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Maximum Entropy Spectral Analysis 
of Transverse Crack Spacing in 
Continuously Reinforced Concrete 
Pavements 

]IAN Lu, B. FRANK McCULLOUGH, AND C. L. SARAF 

The characteristics of cracks of continuously reinforced concrete 
pavements R P) are gcner!tlly cvalu, tccl by analyzing the di · 
tribution of transver e crack spacing in the pavement. Stalistical 
analysis of data produces the mean 11ncl the ·tandard de\'iation of 
crack pacing. However, these parameters are not always sufficient 
for characterizing the crack spacing of CRCP. Therefore, this 
paper pro1>os an alternate method for mmlyzing the transverse 
crack spacing data. This method maximum enlro1>Y specll'lll anal
ysi (MESA), analyzes the data in Lhe frequency domain rather 
than in the space domain. In thi: paper, the unit'ormily and \•ar
iability of crack spacing arc also defined. By using MESA, the 
uniformity and variability of c.rack s1mclng can be observed in the 
frequency domain. The re ult · of analy es using MESA indicate 
that lhi method can intuitively distil1guish the characteri lies of 
tran. c1· e cJ"ack pacing distribution in CRCP containing different 
type. of coarse aggregates. The limitations of space domain anal
ysis can be made up by MESA. 

The quality of continu u ly reinfo rced concr te pav m nt 
(CR P) is sometimes re lated to the tran ver e crack pacing 
characteri tics. It is known that the rack pacing i distributed 
randomly , and therefore . statistica l method are u ually u. ed 
to determine the crack ·pacing chantctcri tics. Intuitively, 
re archers analyze and evaluate lh characteristic of crack 
spacing in the space domain (i.e., probability distribution 
analysis, and variance analysis). However, because of the 
limitations of space domain analysis, it is sometimes difficult 
to d te rmine the characteristics of crack spa ing of CR P. In 
such case , the a.llernative is to analyze the crack pacing 
oharacteri ' tics in the frequency domain. Maximum entropy 
spectra l analy ·i (MESA), whi h is pre ented here can be 
used t analyze the characterist ics of transverse crack spacing 
in CR · Pin the frequ ency domain . 

This paper introduces the MESA method for evaluating 
transverse crack spacing characteristics in R P and describes 
the procedure for comparing the characteristics of transverse 
crack spacing between two kinds of CRCP, one built with 
mixes that contained limestone (LS) aggregates , and the sec
ond built with mixes that contained siliceous river gravel ( RG) 
aggregate . U ing the MESA method, it was f und that the 
crack spacing characteristics of pavements containing LS 
aggregates are significantly different from those of pavements 
containing SRG aggregates . 

Center for Transportation Research, The University of Texas at Aus
tin, Austin, Tex. 78705-2650. 

MESA is a m thod of analy is in the frequency domain. It 
can be used in othe r analyse , such as r ughness analysis of 
pavement urface profile . vehicle vertical vibraLi n analysis , 
degree of passenger comfort analysis and determination of 
the skid characteristic of pavement surfaces. 

LIMITATIONS OF PROBABILITY ANALYSIS 

It is known that if the CRCP contains N cracks, and the ith 
crack spacing is denoted as X;, then the crack spacing sequence 
is defined as 

(1) 

Figures la and lb show crack spacing sequences for two test 
sections in Texas. These spacings can be represented as 

{x;} = {6.2, 4.5, . .. , 3, 7.4} (ft) (50051N) 

and 

{x) = {12.4, 8.5, ... , 6.7, 6.9} (ft) (130154E) 

These sequences are called discrete space domain sequences, 
because they can be mea ured by observations. 

From Figures la and lb, one cannot decide which test sec
lion ha bett r crack ·pacing characteristics. U ually , the 
probability den ity funcLi n (PDF) of the crack spacing sequence 
can be u ed to characterize the pave mem crack pacing sequence 
statistically. Our experi nee with the analy i f the data indi
cates that the crack spacing is approximately I g normally 
di ·1ributed. The PDF of crack spacing can be represented by 

J - llnX - a)' 

f(x) = (211 bX) 112 e zi,! (2) 

where the mean value(µ) and variance (a2
) can be expressed 

as f Hows: 

µ = e" + b'12 

and 
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Test Section: 50051 N 
Aggregate Type: SAG 
Mean Value µ = 5.65 ft 
Variance a2 = 5.26 

