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Bridge Service Life Prediction Model 
Using the Markov Chain 

YI JIANG AND KuMARES C. SINHA 

This paper describes the application of Markov chain technique 
in estimating bridge service life. The change of bridge conditions 
is a stochastic process and, therefore, the service life of bridges is 
related to the probabilities of condition transitions. A bridge ser
vice life prediction model, using the Markov chain, was developed 
to reflect the stochastic nature of bridge condition and service life. 
The paper includes a discussion on the concept of Markov chain, 
the development and application of the service life prediction model 
using the Markov chain, and the comparison of service life pre
dictions by statistical and Markov chain approaches. 

The service life of a bridge is one of the most important factors 
for bridge managers to estimate or predict. This paper pre
sents a bridge service life prediction model using Markov 
chain. The model was developed as a continuation of the 
earlier work on bridge performance analysis (J). The earlier 
paper involved the use of M!lrkov ch;iin in nP.VP.loninP hrinPP. 
performance curves. The pre~~~t p~~~~- d~al~ _;ith pr~dicti~n 
of bridge service life on the basis of performance analysis. 

Bridge service life can be predicted by a regression analysis 
of bridge age versus bridge condition. However, the predic
tion is restricted to average or mean service life of a number 
of bridges. The Markov chain model provides a tool for pre
dicting not only the average service life, but also the service 
life of any individual bridge. 

This paper describes the bridge service life prediction model 
using the Markov chain. The Markov chain concept is intro
duced and the development and application of the model are 
discussed. The comparison is made between the approaches 
of statistical regression and Markov chain. 

BRIDGE SERVICE LIFE 

All federally supported bridges in Indiana have been inspected 
every 2 years beginning in 1978. The inspection includes rating 
of individual components such as deck, superstructure and 
substructure, as well as of the overall bridge condition. 
According to the FHW A bridge rating system, bridge inspec
tors use a range from 0 to 9, with 9 being the maximum rating 
number for a new condition (2). When the rating reaches a 
value of 3, a bridge has to be repaired or replaced, otherwise 
it should be closed. Therefore, the time span between a bridge 
being built and its condition reaching the rating of3 was defined 
as the service life of the bridge. Two approaches of esti
mating bridge service life-statistical and Markov chain-are 
discussed . 
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STATISTICAL APPROACH 

The performance curves of bridge components, such as deck, 
superstructure, and substructure, were developed separately 
for concrete and steel bridges on both Interstate and non
Interstate highways. Two of these curves, the performance 
curves of substructures of concrete and steel bridges on non
Interstate highways, are discussed to demonstrate the pre
diction methods. 

The objective of developing performance curves was to find 
the relationship between condition rating and bridge age. A 
third-order polynomial model was used to obtain the regres
sion function of the relationship. The polynomial model is 
expressed by the following formula (3): 

(i) 

where Y;(t) is the condition rating of a bridge at age t, t; is 
the bridge age, and E; is the error term. This equation indicates 
that the condition rating of a bridge, Y;(t), depends on the 
bridge age of the bridge, t;. 

For a new hrineP. (agP 0), the recorded condition rating was 
found always to be 9; therefore [30 was specified as 9 to make 
the intercept of the regression line an integer and meaningful 
in practice. 

When a regression model is selected for an application, it 
is usually not possible to make certain in advance that the 
model is appropriate for that application. Therefore, two 
regression assumptions, the constancy and normality of resid
ual distribution, should be tested (3). 

The Statistical Analysis System (SAS) statistical package 
was used for the test of aptness of polynomial model and for 
regression analysis ( 4). Residual plots were obtained to check 
the constancy of variance and the Kolomogorov-Smirnov test 
was used to test the normality of residual distribution. It was 
found that the polynomial regression function on raw data of 
concrete bridges met the two aptness requirements, the con
stancy and normality of residual distribution. However, the 
regression function on raw data of steel bridges did not meet 
the requirements. A transformation of y' = yy on the raw 
data of steel bridges satisfied the necessary normality and 
constancy requirements. 

