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A Comparison of Techniques for the 
Identification of Hazardous Locations 

JULIA L. HIGLE AND MARI B. HECHT 

Techniques for the identification of hazardous locations, based on 
both classical and Bayesian statistical analyses, are evaluated and 
compared in terms of their ability to identify hazardous locations 
correctly. A simulation experiment, which is described in detail, 
is used. One classically based technique exhibits a tendency to err 
in the direction of false negatives. Another classically based tech­
nique yields relatively few false negative errors and produces results 
that are virtually indistinguishable from the results obtained from 
the Bayesian techniques. A variation of the Bayesian method pro­
posed by Higle and Witkowski exhibits a tendency to perform well, 
producing low numbers of both false negative and false posi­
tive errors. Observed sensitivities of the various procedures are 
discussed. 

The identification of hazardous locations is an important first 
step in any highway safety plan. The technique used to identify 
these locations should be sufficiently accurate to instill a high 
degree of confidence in the reported results. Hauer and Per­
saud compare the identification process to a sieve that should 
"catch" the hazardous sites while allowing the nonhazardous 
sites to "pass through" (1). A technique that tends to catch 
hazardous sites while allowing nonhazardous sites to pass 
through works well. Similarly, a technique that tends to allow 
a large fraction of hazardous sites to pass through while catch­
ing a number of nonhazardous sites is probably flawed. In 
this paper, the results of an experiment designed to evaluate 
empirically the relative performance of various techniques for 
the identification of hazardous locations are reported. 

From the Hauer and Persaud analogy, it can be seen that 
an identification procedure partitions the sites under consid­
eration into four categories, depending on whether or not 
they are truly hazardous (labeled H and NH, respectively) 
and whether or not they are identified, or flagged, by the 
identification technique (labeled F and NF, respectively). If 
a technique works perfectly, all sites that are hazardous are 
flagged and all sites that are not hazardous are not flagged. 
That is, in the absence of error, F = H and NF = NH. 
Unfortunately, sites are flagged on the basis of data that are 
subject to random variation. It follows that some sites that 
are not hazardous are flagged and some sites that are haz­
ardous are not flagged. The former event is a "false positive" 
identification, and the latter is a "false negative" identifica­
tion. If the number of false negative identifications tends to 
be low, one can be reasonably assured that the set of sites 
that is flagged contains most of the truly hazardous sites. 
Similarly, if the number of false positive identifications tends 
to be high, then one suspects that many of the sites that are 
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flagged are not truly hazardous. In evaluating the effective­
ness of an identification technique, the relative severity of 
these two types of errors must be considered. It is generally 
agreed that a false negative error is far more serious than a 
false positive error. Thus, one might conclude that a technique 
that tends to yield a low number of false negatives is a good 
technique, as long as the low number of false negatives is not 
accompanied by an excessively large number of false positives. 

Higle and Witkowski propose an empirical Bayesian method 
for the identification of hazardous locations (2). In comparing 
the output of their procedure to that of procedures based on 
classical statistical techniques, they speculate that at least one 
of the classically based techniques may be prone to err in the 
direction of false negatives. This observation is based on the 
authors' interpretation of the empirical results presented in 
the paper. On the basis of their study, it is impossible to know 
which sites are actually hazardous (H); thus their observations 
cannot be considered conclusive. In an effort to compare the 
ability of various identification techniques to distinguish cor­
rectly between hazardous and nonhazardous locations, the 
performance of the various techniques discussed by Higle and 
Witkowski (2) arc investigated. In particular, the performance 
of identification techniques that are derived from classical statis­
tical procedures is compared with those that are derived from 
the Bayesian procedure defined by Higle and Witkowski. 

This paper is organized as follows. The next section contains 
a detailed explanation of the experimental method used. Sali­
ent points regarding the experimental method are discussed 
next. The results of the experiment are tabulated and pre­
sented, and the following section contains a discussion of the 
sensitivities of the various techniques observed during the 
course of the experiment. Conclusions are presented last. 

