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Many commonly occurring natural systems are modeled with
mathematical expressions and exhibit a certain stability. The inherent
stability of these equations allows them to serve as the basis for
engineering predictions. More complex models, such as those for
modeling trafftc flow, lack stability and thus require considerable

ca!'e when used as a ba-sis for prerlietions. In 1960' Gazis, Herman.
and Rothery introduced their generalized car-follow equation for
modeling traflic flow. Experience has shown that this equation
may not be continuous for the entire range of input parameters.
The discontinuous behavior and nonlinearity of the equation sug'
gest chaotic solutions for certain ranges of input parameters.

Understanding the chaotic tendencies of this equation allows engi'
neers to improve the reliabiÌity of models and predictions based

on those models. This paper describes chaotic behavior and briefly
discusses the methodology of the algorithm used to detect its près'

ence in the car-follow equation' Also discussed are two systems

modeled with the equation and their associated chaotic properties.

Classical mathematical models for natural systems, most often
linear, provide well-behaved results for a wide range of input
parameters. These models, such as Greenshield's for traffic
flow (1), are characterized as predictable, deterministic, and

exhibiting a kind of stability:

u : ur(L - klk) (1)

where

u : speed,
u¡ : free flow sPeed,
k : density, and

¡ = jam density.

Another physical example of a system with inherent stability
is a pendulum displaced 5.001'from vertical and released; its

motion will closely follow that of a pendulum displaced 5'
from vertical. The point is that small changes in initial con-

ditions should produce small changes in resulting motion. The

same assumption is often made concerning models of more

complex systems, and that assumption brings certain free-

doms: if small changes produce small changes, then there is

stability inherent in making predictions from a given math-

ematical model; if small changes in initial conditions produce

large changes, care must be taken when predicting based on

that mathematical model.
Other models consisting of mostly nonlinear relationships,

often in the form of differential and iterative equations, pro-

vide exceptions to behavior patterns typical of the classical

models. Two characteristics of mathematical models are their
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ability to be predictable and deterministic. Any nonlinear

equation can possess both, one, or none of these character-

istics. An example illustrating the difference between the pre-

dictable and deterministic would include the differential equa-

tion dxldt = Rtc(I - x), and the iterative equation x,+t :
R.r,(l - x"). The equation rixirit: Àx(i - x), is ciassifieci

as a predictable and deterministic equation-knowing -r(0),
the value of x at any time ¡ is lx(0)exp(Rt)ll{I + [exp(Rt) -
t] x(0)Ì. The iterative equation xn+t : Ãx"(1 - x,,) is deter-

ministic-knowing xo precisely gives xr, but from some values

of R it is not predictable, because the only way to find x,,noo.noo

from x6 is to iterate the equation 1 million times' This example

illustrates another feature of some systems, "sensitive
dependence on initial conditions." A small uncertainty in x(0)
will produce a small change in x(t) for the differential equa-

tion, while a small change in x6 for the iterative equation, for
certain values of R, produces complete uncertainty. Specifi-

cally, if R : 3.9 and xo is between 0 and 1-, every term x, in
sequence also lies between 0 and 1. Taking xo : 0.4 yieìds

x2s : 0.259, while taking xo : 0.4000001 yields rzs = 0.870.

This clearly demonstrates that this equation is sensitive to
initial conditions and that small-0.0000001-changes in the

input parameter can produce large changes in the results.

Unpredictability does not imply that any values for the

variables can occur, and for some systems a subset of variables

called an "attractor" exists to which the system evolves'

Although constrained to lie on the attractor, the unpredict-
ability arises from not knowing the long-term position on the

attractor. Such behavior is often reflected in the complicated
geometry of the attractor. An example of a system with a

simple attractor would be (in polar coordinates) drldt =
r(l - r) d\lù : 1.. The attractor is the unit circle r = l; a

point 0 1r < I spirals outward toward r : l and a point

r > 1. spirals inward toward r : 1. Regardless of initial posi-

tion, except r : 0, all paths are eventually arbitrarily close,

traveling counterclockwise around r -- I at a constant rate.