The complete data base included about 5, 700 state-owned 
bridges in Indiana. To evaluate the effects of the climate 
traffic volume, highway system, and bridge type on bridg~ 
performance, bridges were divided into groups such as steel 
and concrete bridges; bridges with high, medium, or low aver
age daily traffic; bridges in northern and southern regions; 
and bridges on Interstate and non-Interstate highways. Because 
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the factors of traffic volume and climatic region were found 
not statistically significant, the final factors considered in the 
regression analysis were highway class (Interstate and non
Interstate) and bridge type (steel and concrete). For example, 
to develop the performance curves of bridge substructures on 
non-Interstate highways, 90 concrete bridges and 90 steel bridges 
on non-Interstate highways were randomly selected from the 
complete data base. The recorded data of condition ratings 
and corresponding ages of these bridges from 1978 to 1986 
were used to perform the regression analysis. The resulting 
regression function for substructure of concrete bridges was 

Y;(t) = 9.0 - 0.28877329t; + 0.0093685tf 

- 0.00008877ti (2) 

The regression function for substructure of steel bridges 
was 

Y;(t) = ( VY,Wr 
= (3.0 - 0.051696t; + 0.001715t~ - 0.00002lti)2 (3) 

Equation 3 was obtained using the transformed data and 
so it had different form from Equation 1. 

The regression function can be used to predict service life; 
that is, the value of I; corresponding to Y;(t) = 3 is nothing 
but the estimated bridge substructure service life. Figures 1 
and 2 show the curves of the regression functions and the 
estimated service lives obtained by solving the functions. The 
predicted service lives of concrete and steel bridge substruc
tures are both 54 years, as shown in Figures 1 and 2, where 
SL represents service life and the subscripts c and s denote 
concrete and steel bridges. 

In reality, service life varies from bridge to bridge. How
ever, by the definition of regression analysis (3), Y(t) is the 
average condition rating at bridge age t, that is, r = Y(t), so 
the service life obtained from the performance function is 
actually the mean or average service life _Qf bridge substruc
tures on non-Interstate highways, that is, T = SL. As shown 
in Figure 3, A and B are two steel bridges with the same 
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FIGURE 1 Performance curve of substructure condition of 
concrete bridges. 
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FIGURE 2 Perrormance curve of substructure condition of 
steel bridges. 
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bridge ages but different substructure condition ratings. The 
condition ratings are ra and rb for bridges A and B, respec
tively. Substructure service life of Bridge A may be predicted 
by the performance function because Point A is on the per
formance curve. Thus, it may be ~pected that substructure 
service life of bridge A equals to T, the average service life 
of the substructures, that is, t, + t2a = T; where t1 is the 
bridge age and t2• is the remaining substructure service life of 
Bridge A. The remaining substructure service life of Bridge 
B, t2b, cannot be estimated from the performance function 
because Point B is not on the performance curve. It can be 
guessed, however, that t2b would be less than t2 •• It is necessary 
for a bridge manager to estimate t2b as well as t2 •• Therefore, 
the Markov chain technique was applied to fulfill the task. 

MARKOV CHAIN APPROACH 

Introduction to Markov Chain 

The Markov chain as applied to bridge service life prediction 
is based on the concept of defining states in terms of bridge 
condition ratings and obtaining the probabilities of bridge 
condition transiting from one state to another. These prob
abilities are represented in a matrix form that is called the 
transition probability matrix or simply, transition matrix, of 
the Markov chain. If the present state of bridge conditions 
or the initial state is known, the future condition and the time 
needed to change condition from one rating to another can 
be predicted through multiplications of initial state vector and 
the transition matrix. 

Seven bridge condition ratings are defined as seven states 
with each condition rating corresponding to one of the states. 
For example, Condition 9 is defined as State 1, Rating 8 as 
State 2, and so on. Without repair or rehabilitation, the bridge 
condition rating decreases as the bridge age increases. There
fore, there is a probability of condition transiting from one 
state, say i, to another state, j, during a 1-year period, which 
is denoted by P;.i· Table 1 shows the correspondence of con
dition ratings, states, and transition probabilities. Because the 
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FIGURE 3 Example of service life predictions. 

