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Maximum Entropy Spectral Analysis
of Transverse Crack Spacing in
Continuously Reinforced Concrete

Pavements

Jian Lu, B. FRaANK McCuLLouGH, AND C. L. SARAF

The characteristics of cracks of continuously reinforced concrete
pavements (CRCP) are generally evaluated by analyzing the dis-
tribution of transverse crack spacing in the pavement. Statistical
analysis of data produces the mean and the standard deviation of
crack spacing. However, these parameters are not always sufficient
for characterizing the crack spacing of CRCP. Therefore, this
paper proposes an alternate method for analyzing the transverse
crack spacing data, This method, maximum entropy spectral anal-
ysis (MESA), analyzes the data in the frequency domain rather
than in the space domain. In this paper, the uniformity and var-
iability of crack spacing are also defined. By using MESA, the
uniformity and variability of erack spacing can be observed in the
frequency domain. The results of analyses using MESA indicate
that this method can intuitively distinguish the characteristics of
transverse crack spacing distribution in CRCP containing different
types of coarse aggregates. The limitations of space domain anal-
ysis can be made up by MESA.

The quality of continuously reinforced concrete pavements
(CRCP) is sometimes related to the transverse crack spacing
characteristics. It is known that the crack spacing is distributed
randomly. and therefore, statistical methods are usually used
to determine the crack spacing characteristics. Intuitively,
researchers analyze and evaluate the characteristics of crack
spacing in the space domain (i.e., probability distribution
analysis, and variance analysis). However, because of the
limitations of space domain analysis, it is sometimes difficult
to determine the characteristics of crack spacing of CRCP. In
such cases, the alternative is to analyze the crack spacing
characteristics in the frequency domain. Maximum entropy
spectral analysis (MESA), which is presented here, can be
used to analyze the characteristics of transverse crack spacing
in CRCP in the frequency domain,

This paper introduces the MESA method for evaluating
transverse crack spacing characteristics in CRCP and describes
the procedure for comparing the characteristics of transverse
crack spacing between two kinds of CRCP, one built with
mixes that contained limestone (LS) aggregates, and the sec-
ond built with mixes that contained siliceous river gravel (SRG)
aggregates. Using the MESA method, it was found that the
crack spacing characteristics of pavements containing LS
aggregates are significantly different from those of pavements
containing SRG aggregates.

Center for Transportation Research, The University of Texas at Aus-
tin, Austin, Tex. 78705-2650.

MESA is a method of analysis in the frequency domain. It
can be used in other analyses, such as roughness analysis of
pavement surface profiles, vehicle vertical vibration analysis,
degree of passenger comfort analysis, and determination of
the skid characteristic of pavement surfaces.

LIMITATIONS OF PROBABILITY ANALYSIS

1t is known that if the CRCP contains N cracks, and the ith
crack spacing is denoted as x;, then the crack spacing sequence
is defined as

o7 SR E T SN 2% (1)

Figures 1a and 1b show crack spacing sequences for two test
sections in Texas. These spacings can be represented as

fx} =1{6.2,4.5,...,3, 7.4} (ft) (50051N)
and
= {124, 8.5, .. .,6.7, 6.9} (ft) (130154E)

These sequences are called discrete space domain sequences,
because they can be measured by observations,

From Figures 1a and 1b, one cannot decide which test sec-
tion has better crack spacing characteristics. Usually, the
probability density function (PDF) of the crack spacing sequence
can be used to characterize the pavement crack spacing sequence
statistically. Our experience with the analysis of the data indi-
cates that the crack spacing is approximately log normally
distributed. The PDF of crack spacing can be represented by

1 ;(IIIX - a)

flx) = @ b2 26 V)]

where the mean value (W) and variance (o?) can be expressed
as follows:

no=e* 622
and

g2 = g2+ b2 (ebz_ 1)
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FIGURE 1 Crack spacing sequence: Top, test section 50051N;
bottom, test section 130154KE.

b = 1n<1 i E) 3)

In Equation 2, only two parameters must be estimated, i.e.,
w and o?. The PDF of the crack spacing can be easily obtained
with these parameters. However, two parameters are not
enough to characterize the crack spacing sequence, because
it is possible to obtain approximately the same PDF from two
different crack spacing sequences although their statistical
characteristics may be different. For example, the PDFs of
the crack spacing sequences of the two test sections shown in
Figures la and 1b are almost the same, as indicated below:

I
Il

5.65 ft; o?
5.33 ft; o

5.26 (test section: S0051N)
5.59 (test section: 130154E)

®

Il
Il

18

However, their maximum entropy spectral density functions are
different, as shown in Figure 2 (these two spectral density func-
tions are normalized at frequency w, = 0). This means that,
although two crack spacing sequences present the same distri-
bution characteristics in the space domain, such as PDF, if the
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FIGURE 2 Normalized spectral density functions.

sequences are transformed into a spectral density function in
the frequency domain, the spectral density function of these two
sequences will probably show different characteristics.

