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Dynamic Analysis of Girder Bridges 

Eur-SEUNG HwANG AND ANDRZEJ S. NowAK 

This paper deals with the calculation of dynamic loads in girder 
bridges. Three major elements are considered: vehicle dynamics, 
road roughness, and bridge dynamics. The parameters repre
senting the road profile and axle weights are treated as random 
variables. The statistical models are established on the basis of the 
available test, measurement, and analytical data. The mathemat
ical equations relating forces and deformations are formulated, 
with the system of equations solved by a numerical integration 
method. Using the Monte Carlo technique, a procedure is devel
oped for simulation of the dynamic load spectra. The approach is 
demonstrated on a typical steel girder bridge. The resulting dis
tribution functions of the dynamic load are presented on a normal 
probability scale. 

The dynamic load is an important parameter in bridge design 
and evaluation. In the current AASHTO standards (1), dynamic 
load (impact), /, is treated as an equivalent additional static 
load: 

( 
50 ) 

I= L + 125 LL (1) 

where 

L span length in ft and 
LL live load. 

In Ontario, the dynamic load allowance (fraction of live load) 
is specified as a function of the natural frequency of vibration 
of the bridge (2), as shown in Figure 1. A similar approach 
is used in the revised Swiss code (SIA 160) (3). 

On the other hand, observations and measurements indi
cate that the dynamic behavior of the bridge is a function of 
three major factors (4-9): 

• Dynamic properties of the vehicle (mass, suspension, axle 
configuration, tires, speed); 

• Road roughness (approach, roadway, cracks, potholes, 
waves); and 

• Dynamic properties of the bridge structure (span, mass, 
support types, material, geometry). 

In this study a procedure is developed to quantify the dynamic 
load effect. The three factors just listed are considered. The 
analysis is performed for the syperstructure of a simply sup
ported girder bridge. The dynamic load effect in a bridge is 
measured in terms of a dynamic load factor (DLF). DLF is 
defined as the ratio of the maximum deflection experienced 
by the bridge (including dynamic effects) and the maximum 
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static deflection at midspan. Mathematical equations relating 
forces and deformations are formulated and solved using a 
numerical integration method. A simulation procedure, based 
on Monte Carlo technique, is developed to calculate the bridge 
dynamic load spectra. 

The proposed procedure can be used for the development 
of more efficient design and evaluation criteria. 

VEHICLE DYNAMICS 

From the dynamic analysis point of view, the truck is com
posed of the body, wheels with tires, and the suspension sys
tem. There is a variety of configurations, including tractor 
with or without trailer(s) and different axle loads and axle 
spacings. In this study the four most common vehicles are 
used: two single trucks (S2 and S3) and two semi tractor
trailers (T4 and TS) as shown in Figure 2. 

It is assumed that trucks are equipped with multileaf spring 
type suspensions. Leaf springs can be treated as nonlinear 
devices that dissipate energy during each cycle of oscillation. 
Their characteristics were measured by Fancher et al. (10). 
The results show that the force-deflection relationship does 
not depend on the frequency of oscillations occuring in the 0 
to 15 Hz range, but it depends on the motion amplitude and 
the nominal load. Fancher et al. (10) derived nonlinear (log
arithmic) equations relating forces and deflections of the truck 
suspension system. These equations are used in simulation of 
the DLF. 

Tires can be treated as linear elastic spring components. 
The spring constants were measured by Fancher and Ervin 
(11). A typical value of 10,000 lb per in. per tire is used in 
this study. 

A truck body is represented by a distributed mass subjected 
to rigid body motions. Vertical displacements and pitching 
rotations are considered. A trapezoid mass distribution is 
assumed with a constant mass density p (Figure 3). The mass 
moment of inertia about the mass central axis is 

ph3 p2 + 4pq + q2 
!= -~-~~-~ 

36 p + q 
(2) 

where p, q, and h are shown in Figure 3. Let r = cl(a + b) 
and W = total mass; then 

I= W/6 [4(r2 + r + l)ab + (2r2 + 2r - l)(a2 + b2)) (3) 

where a, b, and care dimensions also shown in Figure 3. A 
model of a single truck and the corresponding free body dia
gram are shown in Figure 4. Four equations can be obtained, 
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FIGURE 1 Dynamic load allowance in Ontario (2) . 
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(a) Two Axle Single Truck (S2) (b) Three Axle Single Truck (S3) 

(c) Four Axle Tractor Trailer (T4) (d) Five Axle Tractor Trailer (T5) 

FIGURE 2 Trucks used in the study. 

mAss center 

FIGURE 3 Truck body model. 

three for the vertical equilibrium and one for the rotation 
equilibrium, as follows: 

m 1 (a2 ji 1 + a1 ji2 ) + SF1 + SF2 = 0 

m2 ji3 + TF1 - SF1 = 0 

m3 ji4 + TF2 - SF2 = 0 

l/ji 1 - ji2)/s + SF1a1s - SF2a2s = 0 

(4) 
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where 

y, vertical displacements, 
m; masses, 

SF; = suspension forces, 
TF; = tire forces, 

s distance between axles, 
a; = distances between mass center and axles, and 
IY = pitching rotation moment of inertia. 