TABLE 1 CORRESPONDENCE OF CONDITION 
RATINGS, STATES, AND TRANSITION PROBABILITIES 

R=9 R=S R=7 R=6 R=5 R=4 R=3 

S=l 8=2 8=3 8=4 8=5 8=6 8=7 

R=9 S=l P1.1 p 1,2 PJ,3 Pi,4 P1,5 P1,6 P1,1 

R=8 8=2 P2,1 P2,2 P2,3 P2,< P2,5 P2,6 P2,1 

R=7 8=3 P3,I P3,2 P3,3 P:i,4 P3,5 P3,6 P3,1 

R=6 8=4 P4,1 P~.2 P4,3 P<1,4 P-1,5 P4,6 P4,7 

R=5 8=5 P.'J I Ps,o Ps,3 Ps,4 Ps,5 Ps,6 Ps,1 

R=4 S=6 Po,1 Po,2 Po,3 Po,<1 Po.u Po,o Po,1 

R=3 8=7 P7 , I P1,2 PT,3 P1,1 P1,.<, P1,c P1,1 

Note: R = CondHion Rating 

S =State 

Pi,j = Transition Probability from State i to State j 

lowest recorded rating number in the data base was 3, indi
cating that the bridges are usually repaired or replaced at 
rating not less than 3, condition ratings less than 3 were not 
included in the transition matrix. 

As a bridge age increases, the deteriorating rate of bridge 
conditions changes. That is, the process of condition transition 
is not homogeneous with respect to bridge age. To meet the 
homogeneity requirement of Markov chain, bridge age was 
divided into groups, and within each group the Markov chain 
was assumed to be homogeneous. Age groups consisting of 
6 years were used and each group had its own transition matrix 
that was different from those of remaining groups. 

An assumption was made that the bridge condition rating 
would not drop more than 1 in a single year. Thus, the bridge 
condition would either stay in its current rating or transit to 
the next lower rating in 1 year. The transition matrix has, 
therefore, the form 

TRANSPORTATION RESEARCH RECORD 1223 

p(l) q(l) 0 0 0 0 0 
0 p(2) q(2) 0 0 0 0 
0 0 p(3) q(3) 0 0 0 

P= 0 0 0 p(4) q(4) 0 0 
0 0 0 0 p(5) q(5) 0 
0 0 0 0 0 p(6) q(6) 
0 0 0 0 0 0 1 (4) 

where q(i) 1 - p(i) · p(i) corresponds to P;,; and q(i) to 
P;,;+i in Table 1. Therefore, p(l) is the transition probability 
from Rating 9 (State 1) to Rating 9, and q(l), from Rating 9 
to Rating 8, and so on. 

It should be noted that the lowest rating number before a 
bridge is repaired or replaced is 3. Consequently, the corre
sponding transition probability p(7) equals 1. 

Development of Transition Matrix 

To estimate the transition probabilities for each age group, 
the following nonlinear programming objective function was 
formulated: 

N 

min ~ I Y(t) - E(t, P) I 
1=1 

subject to 

0 :'.S p(i) :'.S 1 i = 1, 2, ... , I 

where 

N = 6, the number of years in one age group, 
I = 6, the number of unknown probabilities, 
P = a vector of length I equal to [p(l), p(2), . 

p(J)], 

(5) 

Y(t) the average of condition ratings at time t, esti
mated by regression function, and 

E(t,P) estimated value of condition rating by Markov 
chain at time t. 

By Markov chain, the state vector for any time t, Q<tl• can 
be obtained by the multiplication of initial state vector Q<oi 
and the transition probability matrix P raising the power to t 
(5): 

(6) 

Let R be a vector of condition ratings, R [9 8 7 6 5 4 3], 
and R' be the transform of R, then the estimated condition 
rating by Markov chain is, 

E(t, P) = Q<!J • R' (7) 

The objective function was to minimize the absolute distance 
between the average bridge condition rating at a certain age 
and the predicted bridge condition rating for the corresponding 
age generated by the Markov chain with the probabilities obtained 
by the nonlinear programming. The values of the regression 
function were taken as the average conditions, Y(t), to solve 
the nonlinear programming or Equation 5. 

A new bridge is almost always given a condition rating of 
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9 for all of its components, deck, superstructure, and sub
structure. In other words, a bridge at age 0 has a condition 
rating 9 for its components with unit probability. Thus, the 
initial state vector Q,0> for deck, superstructure, and substruc
ture of a new bridge is always [100 ... OJ, where the numbers 
are the probabilities of having a condition rating of 9, 8, 
7, ... , and 3 at age 0, respectively. That is, the initial state 
vector of the first age group is known. Therefore, Equation 
5 can be solved for Age Group 1. Age Group 2 takes the last 
state vector of Age Group 1 as its initial state vector, Equation 
5 can also be solved for Age Group 2. In the same manner, 
the transition probabilities for all the age groups were obtained, 
as shown in Tables 2 and 3. For example, p(l) = 0.717 in 
Group 1 (Age 6 years or less) of Table 3 represents the tran
sition probability from State 1 to State 1 in a 1-year period 
for substructure of steel bridges with age less or equal to 6 
years, and the transition probability from State 1 to State 2 
in a 1-year period is, therefore, q(l) = 1 - 0.717 = 0.283. 
The solution to this function was obtained by the Quasi-New
ton method (6). 

