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Temperature Curling in Rigid 
Pavements: An Application of 
Dimensional Analysis 

ANASTASIOS M. IOANNIDES AND RICARDO A. SALSILLI-MURUA 

This paper presents a closed-form solution to the problem of a 
slab-on-grade under combined lcmpcr.ature and wheel loading, 
derived on the ba is of finite element results. This solution is in 
the form of a multiplication factor (function of the temperature 
differenlial) to be applied to the Westergaard equation to deter
mine the maximum combined tensile slre s in the lab under edge 
loading. In addition, a sound, engineering approach to numerical, 
experimental, and field data interprelation is proposed, founded 
on the principles of dimensional analysis. In view of the wide 
variety of available data incJud.ing those from the Strategic High
way Re carch P1·og1·am and from finile element studies, the major 
problem confronting the profession today is no longer one of data 
availability, but one of dala interpretation. In addressing this 
problem, the general trend in the last three decades has been to 
show an overwhelming preference for, and an unlimited confi
dence in, the results of sophisticated statistical analyses, without 
much consideration of lhc underlying engineering interaction among 
the host of input parameters involved. AJthough in a highly cmpi1·
ical field such as the tudy of pavcmenl behavior regression tech
niques will always be an invaluable tool, the profession can benefit 
immensely by using dimensional analysis lo determine lhe engi
neering dependent and independent variables to be examined. 
Without such exercise of engineering judgment, regression is 
lamentably bound to remain just that. 

An analytical solution to the problem of a rigid pavement 
slab-on-grade under the combined action of a temperature 
gradient and externally applied wheel loads has not been 
forthcoming in recent years, despite considerable progress 
achieved in related areas. The major reason for this shortfall 
is the complexity introduced by the loss of support experi
enced by a curled slab, thereby rendering the principle of 
superposition inapplicable. Thus, it has long been recognized 
that merely summing up the stresses due to the applied wheel 
loads and those induced by curling (1,2) is an inadequate and 
often erroneous approach (3 ,4). 

An obvious recourse to the lack of a closed-form solution 
would be to use data obtained from finite element (FE) or 
other numerical procedures and to verify such predictions by 
comparing them to actual field observations. Sophisticated 
FE codes are currently available for routine execution and 
can provide an enormous amount of pertinent information in 
a reasonable amount of time. In parallel , the Strategic High
way Research Program (SHRP) promises to supply a large 
variety of carefully collected in situ data that could also be 
used in this respect. Thus , the problem confronting the profes
sion today is no longer one of data availability, but one of 
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data interpretation . This paper addresses the issue of data 
interpretation using the principles of dimensional analysis for 
the case of the problem at hand, although the concepts pre
sented are applicable to many other areas of scientific endeavor . 

DIMENSIONAL ANALYSIS AND DATA 
INTERPRETATION 

The need for dimensional analysis in those areas where avail
able analytical tools are not capable of yielding exact solutions 
and which, therefore, are heavily involved with numerical and 
empirical work, is well recognized in several branches of engi
neering-most notably in fluid mechanics. Consider, for 
instance, the comments of Roberson and Crowe (5). They 
stress that in such fields, "it is essential that researchers employ 
dimensionless parameters [for] analyzing model studies and 
for correlating the results of experimental research." For 
example, " by considering a nondimensional form of Ber
noulli's equation we will have made a tremendous reduction 
in experimental work from that required before considering 
the nondimensional form. The process of nondimensionaliz
ing the equation reduces the correlating parameters from five 
to two ." 

As a result , considerable time savings are realized with 
respect to data collection, because the nondimensional fac
torial is much smaller than its dimensional counterpart. Note 
that as with the Bernoulli equation, it is often possible to have 
"a clue about the governing equation" from previous theo
retical investigations , which may themselves be incomplete . 
Nonetheless, " by considering the dimensionless form of that 
equation, we [are J able to obtain a set of dimensionless param
eters with which to correlate our data" (5). 

Dimensional analysis is not unknown in transportation facil
ities studies . It is encountered in the works of such notable 
pioneers as Westergaard, Bradbury , Burmister, Odemark, 
Pickett , and Los berg, to name a few , although this is often 
done in passing and in a nonsystematic fashion. Burmister's 
work is a case in point. 

In his classic paper (6), Burmister presented his two-layer 
system solution in terms of two dimensionless independent 
variables (£/£2 and h/a) and one nondimensional dependent 
variable (F,J-the latter being a correction factor for the 
existing one-layer, Boussinesq solution. Here , £ 1 and £ 2 are 
the moduli of the top and bottom layers, respectively, h is 
the thickness of the top layer , and a is the radius of the applied 
load . 
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Significantly less attention was drawn to Burmister's com
ments at the First International Conference on the Structural 
Design of Asphalt Pavements in 1962 (7). At that conference, 
he advocated that the "principles of dimensional analysis should 
be rigorously followed, involving fundamental dimensionless 
ratios which have physical significance." This approach not 
only provides a useful way to present theoretical and analytical 
data, but it is also "a more basic approach in a comprehensive 
evaluation of field data , leading to dimensionally correct 
empirical relations" (7). 

