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Determination of Deflection of 
Pavement Systems Using Velocity 
Transducers 

SOHEIL NAZARIAN AND ALBERT J. BUSH III 

The analylical models used to design and rehabilitate pa,•cmcnts 
are becoming more ophisticated. The most appro1lriatc process 
for verifying the accuracy and usefulness of lhcsc n w analytical 
model (a well as f r calibrating the parameters involved in these 
models) is to observe the behavior of pavements in the field. Unfor­
tunately, few devices or techniques are available for determining 
the displacement of a pavement section under actual loads. In 
addition, the available methods for monitoring the performance 
of pavements in terms of displacement arc expensive and/or inac­
curate. On economical alternative ls I.Ile u c of vclocit trans­
ducers (gcophoncs). Gco1Jhoucs arc quite iucx1>e11 ivc .ind rcadil 
avai lable. In addition , if used i>roperly, gcophones can provide 
quite accurate deflection-lime his101·ies. The mcthodolot,ry involved 
in determiuiug deflection from geophones is complex. Proper 
mathematical manipulation of the geophone record using signal 
analysis technique. and theory of vlbl'ation should he cmTlcd oul 
so that !he deflection-time history can be accurately determined. 
Fortunately , the necessary mathematical mrmipulation can be 
programmed into a portable microcomputer so that the detlection­
time history can be obtained rapidly in the field. This paper pre­
sents an overview of theoretical alternatives available for deter­
mining the deflection-time history of pavements usin geophones. 
The limitation and advantages of each alternative are di cu sed. 
The practical problems that should be addressed in developing a 
proper algorithm for each alternative are also included. Through 
an illustrative example and a case study, the versatility of using 
geophones as a tool for determining the deflection-time history of 
pavements is demonstrated. 

Monitoring long-term pavement performance has been greatly 
emphasized in the last few years. A good example is the level 
of effort and the amount of funds dedicated to collecting this 
type of data by the Strategic Highway Research Program 
(SHRP) . An economical alternative for collecting the deflec­
tion-time history of pavements is to install and monitor geo­
phones, which are quite inexpensive. In addition, the meth­
odology required for determining deflection from the geophone 
output can be automated. 

In this paper, different methods that may be used to deter­
mine the deflection-time history of a pavement section from 
a geophone (velocity transducer) record are reviewed. The 
theoretical background behind each method is discussed. 
Practical problems associated with the implementation of these 
theoretical methods are also addressed. An illustrative exam­
ple provides better insight into each process discussed. Actual 
records obtained from a falling weight deflectometer (FWD) 

S. Nazarian, Department of Civil Engineering, The University of 
Texas at El Paso, El Paso , Tex. 79968. A. J. Bush III, U.S. Army 
Corps of Engineers, Waterways Experiment Station, Vicksburg, Miss. 
39180. 

device were used in this example. Finally, a case study is 
included to demonstrate that, if used properly, geophones can 
provide accurate deflection-time history records of pavements 
under actual loads. 

GENERAL BACKGROUND 

An undamaged geophone can be modeled accurarel a a 
damped ingl -degree-of-freedom ( D ·) ystcm. The fun ­
damentals of the response of such a system t <ll1 arbitrary 
excita tion are includ din tili ction. (It should be me ntioned 
that only subjects relevant to this report are discussed here. 
For further inf nnation, the reader can refer to any structural 
dynamics textbook..) 

Idealized Model of a Geophone 

Geophones are coil-magnet systems, as shown schematically 
in Figure 1. A mass is allach d to a pring, and a coil is 
connected to the mass. The coil is located such that it crosses 
the magnetic field. On impact, the magnet moves but the 
mass remains more or less stationary, cau. ing a rclativ m tion 
b tween t:he coi l and the ma net. Thi relative m ti()n gen­
erates a voltage in 1he coi l. which .i proportional to the rel­
ative v locity b tween the coil and magnet. 

The geophone system can be considered an SDOF system . 
This idealized system is shown in Figure 2. To describe <1 

geophone properly, the natural freq uency , transductivity , and 
damping properties should be a !dressed. The natural fre­
quency is the undamped natural frequency of the system. 