EXPERIMENTAL METHOD 

The experiment is based on a simple design. It is assumed 
that we are given a collection of accident rates (i.e., the num . 
ber of accidents per million vehicles entering an intersection) 
form locations, {AJi~ 1 , which represents a state of "perfect 
knowledge." That is, it is assumed that A, represents the long­
term expected accident rate at location i under its current 
configuration. With these accident rates, three years' worth 
of accidents are randomly generated, thereby simulating the 
accident data that might be available to a safety analyst. The 
simulated data are then analyzed using the various techniques. 
The set of sites identified as hazardous by each technique is 
compared with a set of sites that is known to be hazardous 
based on the true rates, {AJi_ 1. Because the output of the 
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experiment can be expected to vary with the simulated data, 
30 independent repetitions of the experiment are performed 
to allow for the observation of general trends that might emerge. 

In its most basic form , the experiment consists of the fol­
lowing phases: 

1. The selection of the "true" accident rates, {A;};: 1 , 

2. The identification of the set of sites that is "truly" 
hazardous, 

3. The generation of the simulated accident data, 
4. The analysis of the simulated data and the identification 

of hazardous sites , and 
5. The comparison of the sites identified as hazardous with 

those that are truly hazardous. 

Each of these phases is discussed in turn. 

True Accident Rates 

The goal of this experiment is to glean an understanding of 
the performance characteristics of the various techniques as 
they are commonly implemented. Thus a hypothetical col­
lection of "true accident rates" that can capture some of the 
idiosyncrasies associated with true rate distributions with a 
reasonable degree of accuracy is required . To do this, observed 
accident data were used as a hypothetical collection of true 
rates. Four data sets, containing accident and traffic volume 
data for signalized intersections from communities under var­
ious jurisdictions within the state of Arizona, are used. By 
using data sets that differ in size and underlying character­
istics, a variety of test scenarios is achieved. Consistent results 
across all scenarios considered should provide evidence for 
and against the various techniques. 

The two data sets included by Higle and Witkowski (2) are 
used in this study and are labeled DSl and DS2. In addition, 
two remaining data sets, DS3 and DS4, are also used. DS3 
corresponds to the set of accident rates associated with sig­
nalized intersections under the jurisdiction of the City of Tempe 
Traffic Engineering Division, Tempe Arizona, during 1982 
and 1984, whereas DS4 corresponds to accident histories asso­
ciated with signalized intersections under the jurisdiction of 
the City of Tucson Department of Transportation, Tucson 
Arizona, during 1983-1986. Within each data set, each loca­
tion's accident data are combined to represent a single annual 
accident rate (i.e., average number of accidents per million 
vehicles entering the intersection). The cumulative distribu­
tions for these preliminary sets of rates are depicted in 
Figure 1. 

DSl consists of33 intersections and yields an approximately 
s-shaped curve. DS2 consists of 35 intersections and is char­
acterized by an approximately linear curve with three rates 
that are significantly higher than all other rates. In Figure lb, 
these outliers can be seen to affect the tail of the distribution. 
DS3 consists of 28 sites and exhibits the most nearly linear 
curve, with no obvious outliers. DS4 consists of 96 intersec­
tions and is characterized by a gently shaped s-curve. For the 
purposes of this experiment, the accident rates taken from 
the data sets DS1-DS4 are thought of as representing perfect 
information, subject to no randomness whatsoever, and thus 
are considered to be the true accident rates (i.e . , those that 
the identification procedures attempt to estimate). 
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Truly Hazardous Locations 

To assess the performaRce of the various techniques, it is 
necessary to identify a set of locations that are truly hazard­
ous. This identification is based on the collection of true rates, 
{A;}j'!. 1 , as it represents a state of perfect knowledge. To be 
consistent with current practice, a location is considered haz­
ardous if the true accident rate is sufficiently higher than the 
population mean. That is, if 

A, > µ, + ka (1) 

where µ,and a are the mean and standard deviation associated 
with the true distribution of rates (as depicted in Figure 1), 
then location i is identified as truly hazardous . The symbol 
H is used to represent those sites that are truly hazardous. 