The first step in applying the principles of dimensional anal
ysis to pavement systems is to distinguish between input 
parameters and independent variables entering the analysis , 
as well as distinguishing between output values and dependent 
variables. It is often assumed that these pairs of terms have 
identical meanings, thus resulting in extremely long factorials 
and incomplete (often misleading) data interpretation. Rau
hut et al. (8), for example, conclude (in good humor) that 
"measuring all of the possible main effects and interactions 
between the 30 factors [involved in a typical execution of 
computer program VESYS] at two levels each would have 
required 230 (slightly more than 109

) separate observations." 
Regression algorithms obtained in this way cannot be applied 
to data other than the data for which the algorithms were 
developed. 

In contrast, establishing independent and dependent vari
ables, by combining a number of input parameters and output 
values into nondimensional forms, merely recognizes the fun
damental engineering interactions between the factors involved. 
This is preferable to delegating this cardinal engineering task 
to the statistician or, more commonly, to the "black box" of 
sophisticated and complex statistical computer packages . 

Previous investigations (9,10,11), showed how the Wester
gaard problem of a slab-on-grade can be reduced to a non
dimensional equation of the form: 

R* = f(lrrn [ nin) 
..... J ,~~o L~r• • JJ 

where 

R* = dimensionless response, 
f - logarithmic function of all sought, 
a = radius of the applied load, and 

(1) 

l = radius of relative stiffness of slab-subgrade system, 
given by 

l = [Eh 3/{12(1 - µ2)k}] 1
'
4 

where 

E = slab Young's modulus, 
h = slab thickness, 
µ = slab Poisson ratio, and 
k = modulus of subgrade reaction. 

(2) 

The well-known Westergaard equations essentially present 
the functional forms off for the particular cases of the three 
primary maximum responses; namely, deflection , B, bending 
stress, u, and subgrade stress, q, for each of the three fun
damental loading conditions (i.e., interior, edge, and corner). 
The nondimensional responses, R*, can be extracted from 
these equations, as follows (12): 
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R* [!WIP/2] or R* = [Bk/2/P] for deflection, 

R* [ql 2/P] for suhe;rncle stress, and 

R* [uh 21 P] for bending stress. (3) 

In these responses, Dis the flexural stiffness of the slab , which 
is equal to Eh 3/{12(1 - µ 2)}, and P is the total applied load. 

Thus, five of Westergaard's six input parameters {E, µ, h, 
k, and a} are lumped into a single nondimensional ratio, all, 
which defines uniquely each of the nondimensional responses, 
independent of the values of the individual parameters. 
Therefore, even though each particular input parameter may 
change, the nondimensional response of the system (which 
involves the sixth input parameter, P) is unaltered, if all remains 
constant. As in Bernoulli's problem, Westergaard's is thus 
reduced to one of a single independent variable, all, and three 
dependent variables (the three nondimensional responses). 

Several extensions based on Westergaard's work are now 
possible. To account for the finite extent of concrete pavement 
slabs, Ioannides et al. (13) introduced the normalized length 
term, Lil, assuming that the width, W, of the slab was equal 
to its length, L. Thus, Westergaard's solutions may be cor
rected for the effect of slab size, using data from FE studies. 
Similarly, the effect of dual-wheel loads, may be quantified 
by Sia or Sil, where S is the spacing of the two loads (14). 

Note that all independent variables, as well as all calculated 
responses are expressed in the form of nondimensional ratios. 
This allows results obtained from one given set of input 
parameters to be used to predict the response under a number 
of other combinations of parameters, giving the same inde
pendent variables . As a corollary, only a limited amount of 
data (obtained from FE studies, laboratory tests, or field 
observations) is sufficient to describe most pavements of prac
tical interest . 

lUJ<.:NTIJ<'Y lNli THJ<.: lNUEPJ<;NUJ<.Nl 

VARIABLES FOR CURLING ANALYSIS 

When considering the effects of a temperature gradient through 
the thickness of the slab, it is necessary to seek the nondi
mensional independent variables involved, in addition to all 
and Lil. Input pan1meters to this problem usually include the 
following: 

a = coefficient of thermal expansion of concrete, LL_, 
. T - 1, 

g = temperature gradient, TL - 1
, 

/::,,T = temperature differential between top and bottom, 
T, and 

-y = unit weight of concrete, FL - 3
. 