FIGURE 1 Elements of a geophone (2). 
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FIGURE 2 Idealized model of a geophone. 
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Transductivity is the factor of proportionality between the 
velocity and the output voltage and can be considered a cal­
ibration factor. Damping the system indicates the attenuation 
of the motion with time. 

In an actual test, an impact is imparted to the system (say, 
a pavement section) which causes waves to propagate in the 
body as well as the surface of the pavement. If the geophone 
is se

0

curely attached to the pavement, the base of the geophone 
will follow closely the movement of the pavement. The move­
ment of the geophone base generates a voltage output in the 
coil-magnet system. Finally, this voltage is monitored by an 
oscilloscope or a voltmeter. The voltage output of a geophone 
is not proportional to the actual movement of the pavement, 
but it is proportional to the movement of the coil-magnet 
system. Therefore, in order to obtain the actual movement 
of the pavement surface, the movement of the coil-magnet 
system should be translated to the actual movement of the 
base. To derive this relationship theoretically, the equivalent 
components of the model (Figure 2) and an actual geophone 
should be identified. 

The mass, m, in the model is equivalent to the total mass 
of the spring, suspended mass, and the conductor (Figure 1) 
of the geophone. The dashpot, which provides viscous damp­
ing in the model , simply corresponds to the electrical resis­
tance of the conductor , pigtail, and any external resistor added 
to the system. The movement of the base is shown as a vertical 
excitation, u(t). The coil-magnet movement (or the voltage 
output) is equivalent to the relative movement of the mass, 
m, in the model. If the movement of the base , u(t), is mea­
sured relative to a fixed-reference datum, and if the movement 
of the mass, y(t), is measured relative to the same fixed datum, 
the coil-magnet movement is then equal to z(t) = y(t) - u(t). 
The relationship between z(r) and u(t), which is equivalent 
to the relationship between the output voltage of the geo­
phone and the ground movement, is rl~snih~ct he low. 

Dynamic Response of an SDOF System 

If the idealized system shown in Figure 2 is excited by a base 
movement, u(t), the differential equation describing the 
response motion can be derived by specifying that the sum of 
all the forces in the system be equal to zero. The forces consist 
of spring force, damping force, inertial force, and finally the 
excitation force. The equation of motion can be written as 

m · y(t) + c · z(t) + k · z(t) = 0 (1) 
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For simplicity, let u(t) be a harmonic motion with a frequency 
off, so that 

u(t) = u0 exp(i 2Tift) (i = v=l) 

Then the solution to Equation 1 can be written as 

z(t) = z0 exp(i hft) 

where 

Z0 = u0 • r2 I [(l - r 2
) + (i 2Dr)] 

r = flf,, = f/[(k/m) 0
•
5/2l 

D = dee = c/(2km)0
·
5 

(2) 

(3) 

(4) 

(5) 

(6) 

f,, and cc represent the natural frequency and critical da1~ping 
of the SDOF system, respectively.Dis the dampmg ratio. In 
Equation 3, z0 corresponds to the maximum relative defor­
mation of the mass. 

If both sides of Equation 4 are divided by u0 , the maximum 
movement of the base, the outcome is th~ frequency response 
of the system and is denoted as H. Therefore 

H = r2 I [(I - r 2
) + (i 2Dr)] (7) 

The frequency response of a geophone is better known as the 
calibration curve. At each frequency, the calibration curve is 
a complex quantity. A complex quantity can be represented 
by its real and imaginary components, or alternatively by its 
magnitude and phase. The modulus of frequency response, 
M, is called the magnification factor and is calculated from 

M = r2 I [(1 - r 2
)

2 + (2Dr)2J0'5 (8) 

The arctangent of the ratio of the imaginary and real com­
ponents of Equation 7 yields the phase difference between 
the input and the output. This relationship can be written as 

cj> = arctan [2Dr/(1 - r2)] (9) 

where cj> is the phase difference. 
The significance of this formulation is that the response of 

an SDOF system excited by any harmonic excitation can be 
easily determined, if the natural frequency and the damping 
ratio of the system are known . It should be emphasized that 
a complete calibration curve consists of the magnitude and 
the phase information (or alternatively, the real and imaginary 
components). It is customary to demonstrate the calibration 
curve in teuus uf wagnitude only. The magnitude by itself is 
of little value for determining deflections. 

