and the determination of the 
number of trips are influenced by overlapping but different 

TABLE 4 PREDICTION RESULTS 

Model 

Linear 
Two-Stage 

Total Trips 

0.1297 
0.1253 
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Shopping Trips 

0.0276 
0.0268 

sets of factors . New behavioral insights are offered by the 
model system. However, the indications are not so clear-cut 
as to reject the conventional linear model as an inferior for­
mulation. In fact, the coefficients of the linear model are 
consistent with those of the two equations in the two-stage 
model system when viewed collectively. The same conclusions 
have been obtained from a similar analysis of shopp~ng trips. 

The explanatory powers of the two alternative model for­
mulations are evaluated by examining the correlation between 
the observation and prediction. The correlation is estimated 
by regressing the observed number of trips on the predicted 
number of trips. The results, summarized in Table 4 {n terms 
of R2, indicate that the two formulations have virtually iden­
tical fits to the observation, with the two-stage models showing 
slightly inferior fits for both total person trips and shopping 
trips. The conventional linear regression models are capable 
of accounting for as many variations in trip generation as are 
the more elaborate two-stage model systems . 

CONCLUSION 

The adequacy of conventional linear regression models in trip 
generation analysis has been the subject of this study. The 
following two issues have been addressed as possible factors 
that may invalidate linear regression analysis: (a) the incom­
patibility between the continuous, untruncated error term of 
a linear regression model and the discrete and nonnegative 
number of trips generated by a household or individual and 
(b) the possibility of a two-stage decision mechanism in which 
the choice of making trips at all is first made, and then the 
number of trips is determined given that trips are made . 

Simulation experiments were conducted to address the first 
issue. In the simulation, trips were generated assuming Pois­
son distributions . Although the resulting error distributions 
were heavily truncated, the analysis indicated that model 
parameters can be consistently estimated and the expected 
number of trips can be forecast accurately by using the linear 
model and ordinary least-squares estimation method. The 
estimated standard errors of model coefficients were biased. 
The analysis indicated that weighted least-squares could not 
be applied to the simulated data to solve this problem because 
of the inaccurate coefficient estimates that the method pro­
duced. Further research is needed to identify the reason for 
the poor performance of weighted least-squares regression . 

Two-stage model systems were estimated by using an 
empirical data set and then compared with linear regression 
models . The results indicated that the choice of making trips 
at all and the determination of the number of trips to make 
are influenced by overlapping, but different, sets of factors . 
However, the linear regression models offered essentially 
the same characterization of trip generation behavior as the 
two-stage models. Furthermore, the explanatory powers of 
the two alternative model formulations were found to be 
identical. The two-stage models provided some additional 
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behavioral insights, but failed to show any improvement in 
fit despite their complex model structure, which involves an 
increased number of parameters and an elaborate estimation 
procedure. 

The results of this study have indicated that linear regres­
sion models of trip generation offer consistent coefficient esti­
mates and produce as accurate predictions as a more complex 
two-stage model system. The ordinary least-squares estima­
tion is appropriate for generation models of infrequent trips 
for which the assumptions underlying the estimation method 
are unlikely to hold. Improvement in trip generation analysis 
may not be obtained by adopting more complex model 
systems. 
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Interregional Stability of Household 
Trip Generation Rates from the 1986 
New Jersey Home Interview Survey 

W. THOMAS WALKER AND 0LAYINKA A. 0LANIPEKUN 

The geographic stability of trip generation rates is a major 
factor in determining data collection strategies. Expensive home 
interview trip diaries need be collected only in specific geo­
graphic areas if the resulting trip rates will be different from 
those of other areas already surveyed. In the fall of 1986, the 
New Jersey Department of Transportation, through a con­
sultant, conducted a statewide small sample telephone home 
interview survey. This survey was divided into two independent 
parts, northern New Jersey and southern New Jersey, each 
consisting of about 1,400 household interviews. Differences in 
home-based trip generation rates tabulated for the areas stud­
ied, including the urban and rural portions of the southern 
study area, provide valuable insight into the geographic sta­
bility of trip generation rates, because these areas differ sig­
nificantly in character. In a summary of the results of a com­
parative trip generation rate analysis for the New Jersey surveys, 
stratification schemes are tabulated and analyzed to determine 
the most appropriate basis for making disaggregate trip rate 
comparisons between regions. Trip rates are also tabulated for 
the Delaware Valley Regional Planning Commission counties 
and the remainder of southern New Jersey to facilitate com­
parisons of trip-making characteristics between these geo­
graphic areas. Finally, comparisons between the trip-making 
characteristics of southern and northern New Jersey residents 
are made. 

The almost universal availability of the automobile has done 
much to standardize aggregate trip generation rates, although 
considerable variation in individual household rates still exists. 
Widely used traffic analysis methods such as the Institute of 
Transportation Engineers (ITE) Trip Generation Manual 
implicitly assume the interregional transferability of trip gen­
eration rates because individual observations of trip making 
made throughout the United States are averaged and analyzed 
in cross section (1). 

The-geographic stability of trip generation rates is a major 
factor in determining data collection strategies. Expensive 
home interview trip diaries need be collected only in specific 
geographic areas if the resulting trip rates will be different 
from those of other areas already surveyed. Of course, trip 
generation rates are not the only factor influencing the need 
for transportation data collection. Transit usage and modal 
split factors may also vary significantly between study areas, 
especially if the density and scale development and the type 
and amount of public transit service also differ. However, 
the adequate estimation of trip generation rates is a major 

Delaware Valley Regional Planning Commission, The Bourse Build­
ing, 21 South 5th Street, Philadelphia, Pa. 19106. 

factor influencing data collection decisions, particularly in 
regions in which public transportation ridership is relatively 
insignificant. 

In the fall of 1986, the New Jersey Department of Trans­
portation (NJ DOT), through a consultant, conducted a state­
wide small sample telephone home interview survey. This 
survey was divided into two independent parts-northern 
New Jersey and southern New Jersey-each consisting of 
about 1,400 household interviews (see Figure 1). Because the 
NJ DOT contract with the consultant did not include tabu­
lation or analysis of the results of the southern survey, Del­
aware Valley Regional Planning Commission (DVRPC) staff 
was requested to undertake the activities, for both the New 
Jersey counties within the DVRPC region and the remaining 
southern New Jersey counties. 

The three tabulations of these rates provide valuable insight 
into the geographic stability of trip generation rates, because 
these areas differ significantly in character. Northern New 
Jersey is part of the New York metropolitan region, with large 
areas of intensive commercial and residential development. 
The cities of Newark, Jersey City, and New Brunswick and 
their suburbs are prime examples of this development. The 
DVRPC counties are also urban and suburban in character, 
centered on the cities of Camden and Trenton but with less 
intensive development patterns than in the north. The remain­
der of South Jersey is mostly rural in character with smaller 
cities such as Atlantic City and Vineland. 

This paper summarizes the results of the comparative trip 
generation rate analysis for the New Jersey surveys. Strati­
fication schemes based on family size, income, automobile 
ownership, and area type (DVRPC region only) are tabulated 
and analyzed to determine the impact of these input variables 
on trip making and to identify the most appropriate basis for 
making disaggregate trip rate comparisons between regions. 
Trip rates are tabulated for the DVRPC counties and the 
remainder of southern New Jersey to facilitate comparisons 
of trip-making characteristics between these geographic areas. 
Finally, comparisons between the trip-making characteristics 
found in the southern and northern New Jersey surveys are 
made. 

SURVEY DATA AND STATISTICAL ANALYSIS 
METHODS 

The southern New Jersey survey consisted of 1,413 telephone 
household interviews taken on Monday through Friday from 
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FIGURE I Counties included in the southern and northern New Jersey home interview surveys. 

October 17 to November 25, 1987. These 1,413 households 
generated 11,087 weekday trips by all modes, for an average 
of 7.83 trips per household . Of these 1,413 households, 159 
(11 percent) refused to answer the household income question 
and had to be dropped from the income tabulations. This 
reduced sample resulted in an overall rate of 8.03 trips per 
household, about 2.6 percent higher than that for the entire 
sample. This difference is not statistically significant, how­
ever. Rates stratified by automobile ownership and house-

holds are based on the 1,413 household sample, and rates for 
income strata are based on the smaller sample. 

The tabulations of trip rates for the northern and southern 
New Jersey home interview urvey were accomplished by 
processing the trip data contained in the survey househol.d 
files. These files contain household-level totals of trip pro­
duction by purpose as well as the socioeconomic indicators 
used to allocate the household to a given cell in the cross­
classification matrix. In all of the tabulations, rates are reflec-
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tive of total travel (internal/internal + internal/external). These 
total trip generation rates are useful in travel simulation and 
project analyses. 