A model of a tractor-trailer and the corresponding free body 
diagram is shown in Figure 5. Seven equations can be obtained 
from the vertical and rotation equilibrium, 

m 1yc1 + SF1 + SF2 + Pi = 0 

m2Yc2 + SF3 - pi = O 

0 

0 

l/i 1 + a1s1SF1 - a2s1SF2 - (a3 - a1)s1Pi 0 

Izi;i2 a~2SF3 - a5s2Pi = 0 

where 

S; = distances between axles, 
Pi = tractor-trailer interaction force, 
Ye; = deflections at mass center, 
0; rotations at mass center, 

(5) 

I; = pitching rotation moments of inertia, and other nota
tions as in Equation 4. 

From the truck geometry, 

Yc2 = llsYJ + a6(a4y1 + ll3Y2) (6) 
01 (y1 - Y2)ls1 

Substituting these geometric equations into equilibrium 
equations, the following six equations of motion are obtained 
for a tractor-trailer: 

m4 y5 + TF2 - SF2 

m5 ji6 + TF3 - SF3 

where 

0 

0 

0 

c1 I2a~/s~ + l/sr + a~m 1 + aja~m2 , 
c2 12a3ais~ - l/sr + a1a2m 1 + a3a4a~m2 , 

c3 a4a5a6m2 - I2ais~, 

(7) 
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FIGURE 4 Model of a single truck. 

(a) truck model 
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(b) free body diagram 

ID2Yc2 

TF3 TF2 

FIGURE 5 Model of a semi tractor-trailer. 

I2a51s~ + I/sf + aTm 1 + a5a~m2 , 
a3a5a6m2 - I2a3/s~ , and 
a~m2 + lzfs~. 

m1Yc1 

SFl . . 

C!=f 
TFl 

Table 1 gives the probability of occurrence for each truck 
type (12). It clearly indicates that the dominant type is a five
axle semi tractor-trailer. For each truck type, the calculations 
were based on truck weight measurement data (12), with the 
statistical parameters of the total weight given in Table 2. The 
weight distribution over axles and axle distances are assumed 

Y1 

(b) free body diagram 

TABLE 1 FREQUENCY OF 
OCCURRENCE FOR VARIOUS 
TRUCK TYPES 

Truck Types Frequency o[ Occurrence (%) 

2-axle single (S2) 9 

3-axle single (S3) 5 

4-axle semi (T4) 19 

5-axle semi* (T5) 67 

* 5-axle semi tractor-trailer includes 6 or more axle 
semi tractor-trailers and 5-axle splits. 

TABLE 2 STATISTICS OF TOTAL WEIGHT 

Total Weight, W (kips) 

Truck Type Mean Standard Distribution Minimum 

Value Deviation Type Value 

S2 15.26 4.42 Normal 10.0 

S3 26,35 8.32 Normal 11.5 

T4 27.99 8.06 Normal 13.7 

T5 44.41 17.11 Normal 15.2 

Maximum 

Value 

30.0 

70.0 

70.0 

90.0 
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to be constant as shown in Table 3. The axles' own weights 
are assumed as constants with values taken from Francher 
and Ervin (11): 1,200 lb per front axle, 2,500 lb per mid axle, 
and 1,500 lb per rear axle. 