Response or a Geophone to an Arbitrary Excitation 

A closed-form solution is available for only a limited number 
of well-defined excitation forces. However, three alternative 
numerical approaches are widely used to obtain analytical 
expr s ions for the re pon,c of a system to a general dynamic 
loading. These three approaches are the time-domain solution 
(also known as the Duhamel integral method), the Laplace 
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transform method, and the frequency-domain solution (the 
Fourier transform method). In this paper, only the time and 
frequency-domain methods are included; however, the Laplace 
transform method is most appropriate for hand calculation 
(as opposed to using a computer). 

Time-Domain Solution 

If an arbitrary excitation, u(t), with a duration of 10 is applied 
to a system, the response motion, z(r), can be written ~ 0 

z(t) = L u(T) · I(t - T)dT - u(t) (10) 

where 

I(t) = - w,, ·exp( - Dw,,t) · [2Dcos( wdt) - A sin( wi)] (11) 

w,, = 2Trf,, = natural circular frequency, 
wd = w,, (1 - D 2

)
0 5 = damped natural circular frequency, 

and 
A = (2D2 

- 1)/(1 - D2). 

In Equation 11, /(t) is called the unit impulse function. Unit 
impulse function is the motion response of an SDOF system 
to an impulse of short duration. The integral in Equation 10 
is the convolution integral. In other words, the response of 
an SDOF system to an arbitrary excitation is simply the con­
volution of the excitation with the unit impulse function. This 
solution is convenient, because it can be easily programmed 
in a computer. 

Frequency-Domain Solution 

Any function in the time domain can easily be expressed in 
terms of a limited number of harmonic functions, if Fourier 
transform is used. If an SDOF system is linear, the response 
motion of the system can be obtained by (a) transforming the 
input motion to the frequency domain, (b) multiplying the trans­
formed input by the frequency response curve of the system (as 
derived Equation 7), to obtain the response in the frequency 
domain, and (c) inverse-transforming the resultant of Step 2 
into the time domain. 

To clarify this matter further , say u(t) is the motion at the 
base of a geophone (i.e. the input). If U(f) is the Fourier 
transform of u(t) , and H(f) is the frequency response of the 
geophone (see Figure 2), then the output voltage of the geo­
phone (i.e., the response motion) in the frequency domain, 
Z(f), can be written as 

Z(f) = H(f) · U(f) (12) 

The output of the geophone in the time domain, z(t), is 
simply equal to the inverse-transform of Z(f). It can be shown 
that I(t), the unit impulse response function is the inverse­
Fourier transform of H(f), the frequency response function. 
Also it can be proven that convolution in the time domain is 
equivalent to multiplication in the frequency domain. There­
fore, if the response of a known SDOF system subjected to 
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an arbitrary input function, u(t), is to be determined, any of 
the two approaches described above can be used interchange­
ably to obtain identical results. At first glance, it may seem 
that the second method is not as straightforward as the first. 
However, for complicated input functions, the second method 
is computationally more efficient. 

Illustrative Example 

Let us assume that a geophone has a natural frequency of 4. 7 
Hz, and a damping ratio of 0.64, and let the base of this 
geophone be subjected to a half-sine velocity impulse with a 
duration of 25 msec as shown in Figure 3. The unit impulse 
function corresponding to Equation 11 is shown in Figure 4. 
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FIGURE 4 Unit impulse function for a single-degree-of­
freedom system. 
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A program that convolves the input and impulse function was 
used to determine Equation 10 (!).The input (half-sine veloc­
ity impulse) and the response (relative velocity of the coil­
magnet) are compared in Figure 5. The maximum value of 
response is about 75 percent of the input, and the maximum 
response occurs at about 20 msec, which is about 2.5 msec 
before the maximum of the input takes place. 

The same example is solved using frequency-domain 
approach. The Fourier transform of the half-sine impulse is 
shown in Figure 6 in terms of magnitude and phase. The 
frequency response function derived in Equation 7 is shown 
in Figure 7 in terms of magnitude and phase also. The product 
of these two curves, which is the velocity of the coil-magnet 
system, is shown in Figure 8. The last step is to inverse­
transform this response to the time domain to obtain directly 
the coil-magnet velocity response time history. The result is 
almost identical to that of the time-domain solution shown in 
Figure 5. This process is coded in a FORTRAN algorithm as 
well (1). 