Here the three primary or basic dimensions are abbreviated 
as length, L, force, F, and temperature, T . 

Examining available analytical solutions for this problem 
(1,2 ,15-17), it soon becomes apparent that the pertinent 
independent variable driving the system is the nondimensional 
product of a/::,, T. In contrast, the temperature gradient, g, is 
a dimensional parameter and is inadequate to describe the 
system, unless the slab thickness, h, and the system of units 
used are also specified. For example, if a linear temperature 
distribution is assumed, g is constant through the thickness, 



Ioannides and Sa/silli-Murua 

and 

a.~T = a.gh (4) 

Note that the form of the independent variable, a.~T, already 
indicates that an accurate determination of a is just as sig
nificant as establishing the value of ~ T. In other words, the 
sensitivity of the system response to changes in a is just as 
pronounced as the corresponding sensitivity to variations in 
~T. Therefore, focusing attention and resources on deter
mining ~T may not be justifiable, unless an equal effort is 
expended in determining a.. Nonetheless, in an analytical study 
as that presented herein, a constant value of a may be used. 
Results obtained may easily be adjusted for a different value 
of a, as necessary . 

The self-weight of the slab, determined by"/, must also be 
accounted for in curling analysis. This is because of (a) the 
lack of full contact between the subgrade and the slab and 
(b) the restraint provided by the dead weight to the stress
free curling of the slab into a spherical surface, as predicted 
by the physics of the problem. The self-weight, however, is 
of a similar nature as the externally applied wheel loads. Thus, 
it may be accounted for by adjusting the form of the nondi
mensional responses and need not be considered as an inde
pendent variable. 

Reference to analytical studies (2), as well as FE investi
gations (18), indicates that the sensitivity of the system to the 
slab size factor, Lil, is significantly more pronounced under 
a temperature gradient than under flat-slab conditions. A 
value of Lil between 5 and 8 is usually adequate to give an 
infinite slab response under no-temperature gradient (13), 
whereas under curling conditions this ratio is closer to 15. 

FINITE ELEMENT FACTORIAL USED 

The value of the preliminary considerations presented above 
is appreciated when examining the factorial that was used to 
study the response of the system under curling conditions. It 
was decided to eliminate slab length effects, so an Lil value 
of about 16 was adopted . The width , W, of the slab was 
initially set to 144 in. (or WI!= 3.61to7.66); but to conclude 
the study, the sensitivity of the calculated responses to this 
factor was also examined. 

The following levels were considered for the other two 
independent variables: 

all = 0.05, 0.1, 0.2, 0.3, and 

a.~T = ± 5.5 x 10 - s, ± 1.375 x 10- 4 , ±2.2 x 10- 4 

For a constant a value of 5.5 x 10 - 6 El°F, the latter corre
spond to a temperature differential of ± 10, ± 25, and ± 40°F. 

In a preliminary study ( 4), it was determined that the edge 
loading condition is critical under curling conditions, as well 
as under no-temperature differential. Analyses were therefore 
conducted only for a single square (size c x c) or rectangular 
(size 2c x c) edge load. Thus, using a mere 24 FE runs, it is 
possible to bracket the vast majority of all conceivable slab, 
subgrade, and temperature conditions. The only restriction 
here is the infinite-slab assumption. The input parameters for 
the 24 cases studied are listed in Table 1. 

3 

Finite element program ILLI-SLAB (19 ,20) was used in 
this investigation. An iterative procedure is used to account 
for the effect of temperature curling and to accommodate 
regaining of sub grade support under load ( 4). In this respect, 
the FE formulation used follows closely that proposed by 
Huang and Wang (21) . In designing the FE mesh, guidelines 
established in earlier studies were followed (20, 22). 

ILLI-SLAB RESULTS 

Figure 1 summarizes the data obtained for maximum com
bined normalized tensile stress at top or bottom of the slab 
for the three daytime and nighttime temperature differentials 
investigated. A short discussion of these follows. 

Positive il.T: Slab Curled Down (Daytime 
Conditions) 

The maximum combined tensile-bending stress, a, m•x> under 
an edge load on a slab that is curled down occurs at the bottom 
fiber of the slab at the location of the load . This will be the 
controlling stress for fatigue calculations because of its mag
nitude and location, as well as the higher number of traffic 
loads applied during the day. A much smaller tensile stress 
also arises at the top fiber of the slab, along the loaded edge 
at a distance of less than 1/ from the slab corner. 

