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Probabilistic Design of Flexible and 
Rigid Pavements Using AASHTO 
Equations 

AnNAN A. BASMA AND Anu H. AL-BALBissr 

This paper applies statistical and probabilistic methods to the design 
of pavements, using the existing AASHTO equations. The major 
purpose for applying such methods was to assess the variation of 
the pavement geometry as a function of the variabilities of design 
factors. A linear first-order approximation was applied on the 
AASHTO pavement design equation to determine the effect of the 
variation of traffic and soil support value on the variation of struc· 
tural number for flexible pavement and the effect of the variation 
of traffic and concrete flexural strength on the variation of slab 
thickness for rigid pavements. The mean and variance equations 
for the pavement geometry were derived by using Taylor's series 
expansion about the mean. Nomographic solutions of these equa· 
lions are provided, which would prove helpful in practical appli· 
cations. The final design thickness of the pavement for a specific 
service life and design parameters variability is obtained by com
bining the nomographic solutions with the least cost concept, thereby 
satisfying economy, performance and statistical design require· 
ments. Examples to illustrate the use of this technique in the design 
of both flexible and rigid pavements are presented. 

The design of pavement systems, from a practical point of 
view, involves the selection and assignment of specific values 
for several design factors. However , the design input param
eters are rarely , if ever , unique or constant values . Strictly 
speaking, every design factor studied and analyzed possesses 
some degree of variability and randomness in its measure
ment. It is not surprising, for instance, in a given design sit
uation, to find subgrade support value for a single soil varying 
rather considerably over a wide range. The recent recognition 
of these probabilistic random properties of design and mate
rial factors has brought great attention to the use of statistical 
concepts within the field of pavement technology. Application 
of statistical and probabilistic methods to the design of pave
ment systems would seem to be, therefore, an essential step 
toward improving existing design procedures. Probabilistic 
techniques have been used extensively for several years in 
various areas of engineering. The consideration of material 
variations, traffic load uncertainties , and soil properties vari
abilities in the design of pavements has been strongly advo
cated by several researchers. Probabilistic methods have been 
applied to flexible pavement design and analysis by Darter 
et al. (1-4) and McManus and Barenberg (5). Applications 
to rigid pavements were made by Kher and Darter (6, 7) . 

Even though all pavement-design methods, in particular 
the AASHTO design , consider the effect of factors such as 
subgrade, pavement layer strength , traffic characteristics , and 
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environmental conditions on the pavement geometry (thick
ness), these methods do not take into account the variabilities 
of these design parameters. On the basis of an extensive sur
vey , Von Quintus et al. (8) indicated that pavements designed 
using the conventional AASHTO method did not last the 
entire intended 20-year period. They observed that in most 
cases, the in-service life of these pavements was between 8 
and 12 years. Furthermore, Von Quintus et al. stated that 
highways in many of the urban and suburban areas throughout 
the United States are subjected to unusually heavy traffic 
volumes and traffic loading uncertainties , which often cause 
pavements to deteriorate early . Hence, designing pavements 
using the conventional AASHTO method, which is consid
ered to be a deterministic solution, would prove to be insuf
ficient. However , the inclusion of probabilistic concepts in 
the AASHTO equations may provide a better and more real
istic pavement-design method . The introduction of such a 
concept, thus, represents an attempt to amplify the AASHTO 
design methodology. 

The objective of this study was to extend on the AASHTO 
design equations and to show how the uncertainties in design 
factors affect the variation of thickness requirement in pave
ments . The AASHTO Interim Guide equations for flexible 
and rigid pavements provide the basic structural design models . 
Through a first-order linear approximation of the AASHTO 
equations, the impact of the most significant design parameter 
variabilities (such us trnffic und soil support vuluc for flexible, 
and traffic and concrete strength for rigid) on the variation 
of pavement geometry was evaluated and quantified for three 
types of pavements-secondary (P, = 2.0), primary (P, = 
2.5), and premium (P, = 3.0). In order to satisfy both struc
tural design requirements and economy, the above solution 
(presented in a nomographic form) was combined with the 
least-cost analysis concept ; thereby , producing a design thick
ness corresponding to a predetermined structural reliability . 