Test Section: • 30154E 
Aggregate Type: LS 

Mean Value µ = 5.65 ft 
Variance a 2 = 5.26 

15 20 25 30 35 

FIGURE 1 Crack spacing sequence: Top, test section SOOSlN; 
bottom, test section 130154E. 

where 

a 1 ( µ" ) -In 
2 µ2 + (J2 

(3) 

In Equation 2, only two parameters must be estimated, i.e., 
µand CJ2

. The PDF of the crack spacing can be easily obtained 
with these parameters. However, two parameters are not 
enough to characterize the crack spacing sequence, because 
it is possible to obtain approximately the same PDF from two 
different crack spacing sequences although their statistical 
characteristics may be different. For example, the PDFs of 
the crack spacing sequences of the two test sections shown in 
Figures la and lb are almost the same, as indicated below: 

µ = 5.65 ft; CJ2 

µ = 5.33 ft; CJ2 

5.26 (test section: 50051N) 

5.59 (test section: 130154E) 

However, their maximum entropy spectral density functions are 
different, as shown in Figure 2 (these two spectral density func
tions are normalized at frequency wk = 0). This means that, 
although two crack spacing sequences present the same distri
bution characteristics in the space domain, such as PDF, if the 
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FIGURE 2 Normalized spectral density functions. 

sequences are transformed into a spectral density function in 
the frequency domain, the spectral density function of these two 
sequences will probably show different characteristics. 

In this paper, the MESA of transverse crack spacing was 
used to analyze the effect of aggregate type on the transverse 
crack spacings in C.KCP. This method provided anotht:r way 
to analyze transverse crack spacing characteristics in CRCP. 

MAXIMUM ENTROPY SPECTRAL ANALYSIS 

MESA can be as described as follows. 

Discrete Spectral Transformation 

From Equation 1, the transverse crack spacing sequence in 
CRCP can be considered as a discrete sequence, or 

Consider the inverse discrete Fou11c1 lransformation (1): 

1 N-1 

x, = - L Hk eFk2n!N (i 
N k ~ O 

where 

1, 2, . .. , N) 

N = length of the sequence, 
x, = the ith crack spacing, 

Hk = the weights (k = 0, 1, ... , N - 1), and 
j = ( 1)112. 

(4) 

Equation 4 shows thcit :r, r.;in he considered as the weighted 
summation of sine function eFk2n1

N. Now define 

wk = k2-rr/N (k = 0, 1, ... , N - 1) 

and then 

1 N-l 

x = - L H eF"'• 
I N k~O k 

(5) 

and 
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Usually, variable wk is called frequency. Obviously, wk is within 
the range of 0, 27T(N - l)/N. According to Equation 5, the 
bigger the Hk, the more sine function components with fre
quency wk the crack spacing sequence {x.} will contain. Math
ematically, it can be proven that 

+x 

Hk = H(wk) = 2: X;epw, 
t= - z (6) 

x {wk= 0,27TIN,47TIN, . .. , 27r(N - 1)/N} 

In other words, H(wk) is the discrete Fourier transformation 
of {x;} and is the function of frequency wk. Equation 6 implies 
that space domain sequence {x;} can be transformed into fre
quency domain sequence {H(wk)}, and the characteristics of 
sequence {x.} can be analyzed in the frequency domain, i.e., 
knowing H(wk), one is able to analyze the characteristics of 
{x;}. 

Because H(wk) is an imaginary sequence, define two real 
functions: 

(7) 

" G(w,,) 2: S(wk) 0 ::s n ::s N - 1 (8) 
k ~ O 

where S(wk) is called the spectral d n ity function of sequence 
(xi}, and G( w,,) is the spectral cumulative function of sequence 
{x,}. . 

From Equation 6, we know that the summation is from - oo 

to + oo. In practical cases, the sequence length N is finite; that 
is, we cannot obtain a sequence {x;} with i from - oo to +co. 

In this case, the spectral density function S( wk) should be 
estimated from {x;}. 

Now, the problem is how to estimate S(wk). In the area of 
spectral function estimation, several mathematical methods 
are available. One of the best methods is the maximum entropy 
spectral estimation method [see Appendix and Haykin (2)). 
Mathematically, the maximum entropy spectral density func
tion is expressed by 

(9) 

where PM, al> a2 , • .. , aM are the parameters estimated by 
the maximum entropy spectral estimation algorithm. How
ever, this algorithm is very complicated. Haykin (2) gives the 
detailed procedures of the maximum entropy spectral esti
mation algorithm; they are not included in this paper. 