Negative il.T: Slab Curled Up (Nighttime 
Conditions) 

The maximum combined tensile-bending stress under such 
conditions generally occurs at the top fiber of the slab, at 
some distance from the center of the load. This distance is 
usually between 2 and 4/, the larger values correspond to low 
all and low a~T values. Exceptions to this general pattern 
arise for high all and low a.~T values, when the maximum 
tensile occurs at the underside of the slab, at the location of 
the load. In such cases, however, this tensile stress is relatively 
small, being of the same order of magnitude as Westergaard's 
prediction (~T = 0), and is generally only slightly greater 
than the corresponding maximum tensile stress arising at the 
top of the curled slab. 

General Discussion of Results 

As expected, the absolute value of the nondimensional bend
ing stress (ah 21 P) increases dramatically as a.~ T increases, 
especially at low all values . In all these analyses, the unit 
weight of concrete, "{, was set at 0.087 pci (or 150 pcf), and 
its Poisson ratio, µ, was assumed to be 0.15; the maximum 
stress is normalized in terms of the external load, P, only. 
Although these choices are fairly inconsequential for the rel
atively long slabs considered here, a more general and rig
orous examination of the nondimensional response would 
involve , in addition, both 'Y and µ . Unfortunately this is not 
feasible at this time. 

In comparison, Westergaard's solution (~T = 0) is of almost 



TABLE I FINITE ELEMENT ANALYSES CONDUCTED 

RUN LIT h E k ;, L W/J, p c a a/ J, at max . 
OF in . Mpsi pci in _ in. kips in . in . psi 

1.1 40 10.59 5 200 39.89 630 3 . 61 1. 25 2 . 5>1' 1. 995 0.05 620 
1. 2 40 8 . 23 4 300 28 . 21 450 5 . 10 2.5 5 2.821 0.1 595 
1. 3 40 9 . 97 3 400 28.21 450 5 . 10 10 10 5.642 0 . 2 599 
1.4 40 7 . 16 2 500 18.81 300 7 . 66 10 10 5.642 0 . 3 612 

2 . 1 25 10 . 59 5 200 39 . 89 630 3 . 61 l. 25 2.5* 1. 995 0 . 05 400 
2.2 25 8 . 23 4 300 28.21 450 5.10 2.5 5 2 . 821 0 . 1 413 
2 . 3 25 9 . 97 3 400 28 . 21 450 5 . 10 10 10 5.642 0 . 2 458 
2 . 4 25 7 . 16 2 500 18.81 300 7 . 66 10 10 5.642 0 . 3 511 

3.1 10 10 . 59 5 200 39.89 630 3.61 1. 25 2.5* 1. 995 0 . 05 186 
3 . 2 10 8 . 23 4 300 28.21 450 5 . 10 2.5 5 2. 821 0 . 1 234 
3 . 3 10 9 ,97 3 400 28 . 21 450 5 . 10 10 10 5.642 0 . 2 323 
3 . 4 10 7.16 2 500 18 . 81 300 7 . 66 10 10 5 .642 0 . 3 421 

4.1 -10 10 . 59 5 200 39.89 630 3 . 61 1. 25 2.5* 1. 995 0 . 05 -152 
4 . 2 -10 8.23 4 300 28.21 450 5 . 10 2.5 5 2.821 0 . 1 -130 
4.3 -10 9 . 97 3 400 28.21 450 5 . 10 10 10 5.642 0 . 2 -126 
4 . 4 -10 7 . 16 2 500 18.81 300 7 . 66 10 10 5.642 0 . 3 -140 

5 . 1 - 25 10 . 59 5 200 39 . 89 630 3 . 61 1. 25 2. 5* 1. 995 0 . 05 -370 
5 .2 -25 8 .2 3 4 300 28.21 450 5 . 10 2. 5 5 2 . 821 0.1 -308 
5.3 -25 9 . 97 3 400 28.21 450 5.10 10 10 5.642 0 . 2 -251 
5 . 4 -25 7 . 16 2 500 18.81 300 7.66 10 10 5.642 0.3 -207 

6.1 -40 10 . 59 5 200 39 . 89 630 3 . 61 1. 25 2.5* 1. 995 0 . 05 -587 
6 . 2 -40 8.23 4 300 28 . 21 450 5.10 2 . 5 5 2 . 821 0 . 1 -485 
6 . 3 -40 9.97 3 400 28 . 21 450 5 . 10 10 10 5. 642 0 . 2 -372 
6.4 -40 7.16 2 500 18 . 81 300 7 . 66 10 10 5.642 0 . 3 -281 

Note: For all runs, °' - 5.5xl0- 6 </•F; µ 0.15; p = 100 psi; w - 144 in.; 
"( = 0 . 087 pci ~ 150 pcf; L/i "' 16. 
* : Load dimensions are c x c, except starred cases for which 

load dimensions are 2c x c. 
at max . is a tensile stress occurring at the bottom of the slab for 

+ve LIT and at the top of the slab for -ve LIT . 
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FIGURE 1 Maximum combined normalized tensile stress under edge loading as a function of (all) 
and (a.:iT). 
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insignificant magnitude. The ratio, p, is defined as 

p = (a, "'~") 
CT, Wc:!io 

(5) 

where u, max is the maximum combined tensile stress under 
curling and load, and u, w°' is the maximum tensile stress 
predicted by Westergaard (6.T = 0). 