GENERAL FRAMEWORK 

A combination of existing design procedure (9), statistical 
techniques (10-12), and the least-cost concept (3,13) was used 
in developing the statistical design thickness requirements for 
both flexible and rigid pavements. The AASHTO equations 
form the basis for structural design. For flexible pavements , 
this equation relates traffic repetitions to structural number , 
soil support value , and regional factor and is written sym-
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bolically as follows: 

log W = 9.36 log(SN + 1) - 0.20 +log [0.37(4.2 - P,)] 

-T- {0.40 + (1,094/(SN + 1)5 19]} 

+ 0.38(SSV - 3.0) - 0.97 log (Rf) 

where 

(1) 

W = total number of 18-kip equivalent axle loads (EAL), 
SN = weighted structural number, 

P, = terminal serviceability index, 
SSV = soil support value, and 

Rf = regional factor. 

On the other hand, for rigid pavements, the AASHTO 
model expresses traffic repetitions in terms of concrete slab 
thickness and working strength as well as modulus of sub grade 
reaction. This equation is presented mathematically as fol
lows: 

log W = 7.35log (D + 1) - 0.06 + log(0.333(4.5 - P,)] 

-T- {l + (1.624 x 107/(D + l)s.46]} 

+ (4.22 - 0.32P,) (1og 6~0 A.) 
where 

D concrete slab thickness in inches, 
Sc concrete working strength (psi), 
E concrete modulus of elasticity (psi), 
k modulus of subgrade reaction (pci), and 
A (D0.75 - 1.132)/{DO 75 - [18.42/(£/k)D 25]}. 

(2) 

One tacit drawback, however, in the AASHTO design pro
cedure is that it does not account for the variations in the 
design factors. To overcome this deficiency, a first-order lin
ear approximation was applied to Equations 1 and 2 to esti
mate the variation of pavement design thickness as a function 
of the variabilities of other design factors. The final design 
process entails the combination of the aforementioned method 
with the least-cost concept; thereby, satisfying both statistical 
safety and economy. 

VARIABILITIES IN PAVEMENT DESIGN 
INPUTS 

It has been said that nearly every measurable component used 
in pavement design possesses some degree of variability. Indeed, 
to those who are closely affiliated with pavement design and 
performance, the word variability has much meaning. In 
designing pavement systems, one must inevitably estimate 
many inputs from information that is, by and large, limited. 
In many cases, such design inputs vary and are rarely unique 
or constant. Thus, available deterministic design procedures 
are, in a sense, inadequate. 

However, if input parameters' variabilities are identified 
and magnitudes quantified , they can be incorporated into the 
design process to produce a more realistic design procedure. 
Many of the variabilities have been reported in the literature, 
namely by Darter et al. (1) and by AASHTO (9). In the 
current research context, the variabilities (expressed in terms 
of a mean value and a coefficient of variation) of such design 
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inputs as traffic and subgrade strength (for flexible) and traffic 
and concrete flexural strength (for rigid) pavements will be 
considered, and their impact on thickness design will be eval
uated. A brief discussion of the variation of these factors 
follows. 

Variations in Traffic 

Perhaps the most variable and uncertain design input is the 
traffic loadings and traffic repetitions expected over the life 
of the pavement. Many factors give rise to uncertainty in 
traffic prediction, which include social and economic factors 
as well as others. Such variabilities and uncertainties become 
most evident on high-volume freeways. On the New Jersey 
Turnpike, pavement design was based on 20 million appli
cations, but estimates indicated that the 20-year count was 
over 90 million vehicle applications. In Kentucky, using a new 
method, Deacon and Lynch (14) observed that the equivalent 
wheel loads over a 20-year period for 20 locations varied 
dramatically from actual counts. They stated that, in general, 
actual traffic will usually fall between one-half and two times 
the best estimate. 

Variations in Subgrade Strength 

Regardless of the type of pavement and the method of design 
being used, usually one starts by assessing the soil areas that 
are expected to be the subgrade. Inescapably, several labo
ratory and field tests must be conducted. In many cases, one 
would be surprised to find that even within presumably 
homogenous soil areas, soil properties exhibit considerable 
variation. Several researchers have emphasized this fact 
(10,9,13) and have further observed that variations and dis
persions in different soil properties vary widely , as indicated 
by the coefficient of variation (standard deviation divided by 
the mean). They also noted that the highest coefficient of 
variation occurred in the strength properties of soils. 