Application of Markov Chain Model 

Once the transition matrices are obtained, the prediction of 
bridge service life can be conducted using Equations 6 and 7. 
By this approach, the service life prediction is not restricted 
to the average service life of bridges. Instead, the prediction 
can be made for any individual bridge or bridge component 
at a given bridge age with any condition rating. For the two 
bridges in Figure 3, the Markov chain model can be used to 
predict service life for both Bridge A and Bridge B. 

For demonstration purpose, we assume Bridges A and B 
are both 9-year-old steel bridges. The substructure condition 
rating is 7 for Bridge A and 6 for Bridge B. From Table 3, 

TABLE 2 TRANSITION PROBABILITIES FOR 
SUBSTRUCTURE CONDITION-CONCRETE 
BRIDGES, NON-INTERSTATE 

I Bridge Age 
- -

p(l) p(2) p(3) p(4) p(5) p(6) 
I -

~-~2-
0.705 0.818 0.810 0.802 0.801 0.800 

0.980 0 .709 0 .771 0.980 0.980 0.856 

r:-----
I 13 - 18 0.638 0.639 0.748 0.980 0.980 0.980 

1~ 9 _ 24 0.798 0.791 0.788 0.980 0.870 0.824 

---- -
25 - 30 0.794 0.810 0 .773 0.980 0 .980 0.980 

-·------
31 - 36 0.815 0.794 0 .787 0.980 0.980 0.737 

~--

37 - 42 0.800 0.798 0 .815 0.980 0.850 0.980 

43 - 48 0.800 0.800 0 .309 0.938 0.980 0.050 

49 - 54 0.800 0.800 0.800 0.711 0.707 0.768 

55 - 60 0.800 0.800 0 .800 0.050 0.050 0.050 

TABLE 3 TRANSITION PROBABILITIES FOR 
SUBSTRUCTURE CONDITIONS-STEEL 
BRIDGES, NON-INTERSTATE 
,.------

Bridge Age p(l) p(2) p(3) p(4) p(5) p(6) 

---- ,_____ 
0 - 6 0.717 0.727 0.950 0.664 0.692 0 .700 

,____ 
7 - 12 0.366 0.715 0 .970 0 .814 0 .574 0.359 

- · 13 - 18 0.700 0.507 0.950 0.653 0 .950 0.766 

19 - 24 0.700 0.707 0.950 0.950 0.950 0.950 

--
25 - 30 0.700 0.700 0.950 0.950 0 .950 0.9&0 

r--· 

31 - 36 0.200 0.200 0.200 0.950 0.696 0.447 

C--· 

37 - 42 0.200 0.200 0.200 0.950 0 .950 0.950 

43 - 48 0.200 0.200 0.200 0 .950 0 .790 0.722 

49 - 54 0.200 0.200 0.200 0.916 0.050 0 .050 

55 - 60 0.200 0.200 0 .200 0.050 0.050 0.050 
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the corresponding transition matrix for Age 9 (in Age Group 
2) is: 

0.366 0.634 0 0 0 0 0 
0 0.715 0 0 0 0 0 
0 0 0.285 0.030 0 0 0 

P = 0 0 0.970 0.814 0.186 0 0 
0 0 0 0 0.574 0.426 0 
0 0 0 0 0 0.359 0.641 
0 0 0 0 0 0 1.000 

(8) 

The initial state vector of Bridge A is Q,0> = [O 0 1 0 . .. 
OJ, with the unit probability corresponding to Rating 7 (ra = 
7). Therefore, the state vector of Bridge A in the future can 
be predicted by Equation 6. The state vectors and corre
sponding condition ratings are as follows: 