A fluid turbulence model, developed by Lorenz, was a

system of three differential equations with three parameters:

dxldt: -tx+úy
dyldt:rx-y-xz
dzldt=xy-bz

For parameter values o : 10, r : 28, and b : 2.7, Figute
1 shows the attractor for the system. As intertracings be-

tween the two lobes show, the path does not lie on a two-
dimensional surface, nor does it fill any three-dimensional
region in space. This means that the attractor is a "fractal"
and not a standard mathematical object. Another feature of
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fractals is that magnification of any portion of the attractor
reveals increasingly finer structures, in direct contrast to
standard geometrical shapes-for example, the circle, which
on magnification becomes even simpler, more like a straight
line.

A simple example of a fractal is the Koch curve, constructed
by repeated applications of a certain geometrical process. This
process involves subdividing a line segment into three equal
lengths, erecting an equilateral triangle over the middle thìrd,
and removing the base of the triangle.

This process is repeated in the ¡-axis plane for the four
segments of one-third length (Figure 2). The self-similariry of

FIGURE I The Lorenz Attractor (x-axis is
horizontal, y-axis is vertical).

TRANSPORTATION RESEARCH RECORD 1225

the Koch curve is apparent, and sufficiently magnifying any
portion of the curve reproduces the entire shape.

A "strange attractor" is one that is fractal, and chaotic
dynamics are often a manifestation of a strange attractor. To
determine whether a system is chaotic, strange attractors must
be detected and quantified.

In the realm of dynamics, chaotic systems have three pri-
mary characteristics:

1. There is sensitive dependence on initial conditions,
2. The attractor cannot be decomposed into smaller attrac-

tors that do not interact, and
3. Any trajectory is arbitrarily close to a periodic trajectory.

Chaos, primarily associated with a state of disorder and gen_
erally considered detrimental to systems, has been discovered
as a state of high order based on the geometry of the attrac_
tors. Unlike stochastic behavior, which arises from the sta_
tistical effects of treating large numbers of interacting particles
representing a threshold of indeterminism, chaotic behavior
is completely deterministic-but unpredictable-and occurs
in systems involving as few as one variable. predictability of
chaotic systems is still limited to knowledge of long_tôrm
behavior of the associated attractor. New mathematical tech_
niques allow attractors for nonlinear systems to be evaluated,
identified, and quantified. Also, by altering input parameters,
the shape of the associated attractor can be controlled and,
thus, systems can be designed to produce reliable results even
in chaotic states. The ability to identify and quantify attractors
provides the initial steps in evaluating nonlinear chaotic
systems.

Engineers have been applying the chaotic theory to thou-
sands of systems, including thermodynamics, electrical sys-
tems, material engineering, and dynamical systems. In the
field of civil engineering, chaos theory has been applied to
structural vibrations and hydraulic systems. Traffic flow mod-
eling, which contains many highly nonlinear differential equa-
tions, also offers applications for chaotic theory.

As early as 1935, engineers were developing models to
describe traffic flow principles, consisting of mathematical
expressions to describe basic as well as complex physical,
human, and vehicular interactions. Early models for uninter-
rupted macroscopic traffic flow consisted of explaining func-
tional relationships between speed, flow, and density, disre-
garding precise interactions between individual vehicles. Later
models, called microscopic or car-following models, were
developed to describe behavior of a traffic stream by the
complex interrelationships involved as one vehicle follows
another, and by behavior of pairs of vehicles.

In 1960, Gazis, Herman, and Rothery (GHR) developed
a generalized car-following model (2) in which driver response
is inversely proportional to the spacing between vehicles, as
follows:

X,*r(t + T) :

#I;Årk.Q) - x,*,(t)l

: speed,
: accelerations,FIGURE 2 The first four stages of the Koch curve.

where

(2)
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¡" : position of the leading vehicle,
Xn*t : position of the following vehicle,

T : lag time, and
a, m, and / : constant parameters.

This model was well accepted and has since been reintroduced
with various modifications. Experience with the equation has

shown that it may not be continuous for the entire range of
input parameters. The discontinuous behavior and nonline-
arity of the GHR traffic-flow equation suggest chaotic solu-

tions for certain ranges of input parameters. The chaotic realms

represent areas where disturbances may not be dampened and

predictability is limited. By identifying the range of chaotic

solutions and the input parameters yielding such solutions,
engineers can make greater use of these models. Also, engi-

neers can control reliability of results in the chaotic realm by

altering the shape of the associated attractor through modi-
f,cations of input parameters-but ihis avenue must be rescrveti
for future investigation.