In this paper, the MESA of transverse crack spacing was
used to analyze the effect of aggregate type on the transverse
crack spacings in CRCP. This method provided another way
to analyze transverse crack spacing characteristics in CRCP.

MAXIMUM ENTROPY SPECTRAL ANALYSIS

MESA can be as described as follows.

Discrete Spectral Transformation

From Equation 1, the transverse crack spacing sequence in
CRCP can be considered as a discrete sequence, or

(= {2, %5, . . 5o X5}

Consider the inverse discrete Fowc: transformation (1):

1 %G )
5= Z Hye®nn G =1,2,...,N) (4)
where
N = length of the sequence,
x; = the ith crack spacing,
H, = the weights (k = N — 1), and

i= (==

Equation 4 shows that x; can he considered as the weighted
summation of sine function >V, Now define

« = K2n/N (k=0,1,...,N - 1)

and then

X = = 2_ H, e/ 5)
N <o

and

elx = sin w,d + j cos wd
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Usually, variable w, is called frequency. Obviously, w, is within
the range of 0, 2w(N — 1)/N. According to Equation 5, the
bigger the H,, the more sine function components with fre-
quency w, the crack spacing sequence {x;} will contain. Math-
ematically, it can be proven that

Hk = H(wk) = E x’.e/"""k
- (6)
x {w, = 0,2w/N,4n/N, . . ., 2m(N — 1)/N}

In other words, H(w,) is the discrete Fourier transformation
of {x;} and is the function of frequency w,. Equation 6 implies
that space domain sequence {x;} can be transformed into fre-
quency domain sequence {H(w,)}, and the characteristics of
sequence {x;} can be analyzed in the frequency domain, i.e.,
knowing H(w,), one is able to analyze the characteristics of
{xj.

Because H(w,) is an imaginary sequence, define two real
functions:

S(wi) = |H(w)P? Q)

Glw) = 3 Sw@)0=n=N-1 ®)

where S(w,) is called the spectral density function of sequence
{x.}, and G(w,) is the spectral cumulative function of sequence
{x}.

From Equation 6, we know that the summation is from —o
to +oo. In practical cases, the sequence length NV is finite; that
is, we cannot obtain a sequence {x;} with / from —o% to 4.
In this case, the spectral density function S(w,) should be
estimated from {x.;}.

Now, the problem is how to estimate S(w,). In the area of
spectral function estimation, several mathematical methods
are available. One of the best methods is the maximum entropy
spectral estimation method [see Appendix and Haykin (2)].
Mathematically, the maximum entropy spectral density func-
tion is expressed by

Py

2
1+ 3 a,em
1

S(oy) = )

where P, a, a,, . . . , a,, are the parameters estimated by
the maximum entropy spectral estimation algorithm. How-
ever, this algorithm is very complicated. Haykin (2) gives the
detailed procedures of the maximum entropy spectral esti-
mation algorithm; they are not included in this paper.

MESA of Crack Spacing Characteristics

From the above discussion, it is clear that spectral density
function S(w,) represents the frequency density distribution
characteristics of crack spacing sequence {x;}, and spectral
cumulative function G(w,) represents the frequency cumu-
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lative distribution characteristics. For example, if the crack
spacing sequence {x;} changes smoothly, then {x;} contains
relatively many low-frequency components. This means that
the magnitude of S(w,) in the low-frequency region is rela-
tively higher than that in the high-frequency section. On the
other hand, if the crack spacing sequence {x;} changes abruptly,
then {x,} contains relatively many high-frequency components.
Therefore, the magnitude of S(w,) in the high-frequency region
is relatively higher than that in the low-frequency region.

Now consider a concept of uniformity of crack spacing. In
this paper, the uniformity of crack spacing sequence {x,} is
used as a qualitative index. It is said that the uniformity of
the crack spacing sequence is relatively good if {x} changes
smoothly. On the other hand, it is said that the uniformity of
the crack spacing sequence is relatively poor if {x,} changes
abruptly. For example, consider two crack spacing sequences,
{x} and {y}, such that {x} = {1,2.3,4, 5}, {v} = {2,5, 1, 4,
3}; {x} has good uniformity, and {y,} has poor uniformity.
From the viewpoint of spectral analysis, good uniformity means
arelatively high magnitude of spectral density function, S(w,)
in the low-frequency region, and relatively low magnitude of
spectral density function, S(w,) in the high-frequency region.

As stated earlier, the uniformity of crack spacing sequence
{x;} cannot be assessed in the space domain, but it can be
assessed in the frequency domain (see Figure 2: test section
50051N has poor uniformity, but section 130154E has good
uniformity).