DETERMINATION OF DEFLECTIONS FROM 
AN ARBITRARY IMPACT 

In the last section, the discussion focused on the response of 
a geophone given the base motion. However, in this section, 
the response of the system (the recorded signal) is known and 
the motion of the base is of interest. In other words, our main 
interest is to remove the distortion in the signal caused by the 
geophone system so that the actual movement of the pave­
ment surface can be determined. Several procedures are avail­
able for determining displacement from geophone output. 
These procedures are discussed in the next few sections. The 
impact due to an FWD device will be used as an example 
throughout this section. 

20 40 60 80 100 

Time, msec 

FIGURE 5 Comparison of input motion at base with relative 
motion of mass in an SDOF system. 
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FIGURE 6 Fourier transform of a half-sine pulse with a 
duration of 25 msec. 
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FIGURE 8 Coil-magnet system response spectrum of sensor 
due to a 25-msec impulse. 

Impulse Method 

The impulse method is adapted from the shock engineering 
discipline. In this approach, one is only concerned with the 
maximum response rather than the complete time history or 
the frequency content of the response. To implement this 
method, one simply assumes an impulse shape (in our case, 
a half-sine) and solves the equation of motion to obtain the 
value of maximum response of the system. By varying the 
natural frequency of the system and repeating this process, 
the so-called shock response spectrum (SRS) is determined 
(3). 

An SRS is the relationship between the ratio of the max­
imum response and the maximum input, versus the natural 
frequency of the system for a given damping ratio. A major 
outcome of this process is that if the natural period of the 
system is much greater than the duration of impulse, the shock 
response value is more or less independent of the shape of 
the pulse. The significance of this statement is that as Jong as 
the duration of the pulse is small, if the shape of the input 
impulse deviates from the assumed one, the shock response 
value would not change significantly. 

One major question is then, given the natural period of the 
system, at what impulse duration is the shape of the impulse 
immaterial to the response of the system? The answer to this 
question will be explored in the next section. However, the 
answer obviously depends on the desired accuracy with which 
the response should be determined. 
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Implementing this method requires three steps: 

1. Calibrate the receiver and calculate response character­
istics of the receiver, 

2. Determine the theoretical response of the receiver to a 
half-sine pulse, and 

3. Combine the outcomes of Steps 1 and 2 with the receiver 
output to determine the deflection. 

Each of these steps is discussed next. 

Calibration of Geophone 

The fastest method of calibration is to use a shake table. In 
this method of calibration, a reference accelerometer is rigidly 
connected to the shake table and the geophone, in turn, is 
rigidly connected to either the accelerometer or the shake 
table. The shake table is vibrated with a sweep-sine steady­
state source, a random-noise source, or an impulse. The cal­
ibration curve of the geophone relative to the reference accel­
erometer is independent of the type of excitation ( 4). The 
output voltages of the reference accelerometer and the geo­
phone are then monitored simultaneously. The response of 
the accelerometer is integrated to obtain its response in terms 
of velocity. The ratio of the geophone output voltage and the 
integrated accelerometer record at each frequency is the cal­
ibration curve of the geophone. 

As an example, the normalized calibration curve of a typical 
sensor of an FWD device is shown in Figure 9. To normalize 
the curve, the calibration value was divided by the transduc­
tivity of this geophone (denoted as T

8
), which is equal to 0.57 

volt/in./sec. This value corresponds to the actual magnitude 
of the calibration curve at high frequencies (above 15 Hz). 
The natural frequency and the damping ratio of this system 
were determined by a built-in feature of the spectrum analyzer 
used as the recording device. This geophone has a natural 
frequency of 4. 7 Hz (actually, 4. 73 Hz) and the damping ratio 
of 0.64. 

Theoretical Response of Geophone to Impulse 

On the basis of the characteristics of the geophone, the response 
of the coil-magnet system to a 25-msec half-sine impulse at 
the base of the geophone is obtained. To obtain the coil­
magnet response of the geophone to the impulse, either of 
the two methods described previously may be used. 