MESA of Crack Spacing Characteristics 

From the above discussion, it is clear that spectral den ity 
function S(w~ ) represents the frequency density distribution 
characteristics of crack spacing sequence {x;}, and spectral 
cumulative function G(w,,) represents the frequency cumu-
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lative distribution characteristics. For example, if the crack 
spacing sequence {x;} changes smoothly, then {x;} contains 
relatively many low-frequency components. This means that 
the magnitude of S(wk) in the low-frequency region is rela
tively higher than that in the high-frequency section. On the 
other hand, if the crack . pacing ·equen e {.r1} chang abruptly, 
then {x;} contains relatively many high-frequency components. 
Therefore, the magnitude of S(wk) in the high-frequency region 
is relatively higher than that in the low-frequency region. 

N w consider a concept of uniformity of crack spacing. In 
this paper the uniformity of crack spacing sequence {x;} is 
used as a qualitative index. It i. aid that the unif rmily f 
the crack spacing sequence is relatively good if lrJ change 
moothly. On the other hand. it is . aid lhat the uniformily of 

the crack pacing sequence is relatively poor if {x;} change. 
abruptly . .For example , consider two rack spacing sequence., 
{x1} and {)i,} such that {xi} = {I, 2, 3, 4, 5}. {>i1} = {2, 5, .L, 4, 
3} ; {x;) ha good uniformity, and {y,} has poor uniformity. 
From the viewpoint f . pectral analy is, good uniformity means 
a relatively high magnitude of pectral den ity function, S(wk) 
in the I w-frcquency region, and relatively low magnitude of 
spectral density function, S(wk) in the high-frequency region. 

As stated earli r, the uniformity of crack spacing sequence 
{x;} cannot be asse sed in the space domain, but it can be 
assessed in the frequency domain (see Figure 2: test section 
50051 has poor uniformity, but section 130154E has good 
uniformity). 

Let us consider another index of crack spacing character
istics, represented by the variability of the crack spacing 
sequence. In Equation 8, the spectral cumulative function was 
defin d. When n = N/2, then w,, = 7T. Now define spectral 
cumulative value Cv as follows: 

Cv = G(w,,),, ~Ni2 = G(7r) 

or 

(10) 

As will be seen in this paper, the spectral cumulative value, 
11, i· statistically related to the variance of the crack spacing 

sequence. If Cv is defined as the rela tive variability of the 
crack spacing equence, then, statistically. the variability renects 
the probability di. tribution characteri ·tic of the era k spacing 
seq uence. Obviou ·ly, a mall Cv mean less variability. 

It is wonh mentioning that unif rmity and variability are 
independent concepts. No certain relation hip cxi I · between 
them . For example, a mentioned before. the uniformity f 
sequence {x1} and {>11} is different. but the variabililie of {x,} 
and {y;} are the am becau e they have the ame variance. 

APPLICATIONS OF MESA 

The method described above was used to analyze CRCP crack 
spacing data collected from pavements in Texas. The data 
base that contains the information is maintained by the Center 
for Transportation Research, at the University of Texas at 
Austin. This data base contains information on CRCP con-
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FIGURE 3 Normalized spectral density functions-aggregate 
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ditions since 1974. H owever, transverse crack spacing data 
used in this study were collected in 1986. 

Uniformity Analysis of Transverse Crack Spacing 
Characteristics of CRCP in Texas 

About 300 pavement test sections we re analyzed fo r thi tudy. 
Six typical normalized pectra l den ity funct. ions o f the crack 
pacing sequence a re shown in F igu res 3 <Jnd 4. he normal

ized spectritl densit y furn.;Lion hown in r igurc 3 rcpres Dl 

R CP concaining L aggregat and the normalized pectra l 
den ·ity functions shown in Figure 4 represent CRCP that 
contai n SRG aggregates. As discu sed ear li ~ r in this paper, 
good un ifom1ity mea ns a rela tive ly high magnit"ltde f nor
malized spe tral den ity function in the low-frequency region 
and a re lative ly low magnitude in the high-frequency regio n. 
From the ty pi,cal no rma lized pectra l density functions shown 
in Figur 3 and 4, it is clea r tha t !he magnitude of ·pectral 
density fun ctions for R P with L aggrega tes i re lati vely 
lower than th at with R G aggregate in the high-frequency 
section . Therefore , it can be concluded from these spectral 
density fun.i;Lion that the uniformity of the crack spacing 
·equence of pavement with LS aggregates is better than with 
SRG aggregates (see Table 1) . 