This paper discusses application of chaotic theory to the

GHR traffic-flow equation. It includes a brief discussion of
the methodology used to detect chaos in the GHR equation-
a more detailed description of the methodology can be obtained

from the authors-and two examples of systems modeled

using the GHR equation and their associated chaotic prop-
erties. A variety ofinput parameters are evaluated in a detailed

system and the resulting chaotic properties are discussed.

DISCUSSION OF CHAOS

In recent years, "chaos," a new method of evaluating non-
linear dynamics, has arisen and received wide attention in
journal articles on mathematics, physics, chemistry, biology,
and engineering (3,4). Many nonlinear differential and dif-
ference equations with an adjustable parameter exhibit cha-
otic behavior for some ranges of that parameter. This section
describes what constitutes chaotic behavior and the methods
used to quantify chaos. In many examples, chaotic dynamics
can be characterized by presence of a strange attractor in the
state space of the system.

To quantify the complexity of strange attractors, an exten-
sion of the familiar notation of dimension is used. Consider
a smooth curve C in three-dimensional space. An approxi-
mation of the length, L, of. C can be obtained by finding the
smallest number-N.(e)-of cubes of side length, e, needed
to cover C, and computing N.(e) x e. As e is taken smaller,
this approximation improves and the limit L : lim-o N.(e)
x e. Similarly, for a smooth surface, S, in three-dimensional
space, the area A is given by A : lim-o Nr(e) x e2. The
curve is one-dimensional, and the two-dimensional surface is
exhibited by the exponent of ¿ in the expression of length
(the one-dimensional measure) or area (the two-dimensional
measure).

Consider a simple example, where the curve is the line
segment C : [(.r,0,0): 0 s x - 1] and the surface in the
square .S : [(x,y,0): 0 = x,y - 1]. .Then for small
e,N.(e):1,leand¡¿r(") : llez,soL: landA: L. Notice
that trying to measure the area of C yields

lim-o N.(e) x ez : lim*o (Lle) x e2 : 0

and trying to measure the length of S yields

lim-oN"(e) x e:lim-o (Ile2) x e = *

Considering just the curve C, observe that for any number
d < I, lim-o N.(e) x ed : .o, and for any d > 1., Iim-o
N.(e) x ed : 0. Thus, the d-dimensional measure of curve
C has the following properties: it is infinite for d < 1 but 0

for d > 1, and the length for d : 1,. Similarly, the d-dimen-
sional measure of surface S is infinite for d < 2,0 for d > 2,

and the area for d : 2.

For the Koch curve, the computation is more interesting.
Taking e : (ll3)", it follows that N(e) : 4" and so the Koch
curve has length

lim,-- 4"(tt3") : æ

and has area

lim,-- 4"(U3")z : 0

Thus the dimension of the Koch curve lies between L and 2.

A straightforward calculation shows that the exponent d for
which

0 < lim--N(e) x eo <*

is given by

d : hmno ln(N(e))/ln(1/e)

This is the capacity dimension of the set and is closely related
(and often equal) to the Hausdorff dimension. (All possible
countable coverings of the set must be considered for the
Hausdorff dimension, not simply those by cubes.) Observe
that the Koch curve has a dimension of ln 4/ln 3.

If the dimension of a set is not an integer, then the set is
a fractal, but some sets have integer dimensions that are frac-
tals. The precise definition of fractal involves defining yet
another dimension-the topological dimension-which is

beyond the scope of this paper.

METHODOLOGY AND RESULTS

Methodology

This section describes the methodology used in developing a

computer algorithm to test for presence of chaos in nonlinear
systems. In measuring the capacity dimension of differential
equation systems, counting boxes N(e) can cost a lot in com-
puter memory and time. These problems can be avoided by
using Liapunov exponents. An infinitesimal sphere, centered
about a point on a solution curve of the differential equation,
evolves after a short time into an ellipsoid. The Liapunov
exponents are natural logarithms of the ratios of the semi-
major axes of the ellipsoid to the radius of the sphere, time-
averaged over the trajectory.