In the AASHTO design procedure for flexible pavements, 
the strength of the subgrade is expressed by the soil support 
value, SSV. However, the arbitrary manner in which soil 
support value was introduced into the AASHTO procedure 
makes it an input value that cannot be directly obtained by 
testing and, therefore, must be correlated (in one way or 
another) to measurable soil strength properties (California 
bearing ratio, CBR; triaxial strength; resilient modulus, Mn; 
etc.) Such correlations were established by Utah (15,16) and 
Van Ti! et al. (17). The latter was based on a theoretical 
layered analysis. With the suggested values in these references 
of SSV for different CBR and Mn, a regression analysis was 
performed, which resulted in the following equations: 

SSV = 1.57 + 1.46 ln CBR 

r2 = 0.989, SE = 0.069 

and 

SSV = -0.032 + 2.73 In Mn 

r2 = 0.996, SE = 0.103 

where CBR is in percent and Mn in units of 103 psi. 

(3) 

(4) 
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In order to express mathematically the variation of SSV in 
terms of the variations of CBR and MR, a first-order linear 
approximation for the variance (discussed in detail in the next 
section) was applied to Equations 3 and 4, and the result is 
the following: 

Var[SSV] = l.46CBR · CV2 [CBR] (5) 

and 

Var(SSV] = 2.73MR · CV2 [MR] (6) 

where 

Var[SSV] = the variance of SSV, 
CBR and MR = the mean of CBR and MR , 

respectively, and 
CV[CBR] and CV[MR] = the coefficient of variation of 

CBR and MR, respectively. 

Figure 1 is a graphical presentation of Equations 3, 4, 5, 
and 6. It should be pointed out that Equations 3 and 4 are 
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considered to be the mean value equations for SSV, as defined 
by the first-order linear approximation. 

On the other hand, the strength of soil in the AASHTO 
design method for rigid pavements is designated by the mod
ulus of subgrade reaction, k, which is determined by means 
of the plate-bearing test . Usually, this test is time consuming 
and, except for special cases, is rarely performed for design 
of rigid pavements. Typical values can be easily obtained for 
different soils from tables such as the Unified Soil Classifi
cation system. These values are not expected to vary greatly 
and are justified for design of rigid highway pavements (12). 
Furthermore, it can be seen (from Equation 2) that the mod
ulus k is relatively insensitive in the analysis of rigid pave
ments. Therefore, the effect of the variation of subgrade mod
ulus on the variation of concrete slab thickness will be excluded 
from this analysis. 

Variation in Pavement Layer Strength 

Generally speaking, the variability of layer strength is a func
tion of the type of material , layer location, and (probably 
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most important) the construction control exercised to obtain 
uniformity in the material. Strength variability in pavement 
layer, in general, is expected to decrease as one proceeds 
toward the natural foundation soil. This may be explained by 
the fact that, during the life of the pavement, layers (especially 
those on the surface) are exposed to many performance vari
ations that are directly related to traffic loadings, environ
mental conditions, maintenance procedures, and occurrence 
of distresses along the pavement. 

In addition, it has been observed (12) that the variability 
in layer strength data tends to increase as the mean strength 
increases, especially in flexible pavements. Furthermore, the 
relationship between the standard deviation and the mean 
suggests that the use of the coefficient of variation, CV, is a 
more practical way of describing strength variability. 

From the data presented in the literature (12,18), it can be 
seen that typical values for the CV of the subbase and base 
range from 15 to 40 percent, whereas the asphalt concrete 
surface layer has a slightly higher CV. The modulus of rup
ture variability data of Portland cement concrete, on the other 
hand, has been found to be a function of the mean compres
sive strength value (18) with common CV values ranging from 
10 to 15 percent. 

PROBABILISTIC DESIGN OF PAVEMENTS 

Selecting the most effective and economical design for a given 
project is imperative to the pavement engineer and at the core 
of all engineering practice. The overwhelming demand for 
better design processes in pavement technology arises from 
the limited pavement funds, materials, public need for better 
performance, and less traffic delay due to maintenance. 
Therefore, choosing an optimal design is a matter of vital 
importance. Application of probabilistic techniques to pave
ment design and analysis may help attain greater optimization 
in many ways. Probabilistic techniques allow direct consid
eration of variations and uncertainties in design inputs and, 
thus, the thickness of the pavement may be increased, depending 
on these variations, to reduce occurrence of random distresses 
based on a given reliability. The reliability of the design, R, 
can be defined as the probability that the actual thickness will 
not exceed the design thickness obtained, 

R = P(ta :St) (7) 

where 

as 

P = probability of occurrence, 
t. = actual thickness for which the pavement should have 

been designed given certain conditions, and 
t = thickness for which pavement was designed given the 

same certain conditions as ta. 