For purposes of trip rate analyses and comparisons, three 
groupings of the southern New Jersey data were prepared: 

1. the entire southern New Jersey study area; 
2. the DVRPC region; and 
3. the remainder of southern New Jersey. 

The first grouping is useful for overall rate tabulations and 
for comparisons with rates calculated for northern New Jer­
sey. The tabulations for the DVRPC region and the remainder 
of southern New Jersey are used to compare trip generation 
rates within the DVRPC counties with those outside the region. 
Because area type is defined at the census-tract level, tabu­
lations involving area type are confined to the DVRPC region 
where DVRPC staff have geocoded the trip end addresses to 
tracts. Outside the DVRPC region only consultant-supplied 
Minor Civil Division codes are available. 

The methodology of trip-generation-rate analysis implicit 
in the southern New Jersey home interview survey is usually 
termed the "cross-classification" method. This method is sim­
ilar to the widely used multiple regression technique in that 
changes in trip rates are measured when changes in two or 
more dependent variables are accounted for. In this case, 
however, an n-dimensional matrix of mean or average trip 
rates is calculated in which each variable (trip purpose, auto­
mobile ownership, income, etc.) has at least two subcategories 
defined by contiguous ranges of the appropriate variable. Cross­
classification analysis is disaggregate in that rates are tabu­
lated directly from household data rather than relying on zonal 
averages of trip rates or independent variables. The use of 
this technique makes the results comparable with the northern 
New Jersey trip generation tabulations prepared by the con­
sultant (2). 

Three statistical indicators are calculated for each trip rate 
cell in the cross-classification matrix: the mean or average trip 
rate for households within that stratum; the number of obser­
vations; and the cell standard deviation. The primary output 
is the cell mean trip rate. The number of observations in the 
cell and its standard deviation provide statistical measures of 
the accuracy of the rate (via confidence interval) and facilitate 
hypothesis tests regarding the difference between rates in 
selected strata or geographic areas. The confidence interval 
about the mean trip rate is as follows: 

- s 
X ± (n) 112 • t,,12,n - 1 

where 

X = mean trip rate for cell, 
s = cell standard deviation, 
n = number of observations, and 

t,,12,n - 1 = t-test statistic (1.960 for 31 or more obser­
vations; 12.706 to 2.045 for 2 to 30 obser­
vations). 

This formula clearly indicates that rate estimation becomes 
more accurate as the number of observations in the cell increases 
and decreases as the cell standard deviation grows larger. The 
t-test regarding the statistical significance of differences between 
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two mean trip rates is based on the idea that the hypothesis 
that trip rates differ must be rejected if their confidence inter­
vals overlap. This leads to the two major statistical objectives 
in evaluating alternative cross-classification schemes: mini­
mize the standard deviation and maximize the number of 
observations per cell (at least 30 for practical purposes). 

Although more nebulous and difficult to define, rate dif­
ferences may also be categorized in terms of planning signif­
icance. Planning significance is related to the magnitude of 
the difference more than its statistical significance. For this 
reason, selected tables also contain estimates of difference 
and percent difference so that any logical patterns of these 
differences may be identified. A difference of 1 percent may 
be statistically significant if the sample is large enough and 
the mean is tightly constrained by the cell standard deviation. 
This difference is of little planning significance, however. 

On the other hand, a difference of 30 percent is of great 
planning significance even if not statistically significant, pro­
vided that the overall rate patterns are logical and on that 
basis accepted into the trip generation model. A travel dif­
ference of 30 percent may significantly change the design of 
a proposed facility or even its functional class. We somewhat 
arbitrarily define a difference of 10 percent or more as being 
of planning significance, particularly if this difference is part 
of a logical overall pattern of trip rate variation. 

ANALYSIS OF SOUTHERN NEW JERSEY 
STUDY AREA TRIP PRODUCTION RATES 

In general, different demographic distributions of households 
within alternate geographically defined survey areas may cause 
average overall trip rates to differ. For this reason, it is desir­
able to make disaggregate comparisons of trip rates based on 
demographic variables known to be associated with differ­
ences in household trip making. On the basis of past expe­
rience in travel forecasting at the regional level and the work 
of other researchers (3-6), the following variables were ana­
lyzed as candidate bases for detailed comparison of trip rates: 

1. Household size (persons per household), 
2. Automobile availability, 
3. Household income, and 
4. Trip purpose. 

Household size is defined as the number of persons occu­
pying a housing unit regardless of the relationship to the 
householder. Automobile availability is defined as the num­
ber of passenger cars available at home for the use of the 
members of the household. The term "automobile" includes 
station wagons, vans, and pickups but excludes larger trucks. 
Income is defined as money received from wages and salaries; 
nonfarm self-employment; interest, dividends, and net rental; 
Social Security; public assistance; and all other sources. Trip 
purpose defines the principal reason for making the trip. 

Table 1 presents a percentage breakdown of travel by trip 
purpose for the southern New Jersey survey. Home-based 
travel (home-based work, home-based nonwork, and home­
based school) together account for 79 percent of total travel 
generated by residential land uses. As in the northern New 
Jersey tabulations, home-based nonwork travel excludes school 
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TABLE 1 SOUTHERN NEW JERSEY SURVEY: PERCENT OF TOTAL TRIPS BY 
PURPOSE 

Trip Purpose Percent of Total Travel 

27.3% 

Home Based Non-Work (excludin;J school) 40.6% 

Horne Based Shopping 12.1% 

Harne Based Social Recreational B.6% 

Horne Based Personal Business 10.5% 

' Home Based Fat Meal 3.6% 

Horne Based other 5.8% 

Home Based School 11.1% 

Non-Horne Based 21.0% 

100.0% 

TABLE 2 SOUTHERN NEW JERSEY SURVEY: TRIP PRODUCTION RATES BY 
TRIP PURPOSE AND HOUSEHOLD SIZE 

Household Size All 
Purpose 1 2 3 4 5 6 Households 

'lUrAI, 3.13 6.19 B.07 10.74 12.59 17.26 8.03 

THB 2.23 4.55 6.51 8.78 10.45 13.86 6.34 

flB'lRl< 0.75 1. 76 2.58 2. 79 3.13 3.79 2.18 

~ 1.41 2.67 3.24 4.40 4.68 7.21 3.29 

HBS(}! 0.06 0.12 0.69 1.59 2.64 2.86 0.87 

NHB 0.90 1.65 1.56 1.96 2.14 3.40 1.69 

Abbreviations: 

'IUrAI,: Total Productions 

'!HB: Total Horne Based Productions 

HB'IRK: Home Based Work Productions 

~= Horne Based Productions Excllldi.rxJ Work arrl School Productions 

HBS(}!: Harne Based School Productions 

NHB: Non-Hane Based Productions 

trips. Commuting travel to and from work accounts for more 
than 27 percent of travel. Of the home-based nonwork sub­
purposes, shopping contributes the most trip making (12 .1 
percent) followed by personal business (10.5 percent), social­
recreational (8 .6 percent), and eating meals (3.6 percent) . All 
other home-based nonwork nonschool travel accounts for 5.8 
percent of total travel. School travel constitutes 11.1 percent 
of trips generated, and non-home-based travel generates the 
remaining 21 percent measured in the home interview survey. 
Overall, these proportions of travel appear to be reasonable . 

Average trip rates stratified by purpose and family size are 
shown in Table 2. Trips per household for all of southern 
New Jersey, when stratified by family size, range from 3.13 
for a household with one person to 17.26 average weekday 
trips for households with six or more persons. Household trip 
rates for individual purposes also increase smoothly with 
household size. Home-based nonwork trip rates sustain the 
largest absolute increase, with household size increasing by 
almost six trips per household. Home-based school has the 
fastest rate of increase, increasing almost 50-fold over the 
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TABLE 3 SOUTHERN NEW JERSEY SURVEY: TRIP PRODUCTION RATES BY TRIP PURPOSE AND INCOME 

Household Income Code All 
PUrpose 0 1 2 3 4 5 6 7 8 Households 

'rol'AL 3.20 5.21 5.39 7.58 8.66 9.63 10.48 10. 75 10.23 8.03 

THB 2.53 4.15 4.25 6.26 6.94 7.57 7.85 8.22 7.88 6.34 

HB-mK 0.29 0.96 1.39 2.04 2.48 2.70 3.24 2.97 2.92 2.18 

~ 1.89 2.66 2.21 3.27 3.48 4.04 3.72 3.93 3.81 3.29 

HBSCH 0.35 0.53 0.65 0.95 0.98 0.84 0.89 1.32 1.15 0.87 

NHB 0.67 1.07 1.14 1.33 1. 71 2.06 2.63 2.54 2.35 1.69 

Definition of Income Ranges: 

Income Incane Income Income 
COde Definition COde Definition Code Definition COde Definition 

0 Urrler $10,000 

1 $10,000 - $14,999 3 $20,000 - $29,999 5 $40,000 - $49,999 7 $60,000 - $69,999 

2 $15,000 - $19,999 4 $30,000 - $39,999 6 $50,000 - $59,999 8 $70,000 ard over 

TABLE 4 SOUTHERN NEW JERSEY SURVEY: TRIP PRODUCTION RATES BY 
TRIP PURPOSE AND AUTOMOBILE AVAILABILITY 

Autos Available Per Household All 
Purpose 0 1 2 

'IDrAL 3.23 5.34 8.74 

THB 2.87 4.16 6.82 

HEMRK 0.68 1.27 2.28 

HIDffiK 1.66 2.38 3.50 

HBSCH 0.49 0.52 1.04 

NHB 0.41 1.18 1.92 

range of household sizes. Home-based work and home-based 
nonwork trip rates also have strong tendencies to increase 
with household size, with work trips increasing slightly faster 
than non-home-based trips. Clearly, there is a strong tendency 
for travel of all types to increase with household size. 