ROAD ROUGHNESS 

The road profile must be generated to analyze the effect of 
road surface roughness. The road profile is the realization of 
a random process and the surface roughness can be described 
by a spectral density function. The statistical model can be 
established using recent developments in profile measuring 
and spectral analysis. 
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TABLE 3 WEIGHT DISTRIBUTION AND 
AXLE DISTANCES 

Truck Type Weight Distribution (%) Axle Distances 

Front Middle Rear (ft) 

S2 40 60 16 ,0 

S3 31 69 18 .2 

T4 24 39 37 12.0, 29 7 

T5 18 47 35 14.0, 33.l 

In this study, the road surface is modeled as a stationary 
Gaussian random process (13). A stationary Gaussian random 
process, X(t), can be generated using a simple periodic cosine 
function of time with amplitude a, circular frequency w, and 
phase angle e, 

X(t) = a cos (wt - e) (8) 

A finite sum of N discrete functions can also be considered 

N 

X(t) = L a,, cos (w,.t - e,,) (9) 
n=l 

Assume the phase angle e,, is an independent random var
iable distributed uniformly in the range of 0 to 2'JT. Then 

(2"' 
£[cos e,.] = Jo (cos e,,)[1/(2'TT)] de,, = 0 (10) 

Thus, the ensemble first two moments are 

N 

E[X(t)] = L a,.E[cos (w,.t - e,,)] = 0 (11) 
n=l 

[ 

N M ] 
E[X 2 (t)] = E "~1 a,, cos (w,,t - e,,) m2;, am cos (wmt - e"') 

(12) 

Both E[X(t)] and E[X2(t)] do not depend on t; hence the 
process X(t) is stationary. 

For a stationary Gaussian random process the following 
equation must be satisfied for the mean, m, variance, CJ2

, and 
spectral density function, S(w): 

CJ
2 = rx S(w) dw - m 2 (13) 
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By substituting m = 0 and by discretizing the integral, the 
following equation is obtained: 

N 

CJ2 = 2 L S(w,,) Aw = E[X 2 (t)] (14) 
11 -"" I 

Combining Equation 12 and Equation 14 yields 

a,, = V4S(w,,) Aw (15) 

Therefore , the random process X(t) can be expressed as fol
lows: 

N 

X(t) = L V4S(w,,} Aw cos (w,,t - e,,) (16) 
n=l 

Honda et al. (14) showed that the spectral density of the 
bridge surface roughness can be approximated by an expo
nential function. The spectral density S('Y) can be represented 
by 

S('Y) = a · r" (17) 

where a is the roughness coefficient, n is the spectral shape 
index,)' is the spacial frequency, and 'Ya and l'b are the lower 
and upper limit. The statistics of a and n are shown in Table 
4. From Equation 16 and Equation 17, the road profile can 
be generated by randomly selecting the phase angle e. The 
roughness model does not include bumps or discontinuities. 

BRIDGE DYNAMICS 

It is assumed that the static and dynamic load distribution 
factors are the same. Consequently, the whole bridge is con
sidered as a prismatic beam with flexural stiffness, El. The 
equation of motion is 

iJ'y azy 
EI - + - = p(x t) ax• at2 , 

(18) 

where p(x, t) = applied distributed force. This tourth oraer 
partial differential equation can be solved by the method of 
separation of variables . The general solution is 

x 

y(x, t) = L <!>,,(x)z,,(t) (19) 
n=) 

In case of the simply supported beam, the shape function 
<!>,,(x) is 

<!>,,(x) = sin (n'JTxlL) (20) 

TABLE 4 STATISTICS OF PARAMETERS IN SPECTRAL 
DENSITY FUNCTION 

Parameter Mean Standard Distribution Minimum Maximum 

Value Devia.tion Type Value Value 

a 0.0098 cm2 /c/m exponential 0.0 0.06 

n 1 92 0.283 normal 1.3 2.5 
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Substituting Equation 19 and 20 into Equation 18 and includ
ing the damping effect, z,,, yields the following equation relat
ing modal mass, M., = f~ <!>~(x)m dx = mL/2, modal force, 
F,,(1) = f~ <j>,,(x)p(x, t) dx, and natural frequency w,, = n27T2 

VEl/mL·' flexural stiffness of the cros ·ection , El , and dis
tributed applied force, p(x, t): 

z"(t) + 2t,w,,i,,(t) + w~z.,(t) = F,,(t)IM,, (21) 

The flexural stiffness is the most important parameter. 
However, it is difficult to evaluate El because it depends on 
flexural stiffnesses of girders as well as transverse flexibility 
of the slab and diaphragms. El can be calculated from the 
first flexural natural frequency of the bridge,/. The frequency. 
/(Hz), can be calculated for a given pan length, L(m), using 
the formula established by Cantieni (15): 

f = 95.4 . L -o.933 (22) 

The stiffness can be calculated from the first natural frequency. 