To continue our example, the properties of the geophone 
just demonstrated are used. The coil-magnet response time 
history is shown in Figure 5. Also shown in Figure 5 is the 
actual input to the base of the geophone. From the figure, it 
can be seen that if the input has a maximum velocity of unity, 
the coil-magnet response will register a maximum of 0. 75. 
Therefore, the voltage output from this geophone should be 
divided by 0. 75 to compensate for the distortion of the output 
caused by the geophone (provided that the input impulse 
resembles reasonably a half-sine wave with a duration of 25 
msec). This adjustment factor will be referred to as c. hereafter. 
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FIGURE 9 Calibration curve for a typical FWD sensor. 

Determ ination of Deflection 

To obtain the deflection from the voltage representing the 
output of the geophone, first, the record is divided by the 
transductivity of the geophone to convert voltage to velocity . 
Second, the converted velocity time record is divided by the 
adjustment factor, Cg, to compensate for the effect of the 
geophone on the signal. Then, the signal is integrated with 
respect to time to obtain the maximum deflection . This dis­
cussion can be summarized in the following formula: 

DEFLECTION = FACTOR· INTVOLT (13) 

where 

DEFLECTION deflection of pavement at geophone 
base , 

FACTOR ll(T8 · Cg), correction factor for shape 
and duration of impulse and transduc­
tivity of geophone, and 

INTVOL T = maximum output voltage after integra­
tion of raw geophone signal saved in 
recording device. 

To continue with our example , a typical volt;ige. time history 
of an FWD sensor is shown in Figure 10. This signal was 
captured using a Hewlett-Packard Model 3562A spectrum 
analyzer. A high-frequency vibration with a low amplitude is 
evident in the signal. This additional vibration is due to the 
excitation of the raise/lower bar of the FWD trailer during 
impact. In Figure 10, the portion of the record to the left of 
Point A depicts the time history before the actual arrival of 
the signal. The voltage output in this region is constant and 
is approximately equal to 20 mv. The reasons for this deviation 
from zero are not known at this time and should be investi­
gated . The second portion of the signal enclosed between 
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Points A and B is the response of the coil-magnet system to 
the impact. The record to the right of Point B with a constant 
output is the at-rest area of the signal. This portion has a 
constant magnitude of approximately 46 mv. 

If one assumes that the geophone was at rest up to the 
arrival of the impulse (i. e., Point A) , the constant value of 
approximately 20 mv corresponding to the output voltage of 
this region should be subtracted from the signal at all times. 
Now, this record is integrated to convert velocity into dis­
placement. The integrated signal is shown in Figure 11. The 
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FIGURE 10 Typical velocity time history of FWD sensor. 
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FIGURE 11 Time history of FWD sensor after integration . 
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open c.ircle in Figure 11 corre ·ponds to the maximum output. 
The magnitude of lhis point is equal to I TVOLT in Equation 
16 and i equal to 3.37 mv.m ec. 

In the two previous sections the values of transductivity, 
Tg, and adjustmen t factor, Cv were reported as 0.57 mv/in./ 
sec and 0.75, respectively. As such, parameter FACTOR is 
equal to 2.33 (1/(0.57 x 0.75)] . Knowing the values of param­
eters INTVOLT and FACfOR, the maximum deflection for 
this example is equal to 7.9 mil. The value of the maximum 
from actual FWD tests at this location is 7. 7 mil. The differ­
ence between the two values is less than 3 percent. 

It should be emphasized that the process mentioned above 
only yields a correct maximum deflection for an impact resem­
bling a half-sine impulse with a duration of 25 msec but the 
time history obtained after integration is not correct and still 
contains the errors caused by the geophone assembly. 

Parametric Study of Factors Affecting Impulse 
Method 

In the method described above, it was assumed that the dura­
tion of impulse i 25 msec. lt would be helpful to study the 
effect of varying th duration of the impul e (from ·ay 20 to 
30 msec) OD the adjustment facror , 8 and in turn on param­
eter FA OR in Equation '13 . Al o , the adju tment factor 
i obtained ba ed on the assumption that the impulse i a 
perfect half- ine wave. Another intercsti11g parametric tudy 
is to determine the cha 11ge in ~, if the impulse is not actually 
a half- ine wave but a function lhat re embles ne. 