It is possible to use FE data to derive a closed-form equation 
to estimate (u, max) under any combination of load and tem
perature conditions. Figure 2 shows the variation of the abso
lute value of p with all, for various temperature differentials. 
It was observed that downward curling (daytime) is slightly 
more detrimental than upward curling (nighttime). When 
fatigue consumption is considered, daytime curling will prob
ably be more critical, because of the location of the maximum 
tension (at the bottom of the slab under the load) and the 
higher number of applied traffic loads. For these reasons
as a first attempt-the following formula was derived for p, 
based only on the daytime FE results presented in Figure 2: 

p = A + B {all} + C {log 10(all)} (6) 

where A, B, and Care functions of 6.T only, as follows: 

A 

B 

1.0 - 0.9152 6.T 

1.6215 6.T 

C = -0.8713 6.T 

(7) 

(8) 

(9) 

Note that Equations 7-9 are presented in terms of 6.T (in 
°F) for clarity, assuming o. equals 5.5 x 10- 6 E/°F. The fun
damental relation, of course, involves o.6.T. It would be easy, 
however, to redefine A, B, and C for any other o. value. 
Furthermore, in certain areas where nighttime truck traffic is 
significant, its effect on fatigue consumption may also be 
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accounted for in a fashion similar to that adopted here for 
the daytime stresses. The form of Equations 6-9 will remain 
unaltered, and only the nondimensional coefficients will need 
to be modified for this purpose. 

Equation 6 applies to an infinite-slab condition, since an 
Lil value of about 16 was retained in all the FE runs used in 
its derivation. A significant decrease in the maximum com
bined tensile stress may be expected to occur as the slab size 
decreases below about Lil = 8. This is evident if one considers 
the steep slope of the C-coefficient curve presented by Brad
bury (2). In addition, for slabs of infinite length, the maximum 
combined tensile stress is independent of the chosen value of 
'Y· This, however, is not true for shorter slabs. For the latter, 
the combined stress is also drastically reduced as 'Y decreases. 
This assertion is confirmed by additional FE data, not pre
sented herein. 

Thus, the effect of decreasing 'Y is to make the slab behave 
as if it were shorter. Stated another way, this implies that the 
lighter the slab is, the longer it must be before the slab acts 
as an infinite slab. A theoretical explanation for this is that 
self-weight in heavy slabs imposes a restraint that is sufficient 
to ensure full contact under the interior portion of the slab, 
away from any edges and corners. This support condition was 
considered by Westergaard (1) as a necessary consequence of 
the infinite-slab assumption. 

The effect of increasing the magnitude of the externally 
applied load is similar-the higher the applied load, the shorter 
the Lil value required for infinite-slab conditions. In this sense, 
the nature of the self-weight of the slab is similar to that of 
the externally applied load, as stated earlier. Thus, an equa
tion similar to Equation 6 derived for shorter slabs (which 
would be of greater practical interest) must incorporate the 
effect of 'Y· It is expected, however, that this will be achieved 
by modifying the form of the dependent variable (nondimen
sional combined bending stress), rather than any of the gov
erning independent variables. 

-- DAY-TIME 

--- NIGHT-TIME 

0.00 0.05 0.10 0.15 0.20 0.25 O.JO 0 . .35 
Load Size Ratio, {a/1) 

FIGURE 2 Multiplication factor, p, for estimating maximum combined tensile stress. 

s 
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Equation 6 shows that p decreases as o:/1 T decreases or as 
all increases. It should be noted that for all values larger than 
about 0.2, Equation 6 suggests that p increases as all increases, 
albeit slightly. Any increase, however, is highly questionable 
and is probably related to the slab size effect mentioned above. 
Thus, Equation 6 is more reliable for all :s 0.2. 

Finally, a point needs to be made with respect to the regres
sion technique used to derive Equation 6 from the FE data 
on which it is based. Twelve observations are considered and 
the coefficient of determination , R2, is 0.985. This is gratify
ingly high, but one also must consider the ratio of (predicted/ 
observed) values. These give a mean of 1.005 (cf. 1.00 for a 
perfect fit) and a coefficient of variation 16 percent (cf. 0.000 
for a perfect fit). The latter is, therefore, fairly high. It is only 
when considering these three statistics together that the good
ness of the fit may be evaluated. An R 2 value in the upper 
nineties is a necessary, but not a sufficient, condition for 
adequate predictions. This calls for considerable caution (to 
say the least) when using regression algorithms with signifi
cantly lower R 2 values. 