The trip rates resulting from preparing similar tabulations 
stratified by income code are shown in Table 3. Overall, daily 
trip rates range from 3.20 trips per household for income code 
0 (under $10,000) to 10.23 for income code 8 ($70,000 and 
over) . Like the stratification by family size discussed above , 
trip rates tend to increase in a regular fashion with income, 
increasing both in total and by trip purpose. However, Table 
3 clearly indicates a slower rate of growth in the trip rates as 
income increases, because incomes vary significantly among 
individuals . A one-per on househo ld and a four-person 
household may both have an income of $50,000, but the four­
person household makes more trips. 

3 4 5+ Households 

10.16 11.12 15.04 7.81 

8.13 9.35 12.22 6.17 

3.18 4.30 5.04 2.14 

3.94 3.84 5.91 3.18 

1.01 1.21 1.26 0.85 

2.03 1.77 2.83 1.64 

Similar tabulations of trip rates stratified by automobile 
ownership and trip purpose are given in Table 4. Household 
trip rates increase by automobile ownership as well. The high­
est total rate of 15.04 (for 5 + car households) is about 4.5 
times the rate for 0-car households (3 .23). This places the 
substratum variation in rates for automobile availability between 
those observed for household size and for income. 

STATISTICAL SIGNIFICANCE OF RATE 
DIFFERENCES BETWEEN NEIGHBORING 
CROSS-CLASSIFICATION CELLS 

Another method for determining the significance of trip rate 
differences between substrata is to analyze I-statistics based 
on the rate differences between neighboring cells. Table 5 
presents the results of this analysis by major trip purpose for 
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TABLE 5 t-TEST FOR STATISTICAL SIGNIFICANCE OF RATE DIFFERENCES BETWEEN 
NEIGHBORING CELLS 

Persons Per Househol 
1 2 3 4 ·5 

Trip v.s v.s v .s v.s V :S 

Puroose _L _ 3_ __.L ..-2_ 6-9 

Total Trips 12.38 5.21 5.56 3.02 2.84 

Hane Based 9.73 6.17 1.27 1.51 1.35 
Work 

Home Based 7.24 2.32 3.53 0.69 2.33 
Non-work 

Home Based 1.72 7.77 6.84 4.54 0.48 
School 

Non-Home 5.19 0.52 1.96 0.63 2.02 
Based 

ousehold Income (thousands of dollars) 

1- 10 10-15 15-20 20-30 30- 40 40-50 50-60 60-70 
Trip v.s v.s v.s v.s v.s v.s v.s v.s 
Puroose 10-15 15-20 20-30 30-40 40-50 50-60 60-70 70 & Over 

Total 'l'rips 3.85 0.21 4.61 1. 71 1.28 0.47 0.53 0.49 

Home Based 4.01 2.09 3.83 2.98 1.25 2.20 0.88 0.16 
Work 

Home Based 2.13 1.14 3.12 0.67 1.47 0.69 0.37 0.21 
Non-Work 

Home Based 0.94 0.57 1. 73 0.20 0.88 0.28 1.63 0.60 
School 

Non Home 1.93 0.31 0.96 2.03 1.41 1.66 0.23 0.51 
Based 

:Auto Availability Per Househol 

o car 1 Car 
Trip v.s v.s 
Puroose 1..J;;g 2 Car 

Total Trips 4.21 10.94 

Hane Based 3.15 11.04 
Work 

Hane Based 2.62 5.80 
Non-Work 

Hane Based 0.16 5.78 
School 

Non-Home 5.51 5.74 
Based 

household size, income, and automobile ownership. For 
instance, in Table 5 the !-statistic associated with the rate 
difference in total travel between one- and two-person house­
holds is 12.38, and the corresponding value between two- and 
three-person households is 5.21. Since all cells in Table 5 are 
based on more than 30 degrees of freedom, the threshold 
value at 95 percent confidence is l .96. On this basis, all house­
hold size categories have a significantly different rate for total 
travel. This rate does not apply for work travel, however, 
where households with three or more persons do not have 
rates that are statistically significantly different from those in 
the previous strata. On this basis, three categories of work­
trip-r lated household sizes may be defined as one person 
two per ons and three or more persons. However home­
based non work and home-based school travel tend to incr i\S 

significantly in trip ra tes throughout the range of household 
sizes. Non-home-based travel tends to separate into three 

2 car 3 Car 4 car 
v.s v.s v.s 

3 Car 4 car 5 car 

2.95 1.50 1.86 

6.13 2.99 1.01 

1.42 0.11 1.53 

0.37 0.69 0.'18 

0.53 0.61 1.42 

ranges: one- and two-person, three- and four-person, and 5 + -
person househ Ids. 

Of the th re variables considered, the stratification by income 
presents the most opportunities to collapse strata, because 
there is a strong tendency for growth in trip rates to level off 
and lack statistical significance among the higher income strata 
(see Table 5). Except for work travel, no income stratum 
above $40,000 has a trip rate significantly different from that 
in the next lower income stratum. These higher-income groups 
tend to be a composite of a wide range of family izes whose 
aggregate trip rates may change in response to changes in 
income levels and the workforce participation rate among 
women and children. Cross-classification by income and fam­
ily ize will reduce the impact f thes factors n rate insta­
bility but result in an increa e in the number of tri p rates to 
be considered. 

Automobile availability categories 3, 4, and 5 + may be 



TABLE 6 COMPARISON OF DELAWARE VALLEY TRIP RATES WITH THOSE FOR 
REMAINDER OF SOUTHERN NEW JERSEY AREA 

stufy Persons Per Househol All 
Area 1 2 3 4 5 6-9 Households 

Total Trips Per Household 

IJIJRFC Region 3.24 6.30 8.03 10.80 12.31 17 . 17 8.11 

Rest of s. Jersey 2.96 6.02 8.12 10.59 12.95 17.50 7.91 

Difference 0.28 0.28 -0.09 0.21 -0.64 -0.33 0.20 

Percent Difference 8.6% 4.4% -1.1% 1.9% -5.2% -1.9% 2.5% 

"t" Test Statistic 0.77 0.74 -0.14 0.27 -0.65 -0 . 09 0 . 59 

Hane Based Work Trips per Household 

IJ1JRFC Region 0.82 1.89 2.712 2.76 3.25 3.70 2.27 

Rest of s. Jersey 0.64 1.54 2.37 2.83 2.98 4.00 2.03 

Difference 0.18 0.35 0.34 -0.07 0.27 -0.30 0.24 

Percent Differ. 22.0% 18.5% 12.5% -2.5% 8.3% -8.1% 10.6% 

"t" Test Statistic 1.23 2.25* 1.51 -0 . 26 0 .71 -0 . 30 2.17* 

Hane Based Non-Work Trip per Household (Non-Sc.hool) 

IJIJRFC Region 1.40 2.66 3.06 4.67 4.65 7.10 3.33 

Rest of s. Jersey 1.43 2.68 3.52 3.85 4.72 7.50 3.23 

Difference -0.03 -0.02 -0.46 0 . 82 -0.07 -0.40 0 . 10 

Percent Differ. -2.1% -0.75% -15.0% 17.6% -1.51% -5.63% 3 . 00% 

"t" Test Statistic -0.12 -0.08 -1.06 1.53 0.11 -0.17 0.49 

Hane Based Sc.hool Trips per Household 

IJIJRFC Region 0.11 0.13 0.65 1.48 2.81 2.83 0.86 

Rest of S. Jersey 0.00 0.11 0.76 1.82 2.42 2.92 0.87 

Difference -0.04 -0.02 -0.11 -0.34 0.39 -0.09 0 . 01 

Percent Differ. 100.0% 15.4% -16.9% -23.0% 13.9% -3 . 2% -1.2% 

11t 11 Test Statistic 2.07* 0.41 -0.77 -1.43 0.96 -0.10 -0.11 

Non-Hane Based Trips per Household 

IJIJRFC Region 0.90 1.62 1.61 1.90 1.59 3.53 1.64 

Rest Of S. Jersey 0.89 1.69 1.47 2.09 2.83 3 . 08 1. 77 

Difference 0.01 -0.07 0.14 -0.19 -1.24 0 . 45 -0.13 

Percent Differ. 1.11% -4.3% 8.7% -10.0% -78.0% 12 . 8% -7 . 9% 

"t" Test Statistic 0.05 -0.32 0.50 -0.59 -2.63* 0.35 -0.98 

* Inilcates Statistically Significant Difference 
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aggregated into a single 3 + category because the rate differ­
ence between these categories, although logical, is not statis­
tically significant except for work travel. Futhermore, the 4 
and 5 + automobile categories of households together con­
stitute only 5.7 percent of the sample. 