Variation in parameter Ci1 with duration of impulse i hown 
in Table I. T be adj ustment factor N' decrea ·e as duration 
of impulse increases. If the va lue of C.~ at 25 msec is a ·urned 
as lhe reference value, the absolute maximum variati n in the 
value of Cg is abou t 5 percent This method of comparison is 
known as equal maximum /1eight method . In this method of 
comparison, all impulses have a maximum magnitude of 1. 

Another way of comparing the effect of different impulses 
on Cir is by using the so-called equal impulse area method. If 
the duration of the impulse is small relative to the natural 
period of the geophone, this method may result in a more 
con istent compari on . U ing the area of a 25-msec-long half-
ine impulse as the ba i for compari ·on , and requiring thal 

the area of the impul.se be equal to it one can determine an 
equivalent maximum magnitude of each impulse. The area 
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under each impulse is included in Table 1. The value of C8 

after correction for area are added too . This method did not 
result in a more consistent comparison, as seen in the table . 
Therefore, its use was abandoned. 

In the second series of tests, the duration of impulse was 
maintained at 25 msec, but, the shape of the impulse was 
changed. The impulse shapes used are summarized in Table 
2. All functions used in thi study are d mo,n ·trated graphi­
cally in Figure 12. The shape of all these functi ns resembles 
a half-sine wave . In actual tests, contrary to the five impulse 
functions included in Table 2, the time history of the load cell 
is not symmetrical. Therefore, a sixth case with an input time 
history as hown in Figure 13 was studied also. Variation in 
Cg with shape of the impulse is included in Table 2 also. From 
the table, the value of C8 may vary as much as 15 percent. 

These two brief parametric studies give an indication of the 
accuracy of deflections obtained from the impulse method. 
In summary, the effect of duration of impulse is less signifi­
cant , but the effect of shape on the impulse may be quite 
ignificant. 

Frequency Response Method 

The frequency response method takes advantage of the Four­
ier transform algorithm. The advantage of this method over 
the previous method is that the entire displacement time his­
tory can be determined, whereas with the impulse method 
only the maximum deflection could be found. In the frequency 
response method, no simplifying assumption about the nature 
of the load is made. As such, the results are more accurate 
than those from the impulse method. There is a trade-off, 
however. Computationally, the frequency response method 
is more time consuming. 

The procedure involved in determining deflections from the 
geophone response consists of (a) the geophone is calibrated 
using the same procedure outlined before, (b) the time signal 
obtained from the geophone is Fourier transformed (c) the 
Fouri r tran formed signal is divided by the calibrali n curve 
determined in Step a, and ( d) the result from Step c is inverse­
Fourier transformed to obtain deflection time history and the 
maximum deflection. 

The same time signal depicted in Figure 9 is used in this 
example . The magnitude and phase relationship of the trans­
formed time signal are shown in Figure 14. This transformed 

TABLE 1 VARIATION IN ADJUSTMENT FACTOR WITH DURATION OF A HALF-SINE 
IMPULSE 

Adjustment Factor 
Duration of Area Under Impulse, 
Impulse, msec velocity-msec Equal Maximum Amplitude Equal Area 

20.0 12.73 0.79 0.64 

22.5 14.32 0. 77 0.70 

25.0 15.91 0. 75 0.75 

27.5 17 . 51 0.73 0.81 

30.0 19.10 0. 72 0 .86 
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TABLE 2 VARIATION IN ADJUSTMENT FACTOR WITH SHAPE OF 
IMPULSE 

I~lse Shape Function Adjustment 
Factor 

Sec 2 (
2t-l)n* 
't 0.86 

e-(2t/'t - 1) 2 n 0.79 

. 2t 2t [s1n(:r- - l)n]!(:r- - l)n] 0.81 

~Arc tan 1 
1) 1 l 0.87 n [2n1 (2t/1'. -

sin (Lln 
2't 0.75 

543.66 t e-t/ O.o5 0.88 

't Corresponds to Duration of Impulse (25 msec for all cases) 

signal wa then divided by the frequency respon e function 
(pre. ented in Equation 7 and Figure 7) to remove lh~ effect. 
of the g ophon on the signal. The resu lt , which is the exci­
tation veloci ty at th ba e in the frequency domain, is pre-
en ted in Figure 15. Thi. peration accounts f r both the 

phase hi ft and variation in the magnitude. If this function i 
inverse- ourier transformed, the re ult is the elocity time 
history of the base of the geophone. 