Depending on the values of o:l1T and all, stresses as high 
as 15 times Westergaard's may be obtained. As o:/1Tincreases, 
the turning point in the curves-indicating more pronounced 
sensitivity to changes in all-occurs at increasingly higher 
values of all, as compared to the Westergaard solution. These 
values are often of considerable practical interest. At a lower 
o:l1T and higher all, nighttime (upward) curling may result in 
a lower stress than predicted by Westergaard. The importance 
of such stress relief in fatigue calculation should not be over
estimated, however, because of the location of the maximum 
stress (at the top fiber at some distance from the load) and 
the relatively low number of traffic loads applied during the 
night. 

It should be stressed that the form of the independent vari
able, all, implies that the sensitivity of the pavement system 
response to changes in load radius, a, is just as pronounced 
as the effect of variations in its radius of relative stiffness, l . 
Furthermore, altering the value of the load radius causes a 
more pronounced response change than is effected by varying 
any one of the individual parameters entering 1, (e.g., E, h, 
and k). This is obvious, since l is the fourth root of the com
bination of these parameters, while the load radius enters the 
driving ratio of all in its first power. 

Compared with Westergaard's solution (/1T = 0), the sen
sitivity of the normalized response to changes in all, resulting 
from variations in a or l, is tremendously more pronounced, 
particularly for all values between 0.05 and 0.1. This is the 
range in which a large number of actual pavements and loads 
fall. 

The preceding considerations suggest that the equivalent 
single-axle load (ESAL) concept, which states that all traffic 
loads are reduced to an equivalent single-axle load of a stan
dard weight, is flawed; because it most often implicitly assumes 
a constant value of load radius. This criticism is not a novel 
idea. Thirty years ago, in enumerating the limitations of 
equivalent wheel-load analysis, Yoder (23) listed a number 
of factors that cause the pavement system to deviate from the 
assumptions of linear elasticity and full contact, including loss 
of subgrade strength and plastic subgrade deformation. He 
also stated that "warping of rigid pavements and subsequent 
loss of pavement contact must be taken into consideration." 
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Huang attempted to account for the contact radius in devel
oping equivalency factors (24,25). Although application of 
the principles of dimensional analysis is evident m Huang's 
studies, his assumption was that "the change in load factor 
due to the change in contact radius is not very large so that 
a straight line interpolation should give a fairly accurate load 
factor for any other contact radii" (24). This may hold rea
sonably true for a full-contact analysis, such as Burmister's 
or Westergaard's, but as the data presented here show, such 
an expectation is unrealistic when the assumption of full con
tact is no longer satisfied. 

Under linear elastic comlitions, a much more fundamental 
reduction would have been to express mixed, multiple-wheel 
traffic in terms of an equivalent radius of the applied load. 
Recent research efforts at the University of Illinois have sug
gested that it would be possible to derive with reasonable 
accuracy an equivalent single-axle radius . (ESAR) for any 
arbitrary gear configuration, simply as a function of its geom
etry (size and spacing of tire prints). This leads to the ESAR 
concept that offers a unique opportunity for replacing the 
empirical ESAL approach with a mechanistic procedure. 

Even under stress-dependent (nonlinear) conditions, the 
need to reduce general traffic to an equivalent radius of applied 
load is still more urgent than the need for an equivalent mag
nitude of load. The major reason, of course, for the prefer
ence given to the ESAL concept is that axle loads are much 
easier to determine and control than are tire contact radii. 
Regrettably, the system response is naturally oblivious to mat
ters of practical expediency. 

EFFECT OF SLAB WIDTH 

In the preceding FE analyses, the slab width, W, was main
tained at 144 inches; i.e., the value of Wit (which can be 
expected to be the more fundamental slab width variable) 
ranged between 3.61 and 7.66. To P.xamine the effect of slab 
width, nine additional FE runs were conducted. The results 
indicated that although the maximum combined normalized 
bending stress generally increases as W!l increases, this effect 
becomes negligible for W!l values in excess of about 3.5. The 
24 cases considered above are, therefore, judged to be fairly 
insensitive to this effect. 