A relationship between the capacity dimension and the Lia-
punov exponents is expressed in a conjecture of Kaplan and
Yorke (5). They arrange the Liapunov exponents in non-
increasing order and allow k to be the largest integer for which
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the sum of the exponents is greater than 0. The Kaplan-Yorke
conjecture is that

o : k + ((ô1 + ô, + ... + ôk)/ôk*1)

Although there are counterexamples to this conjecture, it is
often true and holds rigorously under very general conditions
o < k + (ô, +' . . + ðk)/ôk*1). Determining the Liapunov
exponents requires some care. The authors use a method
developed by Shimada and Nagashima (ó), and also inde-
pendently by Bennetin, Galgani, and Strelcyn (7). Together
with the Kaplan-Yorke conjecture, this method gives
computational access to the dimension of attractors of high-
dimensional systems.

Computing the first Liapunov exponent is sufficient to test
for the presence ofchaos. A positive Liapunov exponent indi-
cates stretching of nearby trajectories, thus guaranteeing the
sensitive dependence on initial conditions that characterizes
chaos.

As a test, this method (algorithm) was used to compute the
dimension of the Lorenz attractor (Figure 1), and the accepted
value of 2.06 was obtained. Because of the complexity of the
calculations and the agreement to two decimal places, the
algorithm used in this report was considered accurate.

Results

The GHR equation was solved by a four-point Runge-Kutta
method, modified for a delay differential equation. Tangent
vectors also were processed as an array, their evolutions being
governed by the Jacobian of the GHR equation. To prevent
focusing of the transported tangent vectors to the direction
of that with the largest Liapunov exponent, the Gram-Schmidt
method was applied to produce a new orthonormal basis (7,8).
The Liapunov exponents are the natural logarithms of the
lengths of the transported tangent vectors, time-averaged along
the trajectory. The Kaplan-Yorke conjecture then is applied
to determine the Hausdorff dimension. The initial traffic model,
consisting of eight vehicles and no disturbances (i.e., inter-
sections, signals, bottlenecks, etc.) was developed with the
GHR traffic flow equation (Equation 2) and rested for the
presence of chaotic behavior. The following parameter values
were selected for the system:

Variable

n
T
kj
uI
uo

I

Description

Number of Vehicles
Lag Time
Jam Density
Free Flow Speed
Steady State Speed
Constant Parameter

Value

8
1 sec
260 vehicle/mile
55 mph
40 mph
2
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The step size selected was 0.0L sec, requiriàg the algorithm
to generate matrices of 100 rows and 16 columns to compute
and store values. The program was written in Pascal and
designed to compute only the first Liapunov exponent, which
is sufficient to detect chaotic behavior. The simplicity of this
problem, as well as the cost of computer time, did not'warrant
calculation of the capacity dimension; that will be reserved
for the next system to be discussed.

Calculation of the first Liapunov exponents for 5,000 sec
required about 8 hr of CPU time on a VAX L1-785 computer.
The resuÌting Liapunov exponents were posifive, indicating
sensitive dependence on initial conditions, and thus showing
the presence of chaotic behavior in the GHR traffic flow
equation for these parameters, even for a simple system.

Figure 3 shows change in the first Liapunov exponents for
the first 500 sec. It shows oscillations that occur due to tran-
sient behavior or system noise, caused by numerical rounding.

Figure 4 illustrates change in Liapunov exponents over time
for the first 5,000 sec. No oscillations are apparent because
the graph scale does not allow for sufficient detail. The large
positive value (about 375) of the first Liapunov exponent,
resulting after the transients have died, indicates sensitive
dependence on initial conditions. The magnitude of the first
Liapunov exponent should not be used as an indicator of
quantitative degree of chaos in the GHR equation. No math-
ematical evidence exists directly relating magnitude of the first
Liapunov exponent to the degree of chaotic behavior present.