R [9 8 7 6 5 4 3J 

Q(O) [O 0 1 0 0 0 OJ 

E(O, P) Q(O) * R' = 7 

Q(i) Q(O) * p = [0.00 0.00 0.97 O.Q3 0.00 0.00 O.OOJ 

E(l, P) Q,1) * R' = 6.97 = 7 

Q(2) Q(O) * p2 = [0.00 0.00 0.94 0.05 0.01 0.00 O.OOJ 

E(2, P) Q(2l * R' 6.94 = 7 

Q(3) Q(O) * P3 [0.00 0.00 0.89 0.08 0.03 0.00 0.00] 

E(3, P) Q(3J * R' 6.87 = 7 

Then, Q(3J obtained above is taken as the initial state vector 
of Age Group 3 (from Age 13 to Age 18) and the transition 
matrix for Age Group 3 is used to continue the procedure. 
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In general, Group n takes the last state vector of Group 
n - 1 as its initial state vector. 

By this procedure, £( 45, P) = 3 is obtained, therefore 120 

in Figure 1 is estimated to be 45 years . The service life of 
Bridge A, TA, is predicted: 

TA = 11 + t20 = 9 + 45 = 54 years 

As expected, the value of TA is the same as the one obtained 
by regression function, SLs = 54, because Point A is on the 
performance curve. 

Applying the Markov chain technique to Bridge B, £(23, P) 
= 3 is obtained. That is, t2b is 23 and the service life of Bridge 
Bis 

TB = t1 + t2b = 9 + 23 = 32 years 

As we expected, TB is less than TA" Similarly, for any pos
sible value of Condition Rating rat any time, the service life 
can be predicted by the Markov chain. However, these pre
dictions cannot be made by the regression function for con
dition ratings other than r = 7. 

Test of Accuracy 

The accuracy of the service life prediction depends on the 
doseness of ihe values of condition ratings predicied by the 
Markov chain and by the regression function. The chi-square 
goodness of fit test (7) is used to measure the closeness of the 
predicted values of condition ratings. The computed chi-square 
is given by: 

XL = .± (F:, - Y.)2 
i - l £, 

(8) 

where 

x2 has a chi-square distribution with k - 1 degrees of 
freedom, 

E, value of condition rating in Year i predicted by the 
Markov chain, 

Y, value of condition rating in Year i predicted by the 
regression function, and 

k the number of years predicted. 

As an example, the results of the chi-square test for Bridge 
A are presented. The chi-square test was performed by using 
the values of E(t, P) and Y(t) from I = 10 to t = 54 (k = 
t20 = 45) and the results indicated that the difference between 
the values of the Markov chain and regression function was 
not significant at o: = 0.05, as shown here: 

4s (E Y)' 
x2 = L ' ~ 1 

- = 3.111 
1- 1 E1 

CHI~. (x2 ::>- 3.111) > 0.995 > o: = 0.05 

Therefore, the values of condition ratings predicted by the 
two approaches, Markov chain and regression function, were 
very close. 
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TABLE 4 PREDICTED SUBSTRUCTURE 
SERVICE LIVES OF CONCRETE BRIDGES FOR 
DIFFERENT CONDITION RATINGS 

Age r· r · (', , . Predicted SL 

0 9 9 0 54 

9 1 54 

8 0 54 

4 8 7 -1 54 

6 -2 54 

5 -3 35 

8 1 54 

7 0 54 

9 7 6 -1 54 

5 -2 40 

4 -3 19 

8 2 54 

7 1 54 

18 6 6 0 54 

5 -1 42 

4 -2 22 

7 2 !i!i 

6 1 54 
42 5 

5 0 54 

4 -1 43 

6 2 56 

52 4 5 1 55 

4 0 54 

Note: r; = Average Condition Rating 

ri = Actual Condition Rating 

SL = Service Life 

Overestimation of SL 

0 

0 

0 

0 

0 -
19 

0 

0 

0 

14 

~5 

0 

0 

0 

12 

32 

-1 

0 

0 

11 

-2 

-1 

0 

(Average Service Life= 54 Years) 