Let us consider another index of crack spacing character-
istics, represented by the variability of the crack spacing
sequence. In Equation 8, the spectral cumulative function was
defined. When n = N/2, then w, = w. Now define spectral
cumulative value Cv as follows:

Cv = G(0,),-nn = G(m)

or

N2

kzo S(wy) (10)

Cv

As will be seen in this paper, the spectral cumulative value,
Cv, is statistically related to the variance of the crack spacing
sequence. If Cv is defined as the relative variability of the
crack spacing sequence, then, statistically, the variability reflects
the probability distribution characteristics of the crack spacing
sequence. Obviously, a small Cv means less variability.

It is worth mentioning that uniformity and variability are
independent concepts. No certain relationship exists between
them. For example, as mentioned before, the uniformity of
sequence {x;} and {y,} is different, but the variabilities of {x}
and {y,;} are the same because they have the same variance.

APPLICATIONS OF MESA

The method described above was used to analyze CRCP crack
spacing data collected from pavements in Texas. The data
base that contains the information is maintained by the Center
for Transportation Research, at the University of Texas at
Austin. This data base contains information on CRCP con-
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FIGURE 4 Normalized spectral density functions—
aggregate type SRG.

ditions since 1974. However, transverse crack spacing data
used in this study were collected in 1986.

Uniformity Analysis of Transverse Crack Spacing
Characteristics of CRCP in Texas

About 300 pavement test sections were analyzed for this study.
Six typical normalized spectral density functions of the crack
spacing sequence are shown in Figures 3 and 4. The normal-
ized spectral density [unctions shown in Figure 3 represent
CRCP containing LS aggregates, and the normalized spectral
density functions shown in Figure 4 represent CRCP that
contain SRG aggregates. As discussed earlier in this paper,
good uniformity means a relatively high magnitude of nor-
malized spectral density function in the low-frequency region
and a relatively low magnitude in the high-frequency region.
From the typical normalized spectral density functions shown
in Figures 3 and 4, it is clear that the magnitude of spectral
density functions for CRCP with LS aggregates is relatively
lower than that with SRG aggregates in the high-frequency
section. Therefore, it can be concluded from these spectral
density functions that the uniformity of the crack spacing
sequence of pavements with LS aggregates is better than with
SRG aggregates (see Table 1).
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TABLE 1 RESULTS OF CORRELATION ANALYSIS

Factors F-Values Correlation
Aggregate Type 70.65 Goed
Age of Pavement 3.40
Subgrade Type 2.83
Rainfall 2.36
Cut/Fill Position 1.63 4
Curve Position 0.34 Poor
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FIGURE 5 Cumulative value of spectral function versus
aggregate type.

Variability Analysis of Transverse Crack Spacing
Sequence in CRCP

Figure 5 shows the relationship between the cumulative value
Cv and aggregate type. The test sections selected for this
figure are listed in Table 1. As discussed earlier in this paper,
less variability of the crack spacing sequence means a small
Cv value. From Table 1, it can be found that most test sections
with LS aggregates have high Cv values. Therefore, statisti-
cally, it can be stated that the variability of the crack spacing
sequence of pavements with SRG aggregates is less than that
with LS aggregates.

Effect of Pavement-Related Factors on Cv Values

From the standpoint of statistics, it can be hypothesized that
several pavement-related factors might affect Cv value. To
estimale the correlation of the Cv value and other factors,
the lincar regression analysis method was used. In this study,
about 300 CRCP sections were analyzed. The results of cor-
relation analysis are shown in Table 1.

As expected, aggregate type is the most important factor
affecting the characteristics of the crack spacing sequence.

Characteristics Statistics of Transverse Crack
Spacing in CRCP

The data analysis results for 18 typical CRCP test sections
are listed in Table 2. As stated early in this paper, uniformity
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TABLE 2 ESTIMATES OF VARIOUS PARAMETERS FOR CRCP SECTIONS

Test Aggregate
Sections Types Uniformity Variability P(3.5 < X < 8) o Cv
1700748 G 1 11 .38 2.28 43.26
50052N SRG 2 12 .21 1.85 34.11
500528 SRG 3 16 .23 1.75 13.82
20982W LS 4 4 .76 3.89 351.38
1700718 G 5 13 .33 1491 22.15
500518 SRG 6 15 .18 118 14.14
50051N SRG 7 7 .68 5.26 292.30
1700738 SRG 8 17 .24 1.88 13.15
130133W SRG 9 8 .65 6.09 247.60
1700758 SRG 10 14 .04 0.51 18.63
20982E LS 11 5 .66 8.80 347.64
500718 LS 12 2 .50 8.84 391.58
1301563W LS 13 9 .66 4.66 204.97
1700728 G 14 18 .30 1.40 7.56
130134W SAG 15 10 .40 7.35 168.07
500738 LS 16 1 .50 6.07 499.88
130154E LS 17 6 .56 5.60 341.10
130151W LS 18 3 .56 4.66 353.811
and variability are related to the spectral density function and 500 o
Cv value, and are affected by several factors, However, the
aggregate type is the most important factor, and this factor 400 F Y=~ 205985 % 51.604x
is listed in Table 2 to clarify the analysis.
The uniformity and variability degrees are explained as
follows. 5 M
Because 18 test sections are listed in Table 1, uniformity s
and variability are arranged according to 18 degrees. A larger 3 200t
number means a better degree.
In Table 1, P (3.5 = x = 8) represents the probability that 100 F
crack spacing is within the range of 3.5 to 8 ft, and ¢? is the
variance of crack spacing probability distribution. Statisti- A ;
cally, from the table, the following conclusions can be obtained: 0o 2 4 6 8 10