Alternatively, the probability of failure, Pr, can be defined 

Pr= 1 - R (7a) 

To evaluate the reliability of a design, one must first assess 
the variation of pavement thickness based on the variations 
of the design inputs; i.e., estimate the mean and variance (or 
standard deviation). The AASHTO design equations (Equa-
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tions 1 and 2) are used for this purpose. The two basic assump
tions made in this analysis are (a) the design input parameters 
are independent random variables, and (b) the pavement 
thickness is normally distributed. 

The earlier assumption could be easily verified, whereas 
the latter may have one drawback in that the tails of a normal 
distribution tend toward infinity and can take on negative 
values, where, in reality, pavement thickness is positive and 
bounded. However, since the reliability, R, is comparatively 
larger for pavements, the effect of the exact shape of the tails 
is relatively insignificant, and, thus, the assumption of nor
mality seems viable. Furthermore, because, in practice, the 
choice of the probability distribution may also be dictated by 
mathematical convenience, and because the normal distri
bution is mathematically simple with a wide availability of 
information (probability tables) associated with it, the normal 
model is frequently used in pavement engineering-even when, 
at times, there is no basis for such a model. 

Since la is normal, it should be transformed to standard 
normal (i .e., normal variate with mean zero and standard 
deviation of one) so that R can be estimated from normal 
tables. 

t - l 
z,=-

a, 

where 

z, = standard normal variate oft, 
t = mean thickness of pavement, and 

a, = standard deviation of pavement thickness. 

The reliability may be found from normal tables as 

R = P(z,, ::s z,) 

(8) 

(9) 

In other words, the reliability is the area under the standard 
normal, bounded between - oo and z,. Determination oft and 
a, is the next task. 

Mean and Standard Deviation of Pavement 
Thickness 

To assign reasonable values for the pavement thickness, whether 
flexible or rigid, it would be necessary to relate it to some 
input design parameters. Such relationships, as mentioned 
earlier, are readily available in the literature-one of which 
is the AASHTO design equations. However, these best-fit 
formulas between the pavement thickness, t (dependent vari
able), and several design inputs, X; (independent variable), 
might qualify as the mean-value function of the dependent 
variable, in the light of the data, with no consideration given 
to the variation of the dependent or independent variables. 
Hence , the design equations provided will not suffice, but will 
aid in determining the variation of t from the variations of 
X;. In other words, if any of the basic (independent) variables 
is random, the dependent variable will likewise be random; 
its probability distribution, as well as its moments (mean and 
variance), will be functionally related and may be derived 
from those of the basic random variables using the best models 
(AASHTO equations). 
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In general, if tis a function of several variables, 

(10) 

the exact moments of t may be obtained as the mathematical 
expectation of g(X1, X2 , •. ., X,,); hence, the mean or expected 
value oft, E (t), and the variance, Var(t), could be evaluated 
as follows: 

(11) 

and 

J
+x J+ x 

Var(t) = - = . . . - = [g(X1 , X2 , •• ., X,,) - E(t)]2 

(12) 

Here, f Xj, X2. ' " xn(X1, X2, ... ' X,,) is the joint probabil
ity distribution function of X 1 , X 2 , •. ., X,,. Because the design 
inputs are independent 

where fx1 (X1 ),f~/X2) , •• ., fx,,(X,,) are the probability dis
tribution of X 1,X2 , .• ., X,, respectively. 

Clearly, to evaluate the mean and variance of t with the 
above equations (Equations 11 through 13), information on 
fx 1(X1)Jx/X2), . . ., fx,,(X,,) is needed. However, in many 
cases the density functions of X!.X2 • .... X ,, may not he 
known . Furthermore, even when such density functions are 
known, the integrations indicated above may be difficult to 
perform. For these reasons, approximate mean and variance 
of t would be practically useful and may be obtained as 
follows. 

Expand the function g (X1 , X2 , ••• , X,,) in a Taylor 's series 
expansion about the mean. Assuming independence of X 1• X2, 

... , X,,, the resulting expressions, if we truncate at the linear 
terms, are as follows: 

(14) 

(15) 

where bars are used above the terms to indicate their means, 
and cr 2 represents the variance of the terms. 