RECONSIDERATION OF ZERO· 
MAINTENANCE RESULTS 

The dimensional analysis approach to data interpretation pre
sented above may be applied in a re-examination of existing 
data bases. As an illustration, the data base generated by the 
zero-maintenance (ZM) study (18) was selected, because it 
was one of the largest available. The data consisted of ana
lytical results, obtained by performing a series of runs, using 
an FE program developed at the University of Kentucky by 
Huang and Wang (21). This is a precursor to ILLI-SLAB and 
is sometimes referred to as KENWINK. For the case of an 
18-kip single-axle load perpendicular to the longitudinal slab 
edge, the data base included a complete factorial of 432 runs 
for the following factors and levels: 
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Slab thickness, h = 8, 10, and 14 in., 
Subgrade modulus, k = 50, 200, and 500 pci, 
Thermal gradient, g = -1.5, 0, and + 3.0°Flin., 
Slab length, L = 15 , 20, 25, and 30 ft, and 
Erodability, es: 0, 12, 36, and 60 in. 

The slab considered consisted of one layer with a modulus, 
E, of 5.0 x 106 psi and a Poisson ratio, µ, , of 0.15 . The 
concrete coefficient of thermal expansion, ex, was set at 
5.0 x 10- 6 el°F. The unit weight of concrete used was not 
explicitly stated but this was probably 150 pcf. The width of 
the slab, W, was held constant at 144 in . (WI! = 2.071 to 
5.602) . The load was applied by two wheels, each 15 by 12 
in. at a center-to-center spacing, S , of 78 in . (Sia = 10.3) 
under 50 psi of pressure. The FE mesh used was relatively 
coarse, and some detrimental effects of this factor on the 
results obtained are discussed below. 

Note that the ZM factorial is considerably longer than the 
ILLI-SLAB factorial presented earlier, but this is primarily 
a consequence of the implicit assumption that h, k, and g are 
fundamental independent variables. It is clear now that this 
is not the case, because the independent variables have been 
shown to be the nondimensional ratios, all and cx/::,,,T, while 
h, k, and g are merely input parameters. Furthermore, the 
effect of the slab size is purportedly accounted for by the 
input parameter, L, whereas the fundamental independent 
variable is the nondimensional ratio Lil. Similarly, the effect 
of the loss of subgrade support in a longitudinal strip along 
the loaded slab edge was investigated during the ZM study 
in terms of the erodability, es. This gives the width of a zero
subgrade modulus strip along the loaded edge (in inches). It 
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may be postulated that the independent variable governing 
this aspect of the response is the nondimensional ratio , e/ l. 

For the case of no-temperature differential, Figure 3 com
pares the Westergaard solution and the ZM FE results for 
different values of the erodability ratio, e,ll. On the basis of 
an earlier investigation (14), and for the sake of simplicity, 
the effect of the second tire may be considered negligible in 
calculating the Westergaard response . Thus, the solution shown 
in Figure 3 assumes a total load , P, of 9,000 pounds, applied 
over a circle, radius a = 7.57 in., under a uniform pressure, 
p, of 50 psi. Also note that the original data in the ZM report 
were extrapolated to yield the values corresponding to the 
rounded e/l values shown in Figure 3. 

As expected, as es/I increases, the nondimensional maxi
mum combined tensile stress arising in the slab increases sub
stantially. The ZM report gave no indication as to the location 
of this stress (i.e., whether it occurs at the edge under the 
load or elsewhere) at the top or bottom fiber of the slab . Such 
information is essential in calculating fatigue consumption. 

Comparing the curve for e,ll = 0 to the Westergaard curve 
in Figure 3, provides an estimate of the effects of the FE mesh 
used. Good agreement is obtained at high values of all, due 
to the corresponding high Lil values (Westergaard assumes 
an infinite slab). For intermediate all values, the FE results 
are about 10 percent higher than Westergaard's . This dis
crepancy is due to the coarseness of the mesh in the vicinity 
of the load (26). 

Finally, the curve for es/l = 0 bends over toward the West
ergaard curve at low all, but this is not an indication of better 
agreement between the two solutions. Rather, it is due to the 
low Lil values, corresponding to these all values . The ZM 
results suggest that, for /::,,,T = 0, results are not affected by 
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FIGURE 3 Zero maintenance results for il.T = 0: effect of erodability. 
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changes in slab size. This , of course, is only true for Lil in 
excess of about 5, and is certainly inapplicable in the case of 
Lil values as low as 2.588, associated with some low all results 
in Figure 3. 

Notwithstanding these limitations, Figure 3 provides a con
cise graphic depiction of the effect of erodability on the max
imum bending stress. When the data are presented in this 
fashion, responses may be predicted for cases involving values 
of the individual parameters (e .g., a, P, E, µ, h, k, and e,) 
other than those on which Figure 3 is based. Four separate 
figures are used in the ZM report (18) to present the data 
obtained; each is applicable to a specific combination of the 
input parameters. 