TRANSPORTATION RESEARCH RECORD 1227 

TABLE 1 RESULTS QfCQB_~~icAI!Q!'/_A_NAL YS~S 

Factors F-Values Correlation 

Aggregate Type 70 .65 ('-trrJ 
Age of Pavement 3 . 40 
Subgrade Type 2 . 83 
Rainfall 2 . 36 
Cut/Fill Position 1 . 63 j, 
Curve Position 0 . 34 Poor 

600 
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0 300 

200 

100 

SAG LS 

Aggregate Type (SAG or LS) 

FIGURE 5 Cumulative value of spectral function versus 
aggregate type. 

Variability Analysis of Transverse Crack Spacing 
Sequence in CRCP 

Figure 5 how the re lationshi p be tween the cumulative value 
v and aggregate type. T h te t sections selected for this 

figure a re Ii ted in Table I. As di cussed earlie r in thi pape r , 
less variabil ity of the crack spacing equence means a ma ll 

v va lue. From Table .I , it ca n be found that most tes t ections 
with LS aggregates have high v values. T herefore, tatisti 
cally , it can be stated that the va riabili t of U1e crack spacing 
sequenc o'f pavements with SR aggregates is Jes. th an that 
with LS aggregates. 

Effect of Pavement-Related Factors on Cv Values 

From the ' tandpoint of , ia ti st ics, it can be hypo thesized th at 
ventl pavement-rela ted fac to rs might affect 11 value . T 

e ·ti1111:1lt: lht: corre lation f the Cv vnlue and othe r fac to rs, 
the linear regression ana lysis method was used . In this study, 
about 300 CRCP sectio ns were analyzed . The results of cor
re la tion anal ysis a re shown in Tab! l . 

A ex pected aggrega te type is the most imp rtant factor 
affecting the characte rist ic f th crack spacing sequence . 

Characteristics Statistics of Transverse Crack 
Spacing in CRCP 

The data anal sis results for 18 typical CRCP test sections 
are listed in Table 2. As stated early in this paper, uni fo rmi ty 
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TABLE 2 ESTIMATES OF VARIOUS PARAMETERS FOR CRCP SECTIONS 

Test Aggregate 
Sections Types Uniformity 

1700748 ffi3 
50052N ffi3 2 
500528 ffi3 3 
20982W LS 4 
1700718 ffi3 5 
500518 ffi3 6 
50051 N ffi3 7 
1700738 ffi3 8 
130133W ffi3 9 
1700758 ffi3 1 0 
20982E LS 1 1 
500718 LS 1 2 
130153W LS 1 3 
1700728 ffi3 1 4 
130134W ffi3 1 5 
500738 LS 1 6 
130154E LS 1 7 
130151W LS 1 8 

and variability are related to the spectral den ity function and 
Cv value and are affected by several factor . However, the 
aggregate type is the most important factor, and this factor 
is listed in Table 2 to clarify the analysis. 

The uniformity and variability degrees are explained as 
follows. 

Because 1 te t ection are Ii ted in Table 1, un.iformity 
and variability are arranged according to 18 degrees. A larger 
number means a be11er degree. 

In Table 1, P (3.5 5 x s: 8) represents the probability that 
crack spacing is within the range of 3.5 to 8 ft, and a2 is the 
variance of crack spacing probability distribution. Statisti
cally, from the table, the following conclusions can be obtained: 

l. The uniformity of the crack spacing sequence of pave
ment · with LS aggregates is better than with SRO aggregate 
becau e most of the pavements with L aggregates have a 
large degree of uniformity· 

2. The variabil ity of the crack spacing sequence of pave
ments with RO aggregate i better than with LS aggregate 
because mo t of the pavements with SRO aggregate have a 
large degree of variability; 

3. P(3.S 5 x 5 8) of the crack spacing sequence of pave
ments wi th LS aggregates is larger than with SRO aggregate 
stati . tically; 

4. al of the crack spacing probability distribution of pave
ments with SRG aggregates is lower than with LS because 
most of the pavements with SRG aggregates have low a 2 

values; and 
5. a2 is statistically related to Cv values (see Figure 6). 