TABLE 5 PREDICTED SUBSTRUCTURE 
SERVICE LIVES OF STEEL BRIDGES FOR 
DIFFERENT CONDITION RA TINGS 

~.!:..... r · _, ,, 6r· Predicted SL 

0 9 9 0 54 

9 l 54 

8 0 54 

4 8 7 -1 53 

6 -2 25 

5 -3 8 

8 1 54 

7 0 54 

9 7 6 -1 32 

5 -2 24 

4 -3 10 

8 2 55 

7 I 55 

25 6 6 0 54 

5 -I 34 

4 -2 30 

7 2 56 

6 I 56 
44 5 

5 0 54 

4 -1 47 

6 2 56 

52 4 5 1 54 

4 0 54 

Note: Ti = Average Condition Rating 

ri = Actual Condition Rating 

SL = Service Life 

Overestimation of SL 

0 

0 

0 

1 

29 

46 

0 

0 

22 

30 

44 

-1 

· 1 

0 -
20 

24 

-2 

-2 

0 

7 

-2 

0 

0 

(Average Service Life= 54 Years) 
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COMPARISON OF SERVICE LIFE 
PREDICTIONS USING PERFORMANCE CURVE 
AND MARKOV CHAIN 

The difference between the average service life of bridges , T, 
and the predicted service life of a bridge, T;, are defined as 
the overestimation of the bridge's service life by the perfor
mance curve d~eloped through statistical regression , A.T,, 
that is, AT; = T - T,. Thus, the overestimation of service 
life of Bridge A and that of Bridge B in Figure 3 are: 

A.TA = T - TA = 54 - 54 = 0 years 

54 - 32 = 22 years 

where T = SLs. 
When the results are examined, it can be found that the 

overestimation of a bridge's service life is related to the dif
ference of the actual condition rating and the average con
dition rating. The r

0 
is equal to 7, which is the same as the 

value of the regression function, or average condition rating, 
corresponding to the bridge age of 9. Thus, the difference of 
r. and the average condition rating, r = Y(9), is 

A.r
0 

= r0 - r = 7 - 7 = 0 

which causes no overestimation of the bridge's service life, 
that is, A.TA = 0. 

However, rb is equal to 6 and the condition rating difference 
is, 

CJ.rb = rb - r = 6 - 7 = - 1 

Therefore, A.T8 = 22 can be considered as the overesti
mation of service life by performance curve resulting from 
overestimating condition rating by one unit. The effect of Ar; 
on A.T, is explained by the fact that Q(o) is determined by the 
actual condition rating of a bridge and the Markov chain 
equation (Equation 6) . Once the transition matrix, P, is known, 
the state vector, Q<•l' is determined by the initial state vector, 
Q(O)• 

In order to analyze this effect , the service lives of bridge 
substructures were obtained by the Markov chain model for 
various possible condition ratings. Tables 4 and 5 show the 
results and the corresponding values of Ar and AT. Comparing 
values of the two tables, it can be found that the values of 
service life overestimations for substructures of concrete and 
steel bridges are different . For example, for r; = 7 and 
A.r, = 1, the overestimation of service life is 0 for concrete 
bridge substructures and 22 for steel bridge substructures. 

The values of bridge substructure service life overestima
tions for all possible combinations of r, and Ar; are presented 
in Table 6. The paired data in Table 6 are the overestimations 
of service lives for steel and concrete bridge substructures. 
For example, for r; = 6 and Ar, = -1, the corresponding 
data (20, 12) represent that the overestimation of substructure 
service life is 20 for a steel bridge and 12 for a concrete bridge, 
or A.Ts, = 20 and A.Tei = 12. The differences of the values in 
the table were used to perform the paired-t statistical test (3): 

where A.Ts, and A.Tc1 are the overestimations of service lives 

TABLE 6 PREDICTIONS OF OVERESTIMATION OF 
SERVICE LIVES FOR SUBSTRUCTURES OF STEEL AND 
CONCRETE BRIDGES 

29 

-
I Aclual i{alit~K -- Average Rating ~ 

- i r- - -~ ----2 I 0 I -J I -2 -3 1--9 - - ( o,o)' --_ l - ~ 
- - -- ------

8 - (0,0) (0,0) (1,0) (29,0) 

-- ---·- - - f----

7 (0,0) (0,0) (22,0) (30,14) 
Average Rating - -

6 (-1,0) (-1,0) (0,0) (20,12) (24,32) 

-
5 (-2,-1) (-2,0) (0,0) (7,J l) (10,12) 

4 (-2,-2) (0,-1) (0,0) (2,2) 

-~ -
•:(a, b) -- a is the overestimation of service life of steel bridge 

I 
I 

-3 

bis the overestimation of service li fe of concrete bridge 

\ . 
I II 
' I I 
\ I I 
\ I I 
I I I 
\ I I 
I I I 
\ I I 

\ I l 

\ ,' ' 
I I I 
\ I I 
11 I 

/\ \ 
I 

• • • • • • . 
I 
I 

• • 
\ ···· .... 
\ ·· .. 
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·~ 

12 

10 

\ ··. I .. 