DYNAMIC LOAD FACTOR 

A computer procedure was developed by the authors at The 
University of Michigan to calculate the maximum deflection 
(static and dynamic) and the DLF, following the flowchart 
shown in Figure 6. The program incorporates the equations 
describing dynamics of the vehicle, road roughness, and 
dynamics of the bridge. The Monte Carlo technique is used 
to generate basic parameters, including the road profile and 
the truck weight. The approach is demonstrated on a typical 
simply supported steel girder bridge with a 100-ft span. The 
first flexural frequency is 3.935 Hz (calculated using Equation 
22). The nth order frequency is n2 x 3.935 Hz. The flexural 
stiffness can be calculated using continuous beam theory, 
El = 4.867 x 1012 lb-in. 2 . The damping of the bridge is 
assumed as 2 percent of the critical damping for each mode. 
In computations the time step used is 0.001 sec and the relative 
tolerance for convergence of each time step is 0.001. A typical 
example of a bridge response is shown in Figure 7. 

The spectral density function is calculated for each road 
profile. However, an infinite number of road profiles can have 
the same spectral density. To examine the effect of different 

simulation start 

geherate uniform random numbers 

calculate total weight, roughness coefficient 
and index using generated random numbers and 
available statistical models 

calculate other parameters including truck 
body weight and pitching moment of inertia 

generate random road profiles using roughness 
coefficient and index 

calculate the maximum dynamic deflections at 
brid e mids an 

simulation complete 

FIGURE 6 Flowchart of a computer simulation 
procedure. 
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profiles on the DLF, the calculations are carried out for ran
domly selected 10, 20, and 40 profiles. The resulting DLF 
values for a five-axle truck are plotted on the normal prob
ability graph (13) in Figure 8. The vertical scale on the right 
is the cumulative probability (percentage). The vertical scale 
on the left is the inverse standard normal distribution. Normal 
and only normal distributions are represented by straight lines 
on this graph. The distributions plotted in Figure 8 indicate 

2 .0 DLF -- dynamic 
100 ft Simple Span 

----- static 

1. 0 

Distance of Front axle from Abutment (ft) 

FIGURE 7 Typical example of bridge reponse for TS truck. 



90 

l . O 

2.0 

1 .o 

" " 

,, 
,; 

,; 

I ,; 

' / 
'/ 

TRANSPORTATION RESEA RCH RECORD 1223 

Norma I 

Probabil 
99.9 

Scale 99.a 

99.5 

99 

98 

95 

90 

ao 

70 

DLF 60 

o.oi--~~~~~~~~"T'"""~~~-t----..--~~-.-~~~~~~~~-..~~~~~~~~--1 50 
0 5 t .o /f 1.5 2.0 2 5 

-1.0 

-2.0 

-l.O 

(I',' 

J: 
I' I 

/,' 
/,' 
e 

/' I 

/• 
I 

I 
I 1 0 prof 

---- .. 20 prof 

---- ----· 40 prof 

es 

es 

es 

40 

30 

20 

to 

(i 

2 

0.2 

0.1 

FIGURE 8 Dynamic load factor for various numbers of road profiles. 

that 20 profiles provide a sufficient accuracy, and therefore 
it is used in further calculations. 

Values of DLF are calculated separate! y for each truck type. 
For each type, 50 weights are generated, and for each weight, 
20 road profiles are generated. This results in 1,000 DLF 
values per truck type. The DLF spectra for the considered 
truck types are plotted in Figure 9 on normal probability scale. 
The largest values of DLF were obtained for the single truck 
S2, and the lowest values for semi tractor-trailer T4. For each 
truck type, the mean and standard deviation of DLF are cal
culated and presented in Table 5. The large values are deter
mined by bad surface conditions of existing bridges (14), and 
they are too high for design. 

CONCLUSIONS 

A procedure has been developed for calculation of the DLF. 
Three main factors are considered in the analysis: vehicle 
dynamics, road roughness, and bridge dynamics. The avail
able test , measurement, and analytical data are reviewed and 
incorporated in computations. The developed method is dem
onstrated on a typical steel girder bridge. DLF values are 
generated using the Monte Carlo technique. It has been 
observed that simulation of 20 road profiles provided suffi
ciently accurate results . Spectra of DLF values have been 
calculated for the four most common truck types . The results 
are plotted on the normal probability graph . 
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FIGURE 9 Dynamic load factor for various truck types. 

TABLE 5 STATISTICS OF DYNAMIC LOAD 
FACTOR 

I Truck Type I Mean I Standard Deviation I 
52 1.288 0.184 

53 1.249 0.168 

T4 1.179 0.096 

T5 1.271 0.171 

The developed procedure provides an analytical tool for 
quantification of the dynamic load. The important application 
is in the development of efficient design and evaluation cri
teria. However, there is a need for more measurement 
data including vehicle characteristics and bridge response 
parameters. 
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