1. The uniformity of the crack spacing sequence of pave-
ments with LS aggregates is better than with SRG aggregates
because most of the pavements with LS aggregates have a
large degree of uniformity;

2. The variability of the crack spacing sequence of pave-
ments with SRG aggregates is better than with LS aggregates
because most of the pavements with SRG aggregates have a
large degree of variability;

3. P(3.5 = x = 8) of the crack spacing sequence of pave-
ments with LS aggregates is larger than with SRG aggregates
statistically;

4. o* of the crack spacing probability distribution of pave-
ments with SRG aggregates is lower than with LS because
most of the pavements with SRG aggregates have low o?
values; and

5. o2 is statistically related to Cv values (see Figure 6).

CONCLUSIONS

Maximum entropy spectral analysis is an analysis method of
parameter estimation and characteristics evaluation in the fre-
quency domain. It provides a new analysis domain for the
analysis and evaluation of transverse crack spacing charac-
teristics in CRCP and can overcome some limitations met by

c2

FIGURE 6 Relationship between CV value and variance of
crack spacing sequence.

space domain analysis of transverse crack spacing in CRCP.
Particularly, the uniformity and variability of crack spacing
sequences can be intuitively evaluated by spectral analysis.
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APPENDIX

Simple Description of Maximum Entropy Spectral
Estimation

The maximum entropy spectral estimation (MESE) method
was introduced by Burg in 1968 (3). As is the maximum like-
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lihood spectral estimation, MESE is a sort of estimator of
parameter estimation. Consider a discrete sequence {x;} with
sequence length N and sample interval 7. If the sequence is
a stationary, zero mean, approximately normally distributed,
and band-limited stochastic process, then the entropy of the
sequence is defined as

5 = %m (2B) + ﬁ fD In [S(w)] dw (A-1)

where B is the band width of the sequence, and S(w) is the
spectral density function of the sequence, or

S(w) = T 2 R (m) e~imT (A-2)

In Equation A-2, R(m) is defined as the autocorrelation func-
tion of sequence {x;}

R(m) = E{X,- X, + m} (A-3)

Combining Equations A-1 and A-2, one can obtain the entropy

= -

B
LB S f N —
H = 5 In (2B) + B In mz R(m) e~ (A-4)

Suppose we are given the values of autocorrelation R(m) for
m=0,1,2,..., M, then the corresponding extension of
the autocorrelation function is defined by the convolution sum

M

R(m) = — > R (m — k) a, (m > M) (A-5)
k=1

or, equivalently,

> R(m — k)a, = 0(m> M)

k=0

The method that Burg introduced is to maximize the entropy
H with respect to R(m) (Jm| > M) with restrained condition
Equation A-5, so that the parameters (a,, a, . . . , a,,) can
be obtained. Mathematically, this can be expressed as

aH
dR(m)
M

2R(m—k)ak=o

= 0 (|m| > M)
(A-6)

It can be proved that, with the conditions in Equation A-6,
sequence {x;} can be related by the following autoregression
model [AR(M) model]:

Xi=-a, X, — X, ,— ... ay X,

+ e;

i

(A-7)
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where M is the order of the AR(M) model, {e;} is approxi-
mately normally distributed disturbance with zero mean value.
Omitting the mathematical derivation, we can obtain the esti-
mate of the parameters (a,, a,, . . . , a,,) by the Yule-Welker
equation

R-A=P (A-8)

where R is the autocorrelation matrix of sequence {x;} and R
is called Toeplitz matrix:

R(0) R(—1) R(1-M) R(—M)
R(1) R(0) R2-M) R(1-M)
R(M—1) RM-2) ... R(0) R(-1)
R(M) RM-1) ... R(1) R(0)
and
1 Py
a, 0
A= p=¢ °
a 0
ay, 0
where
Py = E {e?}

Finally, with all the parameters estimated by the MESE algo-
rithm, the maximum entropy spectral density function can be
expressed by

Pyu-T
S(w) = M” ; (A-9)
14+ D a,eimm
m=1
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