Using the dimensional analysis approach, the same data are 
replotted in a single graph (Figure 3). In this graph, the data 
line up to form smooth continuous curves, even though points 
on the same curve assume differnnl input parameters, such 
as k and h. This confirms the validity of the proposed inter
pretation method. Figure 3 also allows a direct comparison 
with Westergaard, and an estimation of the error introduced 
by the characteristics of the FE mesh. 

For the case of full subgrade support (e,ll = 0) , Figures 4 
through 6 show the effect of slab size on the nondimensional 
combined maximum tensile stress under edge loading and a 
temperature differential. This stress is plotted versus all, for 
various values of Lil and r:x.!::,.T. Once again, the raw ZM data 
were extrapolated to give the responses at the rounded Lil 
values shown in these figures . 

In examining these results, it was observed that for the dead 
and wheel loads considered there is a limiting value of Lil 
beyond which the slab behaves as an infinite slab. This value 
is also a function of all and a.I::,. T, but the effect of all is quite 
negligible . It is noted that the limiting Lil value is slightly 
more sensitive to changes in a.I::,. T when considering upward 
curling (nighttime) . Under both night and day temperature 
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differentials, a slab size of 151 or more may be necessary for 
infinite-slab response. This validates the choice made earlier 
in performing the runs for the ILLI-SLAB factorial. 

The ZM results suggest that limiting the Lil ratio to about 
4 will ensure that the combined stresses under !::,.T = + 30°F 
(or less) will not exceed a value equal to about twice that 
predicted by Westergaard. This seems to hold reasonably true 
for any load size ratio all. Allowing the Lil ratio to reach 8 
will cause a stress that is three times as large as Westergaard's. 
Thus, it appears necessary to reconsider conventional practice 
with respect to the selection of maximum slab size. The prev
alent recommendation in the United States is that L (in feet) 
should not exceed 1.75 times the thickness, h, of the slab (in 
inches), or L/h s 21. On the other hand, recent European 
experience (27,28) suggests a somewhat longer maximum slab 
length, or L/h s 25. 

The fact that the pertinent fundamental engineering inde
pendent variables are not L and W, but the nondimensional 
ratios, Lil and W/l, clearly means that any criteria developed 
cannot be expressed in terms of dimensional quantities (e .g., 
W equals 14 ft) . The slab dimensions in feet cannot be deter
mined until the properties of pavement , including its support , 
are known . Furthermore, it is evident that a criterion in terms 
of Llh, say, is much more relevant, because it accounts for 
the most important property of the slab, namely its thickness. 
Nonetheless, it is interesting to observe that such properties 
as E and k are not reflected in such a criterion either. It is 
therefore not surprising that the U.S. and European experi
ence differs somewhat. This is presumably in response to the 
different soil conditions and concrete mixing practices in these 
two parts of the world. 

Figure 7 compares the Llh criteria most commonly used in 
the United States and in Europe to the proposed Lil criterion 
(29) . Contrary to the implication of an L/h design criterion, 
size-related problems may arise in a pavement ask increases. 
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FIGURE 7 Comparison of slab length criteria (29). 

It is also evident that decreasing E will have a similar effect . 
In contrast, an Lil c.:riterion will result in shorter slabs under 
both of these conditions. Another interesting observation is 
that slab lengths determined according to the two Llh criteria 
lie for the most part within the range defined by Lil = 4 and 
Lil = 6. Thus, the former is shown to be a fairly conservative 
choice, while Lil = 5 appears to be a promising alternative. 
The ultimate choice, of course, should be tested against local 
experience. As noted earlier, the maximum combined tensile 
stress incre:.:lses :.:lt !I. d<:.>:creB.sing rate as W increases, tending 
to a constant value at about WI/ = 4. This gives support to 
setting L = W. 

CONCLUSION 

The purpose of this paper has been twofold: (;i) to present a 
solution to the problem of a slab-on-grade under combined 
temperature and wheel loading, and, just as importantly, (b) to 
propose a sound engineering approach to numerical, exper
imental, and field data interpretation. The principles of 
dimensional analysis, so fruitfully used in other branches of 
engineering, have largely been ignored in transportation facil
ities studies, particularly since the introduction of computers 
in the early 1960s. Despite occasional and admirable excep
tions, the general trend in the last three decades has been to 
show an overwhelming preference for and an unlimited con
fidence in the results of sophisticated statistical analyses
without much consideration of the underlying engineering 
interactions among the host of input parameters involved. 

Although in a highly empirical field, such as the study of 
pavement behavior, regression techniques will always be an 
invaluable tool, the profession can benefit immensely by using 
dimensional analysis to determine the engineering dependent 
and independent variables to be examined. Without such 

exercise of engineering judgment, regression is lamentably 
bound to remain just that. 
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