This method of approximating the mean and variance has 
been used extensively in design models (1,2 ,6) and was proven 
effective (within ± 10 percent of actual va~e~ especia!!Y when 
the variance of X; is small relative to g(X1,X2 , •• ., X,,). 

Evaluating the mean and variance of the design parameters 
is the key to applying Equations 14 and 15 to any pavement 
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design model that needs some consideration. The soil support 
value, for example, could vary greatly from point to point 
along the pavement. Estimating its mean and variance during 
the service life of the pavement is not an easy task . In addition, 
SSV will vary throughout the year depending on several fac
tors, such as moisture. However, the variabilities in the design 
parameter could be assessed from past experience or from 
testing, if required. These variabilities are then combined, 
using Equations 14 and 15, to obtain t and er,. 

In the AASHTO model for flexible pavements, Equa
tion 1, the pavement thickness is described by SN, which is 
a function of several variables; thus, by using Equation 14, 
the mean of SN can be written as follows: 

SN = f(W ,SSV,R1,P,) (16) 

which is Equation 1 with bars over the terms to indicate the 
mean values. 

Determination of the variance of SN is the next task. Using 
Equation 15, the variance of SN can be written as, 

_ (aSN)
2 

2 (~)
2 

2 
cr ~N - aw er w + assv er ssv 

aSN 2 aSN 2 

( )
2 ( )2 

+ aRr er Rr + aP, a P, 
(17) 

where the partial derivatives of SN (with ~spect ~the design 
parameters) are evaluated at W, SSV, R1, and P,. If R1 and 
P, are kept constant, that is, they do not vary their respective 
variance, crhr and cri, are zero, Equation 17 becomes 

2 aSN 2 aSN 2 

( )2 ( )2 
CTsN = aw CTw + aSSV CTssv (18) 

Differentiating Equation 1 according to Equation 18 and 
substituting, the final result for the variance of SN is 

cr§N = (~J
2 

[(CVw)2 + 0.1452cr§sv] (19) 

where 

K1 = 
9·~ l + log 0.3 (4.2 - P,) 

{ 
5677 .86(SN + l )'1 l9 } 

x [0.4 N + 1)5·19 + 1094]2 

and CV w is thP. coefficient of variation of W. 
With a similar approach, the mean and variance of the 

concrete slab thickness, D, for rigid pavements, are computed 
and the results are 

(20) 

and 

cr1 = (~} [(CV w)2 + (CV s)2 ( 4.22 ;_~.32P') 2] (21) 
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where 

K = }._.35 
' D + 1 

+ 13.74x107 (0+1y·16 log0.333(4.5 - P,) 
[(D + 1)8·''

6 + 1.624 x 101p 

CV w and CV s are the coefficient of variation of Wand S 
respectively. Ob~erve that Equation 20 is identical to Equ~~ 
tion 2 with bars used over the expressions to represent the 
mean values. 

Nomographic Solutions 

The simplicity afforded by nomographic solutions in practical 
applications is appealing. For this reason, the expected vari
ation in pavement thickness (flexible and rigid) is presented 
in a nomographic form. Figures 2 and 3 are solutions for 
Equations 16 and 19, respectively; whereas Figures 4 and 5 
are solutions for Equations 20 and 21, respectively. Figure 6 
compares values calculated by using the equations and values 
obtained from the nomographs. Clearly, the closeness of these 
points to the equality line easily verifies the accuracy of the 
nomographs. 

Selecting Appropriate Reliability Based on Least
Cost Concept 

Assuming that the pavement thickness is a normal variate 
with a known mean and variance (or standard deviation), the 
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reliability of a pavement thickness, ta, can be evaluated by 
normal distribution tables. Conversely, given the reliability, 
the pavement thickness can be estimated. For example, con
sider that for certain conditions the mean slab thickness is 7 
in. with a standard deviation of 0.4 in. In statistical terms, a 
7-in. concrete slab will have a 50 percent reliability. In other 
words, if a 7-in. concrete slab is selected as a design thickness 
for the conditions given, 50 percent of such pavement will 
deteriorate early and reach its terminal serviceability before 
the intended design life. On the other hand, if the reliability 
is to be increased (say to 99 percent), the thickness should 
bet = 7 + z,(0.4). Using the normal distribution tables and 
for R = 0.99, z, = 2.33, and thus t = 8 in. 