The vo.ltage output f the geophone shown in Figure 10 i 
compared with the velocity of the ba. e of the geophone in 
Figu re L6. le can be seen that the two time histories follow 
each oth r in hape. However, che magnitude of the ba e 
velocity at a given time is less, and there seems to be a phase 
shift between the two curves. 

onti nuing with the example , the frequency domain veloc­
ity record shown in Figure 15 sh uld be integrated 10 obtain 
dfaplacemt>.nl '( nreern1ion in the frequency domain is basica lly 
a imple divi. ion of the magnitude of tbe signal at each fre­
quency by the corresponding angular frequency. Th result 
of thi operation yields the di placement pectrum that is 
shown in Figure 17. 

The last opera ti n i l inver e-Fourier tran form the di. -
placem nt pectrum to obtain displacement time hi tory. Two 
more detai l mu t be taken ar of before obtaining the actual 
displacement. First, the zero displacement point h uld be 
defined. Second, the maximum displacemenr should be divided 
by the transductivity of the geopbone (0.57 volt/in./ ec) to 
obtain the actual deflection. The open circle in Figure 18 
corresponds to the maximum deflection . The maximum 

deflection from this method is equal to 7.8 mils [(4.46 mv)/ 
(0.57 mv/mil/sec)]. As mentioned before, the deflection 
obtained from the FWD device at this point was 7.7 mils. 

Another outcome of this example is the value of adjustment 
foctor, C

8
, that corresponds to the actual impulse imparted 

to the pavement (as oppo ed to the assumed half-sine wave 
impul e). In Figure 19, the ground deflection time history 
(solid line) is compared with the int gral f the voltage output 
(dashed line ). From the figure , a pha e hift between the 
two curves i obviou ·. Also notice the oversh ot of the mag­
nitude of the second half-cycle for the coil-magnet response. 
To obtain the actual adjustment factor, the maximum deflec­
tion from the ground deflection time history is divided by the 
maximum of the coil-magnet respon e. The ad ju rmen t factor 
for the type of impulses generated at the site is then equal to 
0. 79 (as oppo ed to 0. 75 determined theoretically from a half­
sine wave impulse). 

CASE STUDY 

A series of tests was performed on a rigid pavement section 
using the FWD device at the rp of Engineers Waterway 
Exp riment Station in Vicksburg, Mi is ippi. Two geophones 
independent from those of the FWD device were used in this 
tudy . Each geophone had a nominal natural frequency of 4.5 

Hz and a damping rario of 70 percent. The e two geophone 
will be termed well-calibrared geophone. hereafter. Th weil­
calibrated geophones were securely placed as closely as pos-



Nazarian and Bush 

I. 0 

~ 
> 
,; o. s " :s .., 
c. 
.!f 

12. 5 25. 0 

Time, msec 

I. 0 

:;-
> 
,; o. s " :s .., 
c. 
J! 

0. 0L..-~~-'-~~ ........ ~~~""-~~-'-~~--'-~~---' 
0.0 12 . 5 25. 0 

Time, msec 

:;-
> 
"" u 
:s .., 

~ 

:;-
> 
,;; 

"B 

~ 

155 

1. 0 

o. 5 

0 .0.__~~-'-~~~~~~'--~~-'-~~~~~---' 
0. 0 12. 5 25. 0 

Time, msec 

I. 0 

0. 5 

o.o.__~~-'-~~--'-~~~"--~~-'-~~--'-~~---' 

0. 0 12. 5 

Time, msec 

25. 0 

FIGURE 12 Graphical illustration of symmetrical functions resembling a half-sine function. 

sible to the FWD device sensors. The signals from these geo­
phones were captured on a recording device while the FWD 
device determined the deflections from the same impact 
simultaneously. The recording device used was a Hewlett­
Packard Model 3562A spectrum analyzer. As this analyzer is 
a two-channel recorder, the process mentioned above was 
carried out several different times (each time at a different 
sensor location). For each process, one geophone (called the 
reference geophone) was maintained next to the FWD second 
sensor and served as the reference to ensure uniformity among 
individual impacts . A second geophone was moved each time 
to a new sensor location. Four drop heights were used for 
each geophone location. For the sake of brevity, only the 
results from the largest drop height are included here. How­
ever, the results from other drop heights were similar, and 
all discussions of this drop height can be extrapolated to all 
heights. 