For purposes of comparing trip rates by geographic area, 
trip purpose and household size were selected as the most 
appropiate bases for comparison. Trip purpose was selected 
because of the theoretical importance placed on this variable 
in most trip generation analyses. Furthermore, trip rates vary 
significantly by purpose. Household size was selected over 
income and automobile ownership as the second basis for 
comparison because trip rates vary significantly across the 
range of household sizes for all trip purposes except for work 
and because this variable had the most uniform distribution 
of home interview surveys to individual subcategories. 

COMPARISON OF TRIP RATES BY 
GEOGRAPHIC AREA 

The 1986 home interview survey was unique in that it covered 
the entire state of New Jersey in two separate surveys. For 
this reason, it is possible to test the statistical significance of 
differences between trip rates calculated for the DVRPC 
counties and the remainder of the southern New Jersey study 
area and between northern and southern New Jersey. 

Southern New Jersey and DVRPC Counties 

Table 6 presents a comparison of trip rates stratified by trip 
purpose and family size between the DVRPC counties (Mer­
cer, Burlington, Camden, and Gloucester) and the remaining 
counties in the southern New Jersey study area (Atlantic, 
Cape May, Cumberland, Hunterdon, Salem, and Warren). 
Table 6 contains the trip rate for each geographical area together 
with the t-test statistic that measures the degree of statistical 
significance to be attached to the difference and percent dif­
ference, also shown. Since all cells in Table 6 have 30 or more 
degrees of freedom (40 to 408), the t-statistic must have a 
value of 1.96 or greater for the difference between the trip 
rates to be statistically significant with a 95 percent confidence 
level. 

The t-test statistics clearly show that trip rates for the DVRPC 
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counties and the rest of southern New Jersey are for the most 
part statistically equivalent. Only 4 of the 35 trip rates in this 
table have significant differences, and these differences tend 
to be scattered throughout the table and do not appear indic­
ative of a clear pattern. 

No trip rate for total travel was found to be statistically 
different either when stratified by household or in total. The 
highest t-value for the total trip purpose was 0. 77, which does 
not even approach rhe value needed for srnrisricai significance 
(1.96). Two rates for home-based-work travel were statisti­
cally different: the rate for two-person households and for 
total work travel. The work trip rates for the DVRPC region 
were 18 percent higher for two-person households and 10 
percent higher for all households (about 0.2 trip per household 
per day). The rate for school trips for one-person households 
in the DVRPC region was significantly higher because of an 
obvious deficiency in the data for the remainder of southern 
New Jersey (no observed travel). The rate differences for 
two-, three-, four-, and five-person households, although large 
in absolute terms (14 to 25 percent), lack the rational pattern 
required for planning importance and are of no statistical 
significance. Similarly, the non-home-based rate forthe DVRPC 
region was significantly lower for five-person households but 
irrational in pattern because the five-person rate was lower 
than the four-person rate. 

In summary, the principal difference between trip rates for 
the DVRPC counties and the rest of southern New Jersey is 
in work trips. DVRPC counties have a higher rate for four 
out of six household strata. These rates probably resulted from 
the higher labor participation rate in the DVRPC counties-
1.25 employed residents per household versus 1.16 employed 
residents per household in the remainder of the study area. 
Table 7 contains a comparison of home-based-work rates based 
on employed residents per household for the DVRPC coun­
ties versus the rest of southern New Jersey. When stratified 
in this manner, the statistical significance of the rate difference 
disappears. It is interesting to note that the corresponding 
value from the 1980 census was about 1.54. The reasons for 
the difference may involve seasonal variations in second jobs 
(Christmas-related in the New Jersey survey) and the fact that 
external-local work trips were excluded from the census tab­
ulation. In addition, 1.54 represents a weighted average for 
the entire Delaware Valley Region. The relatively small sam­
ple from urban areas in the New Jersey survey may have 
underrepresented these areas in the average. 

TABLE 7 HOME-BASED WORK TRIP RATE COMPARISONS BY 
EMPLOYED RESIDENTS PER HOUSEHOLD 

Drlployed Residents/Household 
§tudv Area l ~ ~ 1 

1J'JRPC Region 1. 79 3.59 5.27 7.07 

Rest of S. Jersey 1. 74 3.47 4.97 7.80 

Difference 0.05 0.12 0.30 -0.73 

Percent Difference 2.8% 3.3% 5. 7% -10.3% 

"t" 'Iest Statistic 0. 74 1.17 1.00 - 0 . 90 



TABLE 8 COMPARISON OF SOUTHERN AND NORTHERN NEW JERSEY HOME 
INTERVIEW SURVEY TRIP RATES 

study Fersons Per Household All 
Area 1 2 3 4 5 6-9 Ho..lseholds 

Total Trips per Hoosehold 

Southern Jersey 3.13 6.19 8.07 10.74 12.59 17.26 8.03 

Northern Jersey 3.17 6.33 7.91 10.62 12.19 17.47 7.85 

Difference -0.04 -0.14 0.16 0.12 0.40 -0.21 0.18 

% Difference -1.3% -2.3% 2.0% 1.1% 3.2% -1.2% 2.2% 

"t" Test statistic -.17 -.51 .39 .23 .51 -.10 .78 

Hane Based Work Trips Per Household 

Southern Jersey 0.75 1. 76 2.58 2.79 3.13 3.79 2.18 

Northern Jersey 0.76 1.80 2.66 3.13 3.10 4.59 2.27 

Difference -0.01 -0.04 -0.08 -0.34 0.03 -0.80 0.09 

% Difference -1.3% -2.3% -3.1% -12.2% 1.0% -21.1% 4.1% 

"t" Test statistic -.01 -.37 -.54 -1.98* .11 -1.38 1.20 

Hane Based Non-Work Trips per Household (non-school) 

Southern Jersey 1.41 2.67 3.24 4.40 4.68 7.21 3.29 

Northern Jersey 1.37 2.68 2.91 3.69 4.78 6.51 3.01 

Difference 0.04 -0.01 0.33 0.71 -0.10 0.70 0.28 

% Difference 2.8% -0.4% 10.2% 16.1% -2.1% 9.7% 8.5% 

"t" Test statistic 0.25 0.05 1.22 2.13* 0.20 0.56 2.12* 

Hane Based SChool Trips per Household 

Southern Jersey 0.06 0.12 0.69 1.59 2.64 2.86 0.87 

Northern Jersey 0.03 0.13 0.55 1.52 2.24 2.88 0.74 

Difference 0.03 -0.01 0.14 .07 0.40 -0.02 0.13 

% Difference 50.0% -8.3% 20.3% 4.4% 15.2% -0.7% 14.9% 

"t" Test statistic 1.03 -.29 1.48 .45 1.35 -.04 2.13* 

Non-Hane Based Trips Per Hoosehold 

Southern Jersey 0.90 1.65 1.56 1.96 2.14 3.40 1.69 

Northern Jersey 1.00 1. 72 1.80 2.27 2.06 3.49 1.82 

Difference -0.10 -0.07 -0.24 -0.31 -0.49 -0.09 -0.13 

% Difference -11.1% -4.2% -15.4% -15.8% -22.9% -2.6% -7.7% 

"t" Test Statistic -.75 -.45 -1.24 -1.38 -1.34 -.12 -1.41 

* Irdicates Statistically Significant Difference 
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TABLE 9 VARIATION OF HOUSEHOLD TRIP RA TES BY TRIP PURPOSE AND 
AREA TYPE FOR DVRPC REGION 

Area 'IVPe 
Trip 

Pumose urban SUJ::o.rrban 

HEM 2.17 2.25 

HM"W ~ .. ~ .., .,. 
L,,. /L. ~., ... 