The above example indicates that the design can represent 
an underdesign or overdesign, depending on the reliability 
value selected. Generally speaking, if the mean thickness is 
selected, about one-half the road will be underdesigned and 
one-half overdesigned. On the other hand, if a value corre
sponding to a high reliability is selected, most of the road will 
be overdesigned. Therefore, an optimal design will be of inter
est. Such a design will serve both statistical safety (reliability) 
and economy. For this purpose, the least-cost concept pro
posed by Yoder (13) is adopted. 

The least-cost analysis just mentioned, suggests that the 
optimum design value (this term is adjusted to optimum pave
ment thickness in this paper) depends on the variability of 
the soil deposit and the traffic conditions in the site. Yoder 
presented several curves that relate percentile value (labeled 
as reliability here) for least cost as a function of soil variability 
(coefficient of variation), traffic, and unit cost of the pavement 
structure. These curves are modified and represented here in 
Figure 7. In this figure, cost includes both initial cost and 
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FIGURE 3 Nomograph for standard deviation of structural number. CJ"~!" · 

maintenance cost needed to repair parts of the wall that have 
been underdesigned . In addition , the cost ratio , CR, is defined 
as the ratio of the unit cost of maintenance to the 11nit initial 
cost. Estimates of this factor must be made to use this method. 
However, and based on the data presented, CR has a weighted 
average of 2, 3, and 4 respectively for roads with low ( < 105 

EAL), medium (105 
- 106 EAL) and high (> 106 EAL) 

traffic. Therefore, by knowing traffic, CR could be approx
imated; and with the CV of soil deposit, the reliability of 
producing an optimum design can be evaluated. 

Example of Statistical Pavement Design 

This example is presented to illustrate the use of the statistical 
design charts. Consider a two-layered flexible pavement (asphalt 
concrete and gravel base) with the following input data : 

Factor Mean Value CV Variance 

W, EAL s x 106 0.40 4.0 x 1012 

ssv 7 0.40 7.84 
P, 2.5 
Rr 2.0 

Enter Figu1e 2 with the mean value of the uesign factors 
to obtain the mean structural number, SN = 3.4. With SN 
and the other inputs , enter Figure 3 and obtain the standard 
deviation of structural number a 5 N = 0.58. With the traffic 
of 5 X 106 18-kip EAL, CR = 3, and CV55v = 0.40 (or 40 
percent), obtain reliability for optimum design, R = 84 per
cent or the area bounded between - "" and z under standard 
normal curve is 0.84, thus , z = 1.0. Therefore , SN = 3.4 + 
(1.0) x (0 .58) = 3.98. This implies that, for the conditions 
given, a pavement with SN = 3.4 will have a reli ability of 50 
percent, whereas the optimum design of SN = 3.98 will have 
R = 84 percent. In other words, if we consider a 10-in. gravel 
base (layer coefficient a2 = 0.14) , this pavement will require 
a 6.1-in. asphalt concrete (a 1 = 0.42) for an optimum design 
with a reliahility of 84 percent. If the AASHTO design were 
to be followed with no consideration given to the variations, 
a 4.8-in. asphalt concrete layer will suffice. However, this 
pavement will have only 50 percent reliability and , thus , will 
have a 50 percent chance of failure before its design life (20 
years) ends, whereas the pavement with R = 84 percent will 
have only a 16 percent chance of failure. 
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SUMMARY 

Pavements, as do many other structures, possess random vari
abilities associated with almost all design parameters. Con
ventional pavement design models, in which the design factors 
are treated as deterministic quantities, would seem inade
quate. In these cases, using a probabilistic approach accounts 
for the variabilities in design parameters, whereas statistical 
analysis quantifies their effects. However, strict reliance on 
results obtained by probabilistic and statistical methods should 
not be exercised but must rather be complemented by sound 
engineering judgment. Yet, applying probabilistic and statis
tical techniques to the analysis design of pavements, as has 
been done in this paper, provides the means for some impor
tant applications that were not previously possible. These 
include the following: 

1. The ability to make the design process sensitive and 
adjustable for many variabilities and uncertainties in design 
parameters. 

2. Providing standards for conducting design optimization; 
and 

3. Affording the means for designing at different levels of 
reliability and, thus, design adequacy can be easily estimated. 
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