To further clarify this equation's sensitive dependence on
initial conditions, a small sinusoidal perturbation (range between
0 and 0.1) was added to the velocity parameter of the lead
vehicle. The graph of the first Liapunov exponent versus time
for the sinusoidal perturbation (Figure 4) has a more pro-
nounced peak in the curve and a lower resulting value for the
first Liapunov exponent (about 355) after all transients have
died out (near 5,000 sec). This indicates that the system with
perturbation settles more quickly to an attractor than the
undisturbed system. This system's sensitive dependence on
initial conditions is clearly illustrated by a comparison of the
two graphs, showing how a small change in the adjustable
parameter significantly affects the shape of the solution curve
for the first Liapunov exponent.

A second system, consisting of a coordinated signal net-
work, was modeled with the GHR traffic-flow equation (Fig-
ure 5). The network had five signals spaced at intervals rang-
ing from 500 to 1,500 ft. The network was coordinated with
a 60-sec cycle, and offsets between consecutive signals were
computed accordingly. It was loaded with eight vehicles at
the design speed of 30 mph (44 ftlsec). Initial vehicle positions
were selected so that no vehicle was located within an inter-
section or directly affected by a signal indication for the first
second. This was necessary to allow the computer algorithm
to initialize the matrices necessary to compute and store posi-
tion and velocity values. Also, the network was designed so
that the entrance and exit rates of vehicles were identical.
This was accomplished by including 1,500 ft of additional
roadway from Signal 5 to Signal 1 and simplified the modeling.

The program was modified for the network model so that
each vehicle constantly looked at the light ahead of it. If the
light was green, the acceleration term for that vehicle was not
changed. If the light was yellow or red, a negative term was
added to the acceleration, if necessary, to stop the vehicle at
the light. For example, if, when the light turned yellow, the
vehicle was close enough to the light to pass through the

The value of / was selected, based on ranges previously
used by Ceder and May (9). Values for two additional vari-
ables m and a were calculated, as a subroutine in the program,
using equations derived from the GHR equation:

ln[1 -klk,]l -1,'..._rL
lnlu"lurl

and

(/-1)xu,(1,-m)a= e-m)klt-D
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FIGURE 3 First Liapunov exponents versus time (500 seconds).
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intersection before the light turned red, then the acceleration
term was not modified. If a vehicle was stopped at a red light,
when the light turned green a positive acceleration term was
added to bring the vehicle up to the speed limit, provided
that this would not result in collision with another vehicle.

Capacity dimensions were calculated for each second for
the traffic signal network, using initial speeds of 40, 44 and
50 ftlsec. Figure 6 illustrates the relationship between initial
velocities and their resulting capacity dimensions. The capac-
ity dimension for the design speed of 44 ftlsec was 1.4.25,
indicating the presence of a strange attractor-an attractor
that is fractal-to which the system can be reduced. This also
shows that for an initial velocity of 44 ftlsec,14 degrees of
freedom (14 variables) are necessary to examine the system
at any point in time. However, the resulting capacity dimen-
sion for initial speeds of 40 and 50 ftlsec is 16.0 (16 degrees
of freedom), the maximum for this system. This further dem-
onstrates the system-sensitive dependence on initial condi-
tions and shows that the system modeled is inherently less
complex at the design speed.

CONCLUSIONS

Chaotic behavior has been shown to exist in two relatively
simple systems modeled with the GHR traffic flow equation
(Equation 2). This was done by demonstraring the equation's
sensitive dependence on initial conditions (positive first Lia-
punov exponents) and the presence of a strange attractor
(indicated by noninteger capacity dimension). Two different
capacity dimensions resulted from simulations using three dif-
ferent initial velocity parameters. The design speed of 44 ftl
sec resulted in a capacity dimension of about 14, and speeds
slightly higher and lower resulted in a dimension of 16. This
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finding indicates that the degree of freedom and complexity
of the system increase as speeds deviate from the design speed.

As work continues, more details regarding the attractor's
geometric properties will be investigated. Knowing the geo-
metric limitations of the attractor will improve predictions.
Information on how the attractor changes shape with various
input parameters will also be obtained, making more precise
predictions possible for greater ranges of input parameters.
Finally, attempts will be made to quantify the degree of
robustness-effects caused by Iarge changes of input param-
eters-further improving the reliability of predictions based
on the GHR equation.
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