HBSCli 0.57 0.76 

NHB 1.66 1.56 

rorAL 7.13 7.82 

Southern Versus Northern New Jersey 

Trip rates similar to those described above were tabulated for 
the northern New Jersey study area by the consultant and 
presented in a report (2) . The northern New Jersey data were 
collected by the same consultant using identical sampling and 
telephone interview techniques. Table 8 compares trip rates 
by purpose and family size from the southern New Jersey 
survey with the corresponding value from the northern New 
Jersey home interview survey. The cutoff value for statistical 
significance here is 1.96 as well , because the degrees of free­
dom in the t-statistic range from 99 to 808. 

Overall, these comparisons (Table 8) show very little dif­
ference in trip rates between the surveys. Only four cell values 
were significantly different. Total trip rates were virtually 
identical. In aggregate, work trip rates were 4 percent higher 
in the northern survey, particularly for 4- and 6 +-person 
households (12 and 21 percent, respectively). Home-based 
nonwork and home-based school production rates were gen­
erally higher (8.5 percent and 14.9 percent, respectively) in 
the southern survey, and non-home-based rates were 7. 7 per­
cent higher in the northern survey . However , these compar­
isons are generally lacking in statistical significance. Only the 
four-person households for home-based work and nonwork 
and overall rates for home-based nonwork and school trips 
were statistically different. 

Although these statistical comparisons indicate that few 
significant differences in trip rates occur between the northern 
and southern study areas and between the DVRPC counties 
and the remainder of southern New Jersey, geographic vari­
ations in trip rates occur within each study area. The study 
areas considered are large diverse heterogeneous mixtures of 
land uses, including numerous urban , suburban , and rural 
areas. Because of this, the trip rates analyzed are averaged 
over diverse land uses and area types, which may mask sig­
nificant geographical variations in trip-making patterns within 
each study area. 

For instance, area type was available as a basis for strati­
fication within the DVRPC counties, and the resulting trip 
rates are shown in Table 9. Although lacking in statistical 
significance be1:ause of small sample sizes in urban a reas, this 
pattern of trip rates cle, rly sh w a logica l increase in trip 
rate as the d nsity of developmenc declines for home-based 
work, nonwork, and total travel. This is thought to occur 
because walk travel is omitted from the trip diaries except for 
work trips. The long distances associated with rural travel 

All 
Rural Ooen Rural Households 

2.30 2.30 2.25 

3.13 3.70 3.17 

1.26 0.78 0.85 

1.55 1.83 1.57 

8.24 8.61 7.84 

make walking less feasible. There is no consistent pattern for 
home-based school or non-home-based trips by area type. 
Other researchers have observed significant differences between 
urban and rural trip rates (6-8) . 

CONCLUSIONS 

Little difference in terms of trip rates was found between the 
DVRPC counties and the rest of southern New Jersey or 
between the northern and southern New Jersey study areas. 
Size-based rates were statistically significantly different between 
the DVRPC counties and the rest of southern New Jersey in 
only 4 of 35 households. The principal difference from a plan­
ning perspective is related to work trips, which usually had a 
higher rate per household in the DVRPC region (10 percent 
higher in total). This difference, which may have resulted from 
the higher labor participation rate in the DVRPC counties, 
disappears when work trip rates are stratified by employed 
residents per household . 

The principal differences in trip rates between the northern 
and southern New Jersey surveys were in home-based non­
work, school, and non-home-based travel. Residents in the 
southern study area more frequently made home-based non­
work (8 percent) and school trips (15 percent), whereas north­
ern New Jersey residents made 8 percent more non-home­
based trips. In total, both work and nonwork trip rates showed 
no statistically significant variation between the northern and 
southern study areas. 

However, this result should be qualified by the small sample 
sizes and the large heterogeneous nature of the study areas 
considered. There is some evidence within the DVRPC coun­
ties that trip rates vary significantly by area type, with urban 
rates being lower than suburban and rural rates. This variation 
results from the higher tendency to make walk trips in large 
urban areas. The small sample associated with urban land 
uses made it difficult to draw strong statistical conclusions in 
this regard, however. 
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Regional Travel Forecasting Model 
System for the San Francisco Bay Area 

HANNA P. H. KOLLO* AND CHARLES L. PURVIS 

A regional travel forecasting model system update using a 1980 
data base is reported. Use of the 1981 Bay Area travel survey 
and the 1980 census Urban Transportation Planning Package 
is described in terms of providing a data base for model esti­
mation and validation. Historical model development efforts 
in the Bay Area are compared with current efforts. The demand 
model development process is characterized as a six-step pro­
cess involving development of component models and the sub­
sequent packaging into an aggregate forecasting system. The 
MTCFCAST-80/81 forecasting system involved reestimation of 
all model components. Simplifications to the original 
MTCFCAST system were introduced where warranted; the 
structure of the mobility and work trip models was tampered 
with the least. In contrast, the work-trip mode choice model 
was expanded to distinguish between two-occupant and three­
plus-occupant carpools, in support of travel forecasting for 
high-occupancy-vehicle lane projects. Continuity is seen as the 
key to maintaining and updating regional travel demand model 
systems. 

The use of travel demand models in transportation systems 
analysis has found widespread acceptance among metropol­
itan planning organizations (MPOs) across the United States. 
Typically, the focus of model development activities has been 
on the estimation and validation of individual model com­
ponents, particularly the work-trip mode choice model. Less 
attention is generally given to the "packaging," or combi­
nation of individual travel demand models into a compre­
hensive regional travel forecasting model system. 

This paper summarizes the modeling system developed by 
Metropolitan Transportation Commission (MTC) staff to 
describe base-year behavior and to be used for travel fore­
casting in the San Francisco nine-county Bay Area. The model 
system is part of the 1980-1981 model update to best rep­
resent recent survey, census, and networks. The system is 
designed by building on previous modeling efforts in the Bay 
Area . 

The model system described here is called MTCFCAST-
80/81. The "80/81" label distinguishes it from the previous 
version, MTCFCAST, developed from the 1965 data base. It 
includes a set of worker/nonworker models, two-automobile 
ownership models, a full sequence of work-trip demand models, 
and three sets of nonwork demand models, and relies on 
UMTA's Urban Transportation Planning System (UTPS) for 
network and trip assignment models. The demand models are 
implemented in a system written in FORTRAN for main­
frame computers. 

*Deceased. 
Metropolitan Transportation Commission, MetroCenter, 1018th Street, 
Oakland, Calif. 94607. 

HISTORY OF MODEL DEVELOPMENT IN THE 
BAY AREA 

This section provides the background for understanding the 
regional model system and its individual components, which 
are traced from 1965 to 1980. The earlier models are described 
briefly to provide a context for the present model system. 

Bay Area Transportation Study Commission 

Model development in the San Francisco Bay Area dates back 
to the 1960s when the Bay Area Transportation Study Com­
mission (BATSC) was created by the California legislature to 
conduct comprehensive transportation studies, prepare a mas­
ter regional plan, and provide for an ongoing planning pro­
gram . One of the major undertakings of BATSC was the 1965 
Home-Interview Survey. Some 30,000 households were sur­
veyed for their socioeconomic characteristics and their travel 
diaries. This survey became the backbone of model devel­
opment and travel forecasting through the 1970s. 

The BATSC models, developed in house, were mainly of 
the traditional aggregate type, characteristic of MPO efforts 
of that era. The exception was the trip generation research 
into disaggregate household trip production models (J). Eight 
trip purposes were carried through trip distribution and three 
into mode split. The models used in forecasting trip generation 
productions were a mix of zonal linear regression and house­
hold trip rates stratified by income and housing structure type. 
Trip attraction models were of the zonal linear regression 
type. Both production and attraction models were stratified 
by land use type. The trip distribution models were of the 
gravity type with fitted friction factors and balanced attrac­
tions through iteration. The mode split model was of a diver­
sion type with transit-to-automobile-travel-time ratios strati­
fied by three residential density ranges at the production end 
and by central business district (CBD) versus non-CBD at the 
attraction end (2). Networks and assignments were done in 
the TRANPLAN software with all-or-nothing loadings. 

Regional Transit Travel Projections Project 

The second generation of Bay Area travel models was devel­
oped by a consultant for Bay Area Rapid Transit and MTC 
in 1973 as part of the Regional Transit Travel Projections 
Project. The purpose of these models was to produce fore­
casts for five transit corridor-planning projects. The models 
were based on the 1965 data base and can best be described 
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as "aggregate stratified." Several stra tifica ti on levels by 
household types were carried through mode split. Employ­
ment type and density levels were also used at the attraction 
end. The trip generation production was a household cross­
classification model. Trip attraction used trip rates by employ­
ment type. Trip distribution was a gravity model. Mode split 
was a modified logit in which the parameters were estimated 
by trial and error to fit the aggregate data rather than by 
statistical estimation. FORTRAN software was written for 
the demand models and the TRANPLAN package was used 
for the networks and assignments . 