Deflections determined from the well-calibrated geophones 
using the impulse and frequency response methods are dem­
onstrated in Table 3, along with their corresponding values 
obtained directly from FWD tests. At each sensor location, 
the three methods yielded deflections that were within 4 per­
cent of one another. Bentsen et al. (5) and Briggs (personal 
communication, 1988) in two recent studies have shown that, 
in general, the precision of measurement of deflections with 
an FWD is within 5 percent. Theref re, this example clearly 
demonstrates the preci ion and accuracy of the melhocls 
described herein. 

SUMMARY AND CONCLUSIONS 

The use of geophones in determining the deflection of pave­
ment systems was discussed. Different methods of obtaining 
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FIGURE 14 Fast Fourier transform of the typical signal from 
FWD sensor. 

deflections from geophones were described. The limitations 
and advantages of each method were also described . 

The impulse method yields a satisfactory value for the max­
imum deflection only , and does not yield a meaningful deflec­
tion-time history . In addition, as applied to pavement mon­
itoring, the method is only applicable to short-duration loadings. 
The shape and duration of the impulse may cause error in 
the value of maximum deflection as well. In general, this 
method should be used with caution. 

TRANSPORTATION RESEARCH RECORD 1227 

<V 
<V ... 
rn 
~ 

0.003 

0 

180 

0 

0 

Frequency, Hz 

Froquoncy, Hz 
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sensor. 
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FIGURE 16 Comparison of raw voltage output with voltage 
corrected for geophone effects. 

60 

The time- and frequency-domain solutions work equally 
we ll , a long a the geophone u eel i well calibrated. Prac­
tically peaking, the frequency-domain solurion is easie r to 
impl ment. Th frequency-cl main olution has two addi­
tional advantages ove r the impuls method. Fir ·t. Lhe deflec­
tion-time history and the maximum defl ction are obtained. 
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FIGURE 17 Integrated velocity response spectrum at the base 
of FWD sensor. 

FIGURE 18 Integrated velocity time history at the base of 
FWD sensor corrected for zero deflection. 
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FIGURE 19 Comparison of integrated velocity time histories 
of the coil-magnet system and base of FWD sensor. 
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TABLE 3 COMPARISON OF DEFLECTIONS OBTAINED FROM IMPULSE 
METHOD, FREQUENCY RESPONSF., AND FWD TESTS USING TWO WELL­
CALIBRATED GEOPHONES 

Sensor Deflection, mil 

Number Impulse Method Frequency Response Method PWD Device 

* 2(R) 7.3 ++ 7.4 6.9 

3 6.6 6.8 6.6 

2(R) 7.2 7.4 7.3 

4 5.9 6.0 5.9 

2(R) 7.2 7.3 7.2 

5 5.3 4.7 5.3 

2(R) 7.2 7.3 7.3 

6 4.G 4.7 '1.6 

2(R) 7.1 7.3 7.4 

7 4.0 4.1 4.1 

Average 
7.20 (+0.07)+ Reference 7.34 (0.05) 7 .22 (0.19) 

* (R) denotes Reference Sensor 

+ Numbers in parentheses correspond to standard deviation 

++ The value of adjustment factor of 0.79, which has obtained with a 
theoretically proper method, was used to determine the deflections 
from Impulse Method 

Second, the results are independent of the duration and shape 
of impulse. 

Through a case study, the use and precision of the methods 
described in the paper were demonstrated. Based on this 
study, geophones can be used effectively to monitor the behavior 
of pavements in terms of deflections. The methods described 
herein can be used to obtain maximum deflection values that 
compare closely with those reported by the FWD device. 
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