CONCLUSIONS 

Maximum entropy spectral analysis is an analysis method of 
parameter estimation and characteristics evaluation in the fre
quency domain. It provides a new analysis domain for the 
analysis and evaluation of transverse crack spacing charac
teristics in CRCP and can overcome some limitations met by 

Variability P(3 .5 s; X s; 8) c2 °' 
11 .38 2.28 43 .26 
1 2 .21 1.85 34 .11 
1 6 .23 1 .75 13 . 82 

4 .76 3.89 351.38 
1 3 .33 1 . 91 22 .15 
1 5 . 18 1.15 14 . 14 

7 .68 5.26 292 .30 
1 7 .24 1.88 13 .15 

8 .65 6 .09 24 7 .60 
1 4 .04 0.51 18.63 

5 .66 8.80 347 .64 
2 .50 8.84 391.59 
9 . 66 4.66 204 .97 

1 8 .30 1.40 7.56 
1 0 .40 7 .35 168.07 

1 . 50 6.07 499.88 
6 .56 5.60 341.10 
3 .56 4.66 353.811 
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(]) 300 =i 

~ 
> 200 (.) 
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0 
0 2 4 6 8 

o2 

FIGURE 6 Relationship between CV value and variance of 
crack spacing sequence. 

10 

space domain analysis of transverse crack spacing in CRCP. 
Particularly, the uniformity and variability of crack spacing 
sequences can be intuitively evaluated by spectral analysis. 
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APPENDIX 

Simple Description of Maximum Entropy Spectral 
Estimation 

The maximum entropy spectral estimation (MESE) method 
was introduced by Burg in 1968 (3). As is the maximum like-
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lihood spectral estimation, MESE is a sort of estimator of 
parameter estimation. Consider a discrete sequence {x;} with 
sequence length N and sample interval T. If the sequence is 
a stationary, zero mean, approximately normally distributed , 
and band-limited stochastic process, then the entropy of the 
sequence is defined as 

B 

1 1 J H = 2 In (2B) + 
4

B In [S(w)] dw (A-1) 
- B 

where B is the band width of the sequence, and S(w) is the 
spectral density function of the sequence, or 

+x 

S(w) = T L R (m) e - imTw (A-2) 

In Equation A-2, R(m) is defined as the autocorrelation func
tion of sequence {x;} 

R(m) = E{X; · X; + m} (A-3) 

Combining Equations A-1 and A-2, one can obtain the entropy 

B 

1 1 J + x 
H = - In (2B) + - In L R(m) e-JmTw 

2 4B 111 ~- x 
-B 

(A-4) 

Suppose we are given the values of autocorrelation R(m) for 
m = 0, 1, 2, ... , M, then the corresponding extension of 
the autocorrelation function is defined by the convolution sum 

M 

R(m) = - L R (m - k) ak (m > M) (A-5) 
k~I 

or, equivalently , 

" L R (m - k) ak = 0 (m > M) 
k ~ O 

The method that Burg introduced is to maximize the entropy 
H with respect to R(m) (lml > M) with restrained condition 
Equation A-5, so that the parameters (a 1 , a2 , ••• , aM) can 
be obtained. Mathematically, this can be expressed as 

iJH } ---O m>M a~(m) - Cl I ) 

L R(m - k) ak = 0 
k ~ U 

(A-6) 

It can be proved that, with the conditions in Equation A-6, 
sequence {x;} can be related by the following autoregression 
model [AR(M) model]: 

(A-7) 
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where M is the order of the AR(M) model, {e;} is approxi
mately normally distributed disturbance with zero mean value. 
Omitting the mathematical derivation, we can obtain the esti
mate of the parameters (a 1, a2 , ••• , aM) by the Yule-Welker 
equation 

R ·A= P (A-8) 

where R is the autocorrelation matrix of sequence {x;} and R 
is called Toeplitz matrix : 

{ R(O) 
R(-1) R(l-M) 

R( - M) } R(l) R(O) R(2-M) R(~ ~-M) 
R 

R(M-1) R(M-2) R(O) R(-1) 
R(M) R(M-1) R(l) R(O) 

and 

A = { :: } p = { T.} 
aM-1 Q 

llM Q 

where 

Finally, with all the parameters estimated by the MESE algo
rithm, the maximum entropy spectral density function can be 
expressed by 

S(w) = I 
1 + 

(A-9) 
M 12 " a e - jmTw L.J m 

tn = 1 
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