Travel Model Development Project 

An evaluation of the MTC modeling needs was undertaken 
by MTC management in 1974. Other regional agencies and 
transit operators were sympathetic toward a quantum jump 
in the state of the art of travel forecasting . It was decided to 
put the region in the forefront and have a commitment to a 
continued effort in model development. The Travel Model 
Development Project (TMDP) was initiated, and a consultant 
team was selected to carry out a two-phase study. Phase 1 
was devoted to review of data bases, a comparison of model 
systems, and the preparation of a work program for Phase 2. 
Thus, the third cycle of model development in the Bay Area 
was under way in 1975. The 1965 data base was revised and 
reexpanded, networks were converted to the UTPS, and 
extensive use of disaggr~gate logit models was made. The 
.demand models included 21 components covering four trip 
purposes that were packaged in a system, written in FOR­
TRAN, and fully compatible with UTPS. The forecasting 
version of the model system, known as MTCFCAST, used 
market segmentation by three-income or three-automobile­
ownership groups. The models were complemented by UTPS 
network and trip assignment procedures. The models are doc­
umented in a three-volume final report (3). Summary reviews 
of the original MTCFCAST travel forecasting model system 
were conducted by Ruiter and Ben-Akiva (4) and Ben-Akiva 
et al. (5) . Transportation planning textbooks by Manheim (6), 
Meyer and Miller (7), and Ben-Akiva and Lerman (8) provide 
highlights of the Bay Area forecasting system. 

Several versions of MTCFCAST have been used in the Bay 
Area for specific studies. These include the Santa Clara Valley 
Corridor Evaluation, the Air Quality Plan Update, and the 
Guadalupe Corridor Alternatives Analysis. Each version 
incorporates some type of refinement of the MTCFCAST 
system. Some refinements were the reestimation or replace­
ment of the work-trip mode choice model, recalibration of 
the trip distribution model, and/or the aggregate validation 
of the models to a 1975 data base. Several versions of the 
models have been applied to average values of zonal variables 
without market segmentation by income , automobile own­
ership, or any other stratification. This was done in conjunc­
tion with work-trip , person-trip tables derived from the tra­
ditional gravity or FRAT AR trip distribution models . Two 
examples of this are the model application in 1977 to generate 
travel forecasts for the Air Quality Management Plan by MTC 
staff, and the Guadalupe Corridor Alternatives Analysis mode 
choice model application in 1984 to generate travel forecasts 
for the Fremont-South Bay Phase I Corridor Study, by a 
consultant. 
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PREPARATION OF 1980-1981 DATA BASE 

Base-year data are an important component in any travel 
model update. A great deal of effort was expended in securing 
the best 1980 data possible. The effort included the acquisition 
of 1980 census and Association of Bay Area Governments 
(ABAG) demographic, land use, and employment data. The 
key to a meaningful model update was the collection, prep­
aration, and use of a special travel pattern data base. 

By the end of the 1970s, the 1965 , 1970, and 1975 data 
bases had been exhausted. In particular, the age of the 1965 
travel survey had called into question its reflection of present 
travel behavior in light of major changes to transit service in 
the region. On the other hand, fiscal constraints against Iarge­
scale surveys dampened the desire for travel data updates. 
Thus, the concept of a small sample survey became appealing, 
especially when the new breed of disaggregate models was 
thought to require fewer data for their development. Expe­
rience with the Bay Area disaggregate models developed from 
the 1965 data indicated that a rich aggregate data base was 
necessary for base-year validation in addition to a small survey 
for the estimation of model coefficients . All these factors 
prompted MTC to embark on a new survey to coincide as 
closely as possible with the 1980 census journey-to-work ques­
tionnaire for compatible disaggregate and aggregate travel 
data sets. 

1981 Household Travel Survey 

The 1981 household survey was conducted in the spring of 
1981 by telephone with a sample of about 6,200 households 
and their trip diaries (9). The sample was of a stratified type 
selected disproportionately throughout the region . About one­
half of the surveyed households were residents of San Fran­
cisco County, at a sampling rate of 1.0 percent. The other 
eight counties had a sampling rate of 0.2 percent. Beyond this 
sample control total, households were selected by using tele­
phone directory-based random digit dialing in such a way that 
unlisted households could be selected. 

Extensive preparation and analysis of the survey data were 
undertaken by MTC staff. This included data cleanup, trip 
linking , household weighting, trip expansion, and reporting 
of key data (10-12). The survey was assumed to represent 
1980 travel behavior and was therefore expanded to total 1980 
households in the region . Because of the disproportionate 
nature of the sample, this expansion was necessary to weight 
the survey observations. It was also necessary for the devel­
opment of aggregate nonwork models . Master files of house­
hold and trip characteristics were prepared to provide a com­
mon and easy-to-access data base for the development of 
individual component models. 

1980 Census Urban Transportation Planning 
Package 

The 1980 census provided valuable aggregate data, at the 
census-tract level, of household characteristics derived from 
the weighted sample or from the 100 percent counts. In addi­
tion to the standard files and reports, the Urban Transpor­
tation Planning Package (UTPP) for the nine-county region 
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was purchased from the Bureau of the Census to be the basis 
for tract-level work-trip locations. Responses to the journey­
to-work questionnaire were collected from a sample of 1-in-
6 and coded to a geography ranging from tract to county for 
a reduced sample of 1-in-12 by the Bureau of the Census. The 
main data files included the number of workers by place of 
residence reporting their mode of travel to work destinations. 
MTC staff processed the data and converted the information 
to aggregate home-based \.VOrk-trip tables as follo\vs: 

1. For unallocated place-of-work data, the census-reported 
geography of "place" (mainly for Sonoma and Napa counties) 
and "county" were allocated to the 550-regional-zone system. 
This entailed detailed analysis of ABAG's employment data 
to form the basis for judgments about the allocation of 
workers to zone of work. 

2. The tract-zone-county commuter data were aggregated 
to 550 zone matrices by drive alone, shared-ride passengers 
in two-occupant vehicles, shared-ride passengers in three-or­
more-occupant vehicles, and transit passenger modes. 

3. The 1981 survey data were analyzed to produce county 
and superdistrict estimates of home-based work trips per 
employed person . 

The factors from item 3 were used to convert the census 
commuter matrices to home-based work trips by mode . The 
results are called the 1980 "observed" trip tables and form 
the most reliable aggregate data base available in this region . 
These tables were the main source for base-year model system 
validation. 

DEMAND MODEL DEVELOPMENT PROCESS 

With the 1980-1981 data base on hand , the task of demand 
model updating was undertaken in house. The objective was 
to develop a bank of model components that could be pack­
aged in various combinations for various uses. Past experience 
with model development and application indicated that the 
update should build on the disaggregate model structure of 
the earlier Travel Model Development Project. The disag­
gregate models are considered to be the most advanced and 
to have more behavioral content than other model types. 
Although the main framework of the earlier effort was used, 
many changes were introduced to improve the models and to 
simplify the process. These included changes to specification 
of variables, component linkages, and emphases by trip pur­
pose. The linkages in the work models were those least 
tampered with, whereas those of the nonwork models were 
substantially changed. The feedback loops from nonwork to 
work-trip models were removed, the structure of the nonwork 
distribution models was changed to the gravity form, and the 
only logit form used in nonwork models was for mode choice. 
The idea was to keep the main structure of work-trip models 
and to introduce warranted simplifications wherever possible. 

The model development process covers two domains. The 
first includes the individual components and the second con­
tains the model system. Six distinct steps in the development 
process span the two domains. Model specification, estima­
tion, and disaggregate validation produce a candidate com­
ponent model. Market segmentation, software preparation, 
and aggregate base-year validation are used to package the 
components into a forecasting model system. 
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Development of Component Models 

Component models perform individual functions in the model 
system and were therefore uniquely treated in the update 
process. The six sequential steps of model development men­
tioned above may not apply to all components; in addition, 
there are varying degrees of partial or complete recycling 
throughout. The terminology and the process are geared more 
to disaggregate models than to aggregate components because 
the latter require fewer steps than the former. 

Component model development is described in the follow­
ing sections. 

Model Specification 

Model specification advances a hypothesis about the repre­
sentation of the phenomena being modeled. It requires the 
identification of the component function and the dependent 
and explanatory variables and the selection of a mathematical 
form for the model. The function may pertain to such factors 
as automobile ownership prediction, trip attraction estima­
tion, and mode choice simulation. Different combinations of 
socioeconomic variables, transportation level-of-service var­
iables, or urban growth density variables have been used for 
different components. Four mathematical forms have been 
used. Linear regression is used for trip generation production 
models. Trip rates are used for some attraction models. Logit 
is used for automobile ownership, work trip distribution, and 
all mode choice models. Finally the gravity type is used for 
nonwork trip distribution models. Model specification applies 
equally to disaggregate and aggregate models. 