-2 -1 

-2 

r =s 
----- :r = 1 
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FIGURE 4 Service life sensitivity analysis for 
substructure of concrete bridges. 

(4~1~ 
(44,35) I 

(36,36) 

-

Ci.r 

of steel and concrete bridge substructures by the performance 
function. Because t• = 2.03 > t(0.95,25) = 1.708, the mean 
difference in overestimation of steel and concrete substructure 
service lives is significant at a = 0.05. That is, the overesti
mation of service life of steel bridge substructure is more 
sensitive to overestimation of condition rating with respect to 
actual condition rating. 

As can be seen, the service life of a bridge is affected by 
bridge type and the difference of actual condition rating and 
average condition rating. The average condition rating is 
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r=s 
--r=7 
----- r = B 

.......... r= 6 

.......... r=4 

FIGURE 5 Service life scnsith·ity analysis for 
substructure of steel bridges. 

obtained by regression function, which is the relationship 
between bridge age and condition rating. Therefore, the sen
sitivity of overestimation of bridge service life to bridge age 
can be studied by analyzing the sensitivity of overestimation 
of b1iJge ~e1 vice life lo average condition rating. 

Figures 4 and 5 present the curves of /::,.r versus /::,.Tl I /::,.r I 
for substructures of concrete and steel bridges, where 
/::,.T/ I /::,.r I represents the overestimation of service life per 
unit change of condition rating from average condition rating. 
Figure 4 shows that the curve for the average condition rating 
r; = 6, for substructure of concrete bridges, has the highest 
value of /::,.T//::,.r. The average age of concrete bridge substruc
tures corresponding to the rating of 6 is 25. Therefore, the 
rating given at this age can be considered to be most sensitive 
with respect to service life estimation. From Figure 4, it can 
be seen that when the average performance curve for concrete 
bridge substructures reaches a condition rating of 6 (Age 25), 
if a lower-than-average condition rating is given, the service 
life of the bridge would be overestimated by as much as 16 
years for every unit of lower-than-average condition rating. 
It means that, for concrete bridge substructures, the expected 
overestimation of service life per unit of lower-than-average 
condition rating is the highest when the performance curve 
reaches the condition rating of 6. From Figure 5, the corre
sponding most critical level for steel bridge substructures is 
when the performance curve reaches the condition rating of 
7 (Age 9). The expected overestimation in this case is 22 years. 
The implications of these results are that average performance 
functions can only be used for making macroscopic decisions 
at network level. However, for making decisions at a project 
level, Markov chain is a better tool. 
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CONCLUSIONS 

The application of the Markov chain provides bridge man
agers a powerful and convenient tool for estimating bridge 
service life. Service life prediction by Markov chain has the 
advantage over the statistical regression approach in that it 
can be used not only to estimate the average service life of a 
number of bridges, but also the service life of any individual 
bridge. Furthermore, the Markov chain prediction is based 
on the current condition and age of bridges, therefore, it is 
simple and can be updated by new information of condition 
rating and bridge age. However, it should be noted that this 
study was based on statistical analysis of condition ratings. 
Condition ratings are subjective judgments, which may in 
themselves be biased, and therefore may affect the results of 
service life predictions. To reduce the bias of human judg
ments, a bridge condition evaluation model has been devel
oped using the theory of fuzzy sets (8); the reliability and 
accuracy of service life predictions could be greatly enhanced 
by applying the condition evaluation model in the process of 
bridge condition inspection. 

The theory of the Markov chain is well developed and based 
on simple multiplications of matrices. As compared with the 
regression method, the Markov chain model, a probability
based method, reflects better the stochastic nature of bridge 
service life. The model provides a mathematical tool for pre
dicting bridge service life. The comparison of service life pre
dictions of the two models enables bridge managers to study 
the effects of bridge types. condition ratings. and bridge ages 
on service lives of bridges. 
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