Coefficient Estimation 

Coefficient estimation is the process of applying the observed 
behavior reflected in the data base to the hypothesis advanced 
in the previous section. It uses statistical data-fitting tech­
niques to quantify the relationship between the dependent 
and the independent variables. It produces the coefficients 
and constants of linear regression or logit utility functions. 
For aggregate models, calibration of gravity model friction 
factors is a more conventional, yet analogous, term . 

Estimation is done by preparing special input files for usc 
in special packages like SAS (multivariate analysis), LOGIT 
(maximum likelihood logit estimation), or AGM-UTPS (grav­
ity calibration and application program). The resulting coef­
ficients are reviewed for correct sign, reasonable size, and 
statistical significance. The results suggest either recycling 
through the previous step or acceptance of a candidate model 
for subsequent testing steps. 

Disaggregate Validation 

Disaggregate validation is unique to disaggregate models and 
involves applying the estimated coefficients to a sample of 
households from the 1981 survey to simulate their choice 
behavior. The predicted choices are compared with the reported 
choices to detect any biases by several socioeconomic strati­
fications. The results may suggest recycling back to specifi-
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cation, estimation, or acceptance of the component model for 
subsequent testing. 

Development of the Regional Model System 

Development of the regional model system was begun after 
selecting the candidate component models. At this stage, both 
the disaggregate and the aggregate components were in their 
semifinal versions. The three steps that compose the regional 
model system development are described briefly as a contin­
uation of the discussion in the previous section. 

Market Segmentation 

Market segmentation involves adaptation of the disaggregate 
model coefficients for forecasting by market segment. In the 
conventional aggregate model systems, average zonal values 
are used in forecasting. In the MTC model system, the use 
of disaggregate models is accompanied by a number of strat­
ifications in which group averages of household characteristics 
are used instead of zonal averages. The process involves ana­
lyzing the variables used in each component model to ascer­
tain the need for revising the input zonal averages to reflect 
a market segment or to compute market-segment-specific 
coefficients based on the regional or county variations of 
household characteristics by market segment. The segmen­
tation varies by component or group of component models. 
In total, the following segmentations are used: households 
with workers versus all households; primary workers versus 
secondary workers; three-income groups; and three­
automobile ownership levels. 

Software Preparation 

Software preparation consists of revising, rewriting, or insert­
ing a special code in existing programs to implement each 
component model equation on a particular computer. Each 
component model is implemented in one or more data pro­
cessing "steps" by one or more data processing programs 
written in FORTRAN and compatible with the UTPS soft­
ware. In the MTC model system update, most of the computer 
programs were rewritten to accommodate the new 1980-1981 
models. Although the same framework, style, and file-naming 
conventions were used, consolidation of a number of steps 
and programs was undertaken to improve efficiency. 

Aggregate Base-Year Validation 

Aggregate base-year validation involves simulation of the 1980 
base-year travel through the model system, comparison of the 
simulated choices with independent observed estimates, and 
calibration-adjustment of model constants to reasonably match 
observed choices or travel patterns. After market segmen­
tation and model implementation in the software, the model 
system package was run on the 1980 data base to produce a 
simulation by each component model. The results of each 
model prediction were analyzed and compared with the most 
reliable and available 1980 observed data. The analyses led 
to either a recycling back to the specification-estimation steps 
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or acceptance of the model with or without constant adjust­
ments. Changes to these alternative-specific constants reduce 
prediction errors in the forecasting process. The errors can 
be attributed to a number of factors, including weakness in 
the underlying theory of the model structure, absence of 
important but unavailable or nonforecastable variables from 
model equations, biases in survey data, misrepresentation of 
time and cost level-of-service data, error in the base-year 
employment data, misrepresentation of captivity to alterna­
tive choices or modes, the regional averaging effect in model 
estimation, and deviation of actual human behavior from 
rational choices presumed by the models. 

To validate the model system in one continuous cycle and 
at the same time eliminate compounding of errors from one 
component model to another, a separate analysis was done 
at the end of each step to validate each model before pro­
ceeding to the next. 

For work-trip and mobility models, the MTC travel model 
update effort included several cycles through the three­
component model development steps and two full cycles through 
model system validation. Disaggregate nonwork model com­
ponents were developed in the same manner as the work-trip 
models. Aggregate nonwork models were developed in the 
traditional manner of gravity model calibration. One cycle of 
base-year aggregate simulation was undertaken. The models 
were aggregately validated to the 1980-1981 survey trip tables 
by mode. Although the survey had a small sample resulting 
in sparse and lumpy trip table entries, it was the only aggregate 
data base available to which to validate. It certainly was not 
as reliable as the census journey-to-work tables but appeared 
to adequately represent aggregate county modal shares. 

MODEL CHARACTERISTICS 

The 1980-1981 travel model update resulted in a bank of 
component models and networks to draw on for planning 
studies and special applications. In particular, the regional 
MTCFCAST-80/81 is packaged to represent state-of-the-art 
systems for demand forecasting and, together with its UTPS 
network package, represents a sophisticated and practical sys­
tem. Travel demand model components and component link­
ages are shown in Figure 1. The 24 component models, their 
acronyms, and mathematical forms are shown in Table 1. The 
bank of alternative models provides for a number of conven­
tional models (FRATAR, gravity, etc.), which are used side 
by side with MTCFCAST-80/81 for generating alternative 
forecasts to assess reasonableness, establish ranges, and bring 
about acceptability of such forecasts. The objective of this 
section is to report the highlights of unique characteristics of 
component demand models, regional model systems, and some 
recent network representation improvements. 

Characteristics of Component Models 

For convenience, the demand models are grouped into four 
functional areas, and their special characteristics are sum­
marized accordingly in the following sections. 

Detailed specification and model estimation results are 
summarized in three MTC technical summaries or working 
papers (13-15). Home-based work trip and mobility models 
are fully described elsewhere (13). Nonwork trip generation 
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INPUTS 

DEMOGRAPHIC, ECONOMIC 
AND LAND USE 

ZONAL 
LEVEL-OF-SERVICE 
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NElWORK 
LEVEL-OF-SERVICE 

SUPPLEMENTARY 

NON-WORKER HOUSEHOLD 
(NWHH) 

NON-WORKER AUTO OWNERSHIP 
(NWHHAO) 

HOME-BASED WORK TRIPS 

PRIMARY WORKER SECONDARY WORKER 

MODE CHOICE 
(PHBWM) 

ATTRACTION 
(SHBWA) 

MODE CHOICE 
(SHBWM) 

SHARED-RIDE OCCUPANCY 
(HBWSROCC) 

TRANSIT ASSIGNMENT 

DAILY 
WORK TRIPS 

DAILY 
NON-WORK TRIPS 

DAILY 
TOTAL TRIPS 

NON-WORK TRIPS 

HOME-BASED SHOP 

GENERATION ATTRACTION 
(HBSHG) (HBSHA) 

DISTRIBUTION 
(HBSHD) 

MODE CHOICE 
(HBSHM) 

GENERATION ATTRACTION 
(HBSRG) (HBSHRA) 

DISTRIBUTION 
(HBSRD) 

MODE CHOICE 
(HBSAM) 

HIGHWAY ASSIGNMENT UTPS 

DAILY 
WORK TRIPS 

DAILY 
NON-WORK TRIPS 

PEAK HOUR 

FIGURE 1 Regional travel forecasting model system (MTCFCAST-80/81). 

and trip distribution models have been analyzed previously 
(14), as have final specifications for nonwork mode choice 
models (15). Given that the scope of this paper concerns travel 
model systems rather than detailed model components, esti­
mation results are not presented here. 

Mobility Block Models 

The mobility block of models consists of the worker-non­
worker household, nonworker household automobile own­
ership, and worker household automobile ownership models. 
These models use the most predictable socioeconomic, 
housing type, and density variables available from ABAG, 
which show a logical relationship to the independent variables 
they forecast and statistical significance of the estimated 
coefficients. 

Trip Generation-Attraction Models 

The trip generation-attraction models for work trips use the 
most basic units of observation-the worker at place of res­
idence and job at place of work. In addition, the trip gen­
eration production models add socioeconomic and density 
variables to reflect other zonal characteristics. 

For home-based nonwork trip generation production models, 

the most relevant socioeconomic variables (income, house­
hold size, and automobile ownership) are used to predict trips 
per household. For trip attractions, the most relevant sector 
employment and other variables are used to predict trip 
attractions. Similarly, a variety of employment sector vari­
ables to predict non-home-based trips are used. 

Trip Distribution Models 

Trip distribution models for work trips are of the logit form 
and are probabilistic in their destination choice. They incor­
porate the traditional attraction balancing and trip length 
matching to observed behavior as well as K-factors. Most 
notably they include composite accessibility variables by mode 
and automobile ownership. These accessibility variables are 
derived from lower-level models in the forecasting process 
and are fed to upper-level models as generalized variables 
that enable travel time and travel cost by mode to influence 
trip distribution. They are derived from a rigorous theory 
consistent with modal and automobile ownership probability. 

Mode Choice Models 

The mode choice model for work trips is a disaggregate logit 
model that predicts drive alone, shared ride with two occu-
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TABLE 1 DEMAND MODEL SYSTEM COMPONENTS (MTCFCAST-80/81) 

Model Form Description 
1. NWHH Logit Worker/Non-Worker Household 
2. NWHHAO Logit Non-worker Household Auto Ownership 
3. WHHAO Logit Worker Household Auto Ownership 

4.PHBWG 
5.PHBWA* 
6.PHBWD 
7.PHBWM 

Linear 
Rate 
Logit 
Logit 

Primary Worker Home-Based Work Trip Generation 
Primary Worker Home-Based Work Trip Attraction 
Primary Worker Home-Based Work Trip Distribution 
Primary Worker Home-Based Work Mode Choice 

8. SHBWG Linear 
9. SHBWA* Rate 
10. SHBWD Logit 
11. SHBWM Logit 
12. HBWSROCC Linear 

Secondary Worker Home-Based Work Trip Generation 
Secondary Worker Home-Based Work Trip Attraction 
Secondary Worker Home-Based Work Trip Distribution 
Secondary Worker Home-Based Work Mode Choice 
Home-Based Work Shared Ride Occupancy 

13.HBSHG 
14. HBSHA* 
15.HBSHD 
16.HBSHM 

Linear 
Linear 
Gravity 
Logit 

Home-Based Shopping (Other) Trip Generation 
Home-Based Shopping (Other) Trip Attraction 
Home-Based Shopping (Other) Trip Distribution 
Home-Based Shopping (Other) Mode Choice 

17.HBSRG 
18. HBSRA* 
19.HBSRD 
20.HBSRM 

Linear 
Linear 
Gravity 
Lo git 

Home-Based Social-Recreation Trip Generation 
Home-Based Social-Recreation Trip Attraction 
Home-Based Social-Recreation Trip Distribution 
Home-Based Social-Recreation Mode Choice 

2i. NHBG* 
22. NHBA* 
23.NHBD 
24.NHBM 

Linear 
Linear 
Gravity 
Logit 

Non-Home-Based Trip Generation 
Non-Home-Based Trip Attraction 
Non-Home-Based Trip Distribution 
Non-Home-Based Mode Choice 

* Aggregate Model 

pants, shared ride with three or more occupants, and transit 
passenger modes. Great care wa taken in the development 
of thi model because of its importance for transit planning. 
The model was estimated from survey samples and aggre­
gately validated to replicate 1980 census journey-to-work m dal 
shares through adjustment of modal constants. The main vari­
ables and features of the mode choice model are 

1. Socioeconomic variables that are foreca ·t by ABAG 
(income, household size , worker per hou ehold). 

2. Automobiles per household forecast internally by the 
model system. 

3. Mode-specific dummy variables. 
4. Natural logarithm of t<:>tal employment density as a con­

tinuous variable to reflect CBD characteri t.ics in preference 
to judgmental CBD geographical definition. 

5. Time and cost peak level-of-~ervice matrices segmented 
to in-vehicle and out-of-vehicle travel time. 

6. Two variables to reflect mode of access to transit sta­
tions. The first is the automobile acce s dummy with a 0/1 
value to reflect the negative con equencc of the automobile 
access requirement in a transit journey. The second is the 
household automobile ownership for trips requiring auto­
mobile access to transit. Tbe Latter ha. a po itive c nsequence 
that mediate the negative on s a automobile ownership rises. 

7. Stratification by primary and secondary worker and appli­
cation to egmented per ·on lrip tables by tl1ree-automobile 
ownership groups. The mode choice application uses transit 
level-of-service matrices derived from the walk-only mode of 
access to transit for households owning no automobiles. 

The nonwork mode choice models are simpler Jogit models 
yet include socioeconomic variables, total travel times, travel 
costs, and various employment and residential density 
variables. 

Model System Characteristics 

The regional travel model system MTCFCAST-80/81 is a 
packaged set of component models that convert logit models, 
developed from sample data, to an aggregate forecasting sys­
tem (16). The e new m dels are integrated with the conven­
tional MPO-type models in a sophisticated process that pro­
duces what appears to be a product in a conventional format. 
The resulting system has the following unique characteristics: 

1. The updated models better represent travel behavior 
through the rich 1980-1981 data base. Coefficients for the 
entire model system are estimated with large samples and 
extensive specification and statistical testing. Furthermore, 
the entire system is validated to the 1980-1981 observed travel 
behavior from the mobility block through trip assignment. 

2. The model system relies on individual representation of 
modal level-of-service time and cost matrices for a practical 
representation of modes as well as the upward probabilistic 
representation of feedback between mode choice, automobile 
ownership, and work-trip distribution models. 

Through the use of logsum variables, the joint decision 
travel behavior process is correctly represented by the appar­
ent individual decision step of the conventional process. 
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3. The model system avoids the use of imaginary average 
traveler behavior through the use of market segmentation. It 
uses three income groups for the first part of the work-trip 
model sequence and three automobile ownership groups for 
the balance. By doing so, the travel decisions of these regions' 
residents are better represented than with average zonal 
characteristics. 

Network and Trip Assignment Modeling 

The MTC model system relies on UTPS for its network rep­
resentation and trip assignment process. The characteristics 
of this system are well documented in UMT A manuals on 
this package. One unique improvement in the UROAD traffic 
assignment program is the representation of high-occupancy­
vehicle (HOV) lanes and subsequent separate trip assignment 
to mixed flow and HOV facilities. The coding of HOV facil­
ities using a " parallel" approach has been fully tested and 
implemented by MTC staff using Bay Area networks and trip 
tables . The results have been encouraging and useful in eval­
uating the impact of HOV improvement proposals. ThP- p~r­

allel coding approach uses separate links for HOV lanes par­
allel to the mixed-flow adjacent facilities. This allows for coding 
separate speeds for the two types of facili ties. After recycling 
through mode choice, new speeds are estimated for these 
facilities using capacity restraint results. Both speed estima­
tion and volume assignment are reported separately to allow 
for realistic representation of the actual operation of these 
facilities. The improved coding procedures allow for different 
definitions of HOV operations in the region. They can be 
represented as allowing two-or-more occupants or three-or­
more occupants in the vehicle. 

Transit assignment incorporates two improvements . First 
is the use of a walk-only transit path in the process. This is 
done to allow market segmentation in the transit assignment 
where transit trip tables (out of the mode choice model) for 
the zero-automobile-ownership group can be assigned only to 
a path that uses walk-only centroid connectors to transit sta­
tions or bus stops. 

The second improvement in transit assignment is the pre­
vention of long automobile connectors to a transit station 
followed by a short hop on a line-haul system to the desired 
destination. This improvement is done through a series of 
logical checks to trip tables and network paths to identify 
unreasonable transit trips, divert them from the automobile­
access transit path, and add them to the walk-only path. 

CONCLUSIONS 

Travel demand forecasting at MTC combines practical needs 
to provide long-range travel forecasts with the theoretical 
research and development work associated with disaggregate 
model estimation . Balancing the practical forecasting aspects 
with model development research provides Bay Area 
researchers and planners ample opportunity to test alternative 
model structures as well as to update the models as needs 
arise. 

The MTCFCAST-80/81 travel forecasting system repre­
sents a major effort to build on past model structures with 
updated data bases. Simplifications to the MTCFCAST sys-
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tern were introduced as warranted except in the case of the 
work trip and mobility model sequences that had the fewest 
modifications. New demands on the model system to distin­
guish between· two-occupant and three-plus-occupant car­
pools led to the estimation of a four-mode home-based work­
mode choice modei. rrevious Bay Area models considered 
only three modes: drive alone, transit, and shared-ride two­
plus occupant . 

On the negative side, the sparseness of the 1981 travel 
survey data base proved to be a challenge in the estimation 
of disaggregate choice models, especially nonwork mode choice 
models . Given the overwhelming automobile choice predom­
inance for nonwork trip purposes and the small sample size, 
the resulting nonwork mode choice models were simple in 
their final specifications. For example , in-vehicle and out-of­
vehicle travel times were aggregated into a generic total time 
variable given unsatisfactory estimation results when travel 
times were disaggregated . 

Next steps at MTC will include a new household travel 
survey to coincide with the 1990 census. The sample size of 
the 1990 survey will be determined in terms of balancing fiscal 
constraints with the demand for quality data necessary for 
estimating robust travel demand models. Lessons from devel­
oping travel demand models using the 1980 data base will be 
passed on to the 1990s. Continuity is the greatest challenge 
and benefit for regional transportation planni ng agencies 
charged with the responsibilities of providing skills and tools 
for travel demand forecasting . 
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