For the purpose of this experiment, three values of k are 
considered: 1.282, 1.645, and 2.327. These values are arbi­
trarily selected to correspond to the critical values associated 
with a classical statistical test of hypothesis at the 0.90, 0.95, 
and 0.99 confidence levels, respectively. These values are 
obtained from the normal distribution function and thus have 
no particular meaning in terms of the distribution of true rates 
associated with the four preliminary data sets DS1-DS4. Note 
that they are used simply because they coincide with the com­
monly used classical statistical procedures discussed elsewhere 
(2, 3) and thus provide for a convenient comparison of the 
set of truly hazardous sites and the sets of sites that are flagged 
by the various techniques. 

Recognizing that Equation 1 may be an unsatisfactory method 
for determining those locations that are truly hazardous, a 
second method in which a threshold value is used is also 
considered. That is, one may alternatively state that if 

(2) 

where AT represents an upper limit on the acceptable accident 
rates, then location i is identified as truly hazardous (H) . Note 
that Equations 1 and 2 are equivalent when 

(3) 

Thus one may equivalently think of AT as implying a critical 
value for the multiplier k. 

It should be noted that because {A,};':.. 1 represents the true 
accident rates, locations are identified as truly hazardous (H) 
independent of both the simulated data and the technique 
being tested. Thus, all techniques attempt to identify the same 
set of locations for all simulated data sets. Naturally, the set 
of truly hazardous locations will vary with the four preliminary 
data sets, DSl-DS4. 

Simulation of Data 

Given a collection of true rates, accident data comparable 
with what would be available to a safety analyst are randomly 
generated using a computer simulation. The number of acci­
dents at intersection i is generated according to a Poisson 
distribution with a mean of A,V,, where V, represents the 
traffic volume at the intersection. The Poisson is a logical 
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FIGURE 1 Cumulative distributions. 

choice for a probabilistic model for numerous reasons, such 
as those presented by Ross (4). In general, if the numbers of 
events (e.g., accidents) occurring in disjoint time intervals are 
independent random variables with distributions varying with 
the length of the interval and the probability of multiple events 
occurring in a small interval of time is low, the Poisson dis­
tribution is an appropriate model for the random process. 
Similarly, if one envisions the relationship between traffic 
volume and accidents at a particular intersection in such a 
fashion that each vehicle entering the intersection has some 

TRANSPORTATION RESEARCH RECORD 1238 

(b) DS2 (35 sites) 
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probability of being involved in an accident, then again the 
Poisson distribution is an appropriate choice for modeling the 
number of accidents at the intersection (5, p. 66). 

Analysis of Simulated Data 

The simulated data are analyzed using the techniques dis­
cussed by Higle and Witkowski (2). The term "flag" and the 
symbol Fare used to distinguish between those sites that are 
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identified as hazardous by the techniques being tested (i.e., 
using the simulated data) and those sites that are truly 
hazardous (i.e., "H," those based on the true rates). 

The techniques being tested vary somewhat, depending on 
whether Equation 1 or 2 is used to determine the set of truly 
hazardous locations. In what follows, ~; represents the acci­
dent rate observed at location i, based on the traffic volume 
at the intersection and the simulated number of accidents, x 
and s represent the sample mean and standard deviation of 
the observed (simulated) data, and xR is the observed system 
rate. The symbol ~; is used to represent the true accident 
rate at location i, which some techniques explicitly treat as a 
random variable. When truly hazardous locations are deter­
mined by Equation 1, the identifcation techniques are defined 
as follows: 

CJ Site i is flagged as hazardous if 

(4) 

C2 Site i is flagged as hazardous if 

(5) 

Bl Site i is flagged as hazardous if 

(6) 

B2 Site i is flagged as hazardous if 

(7) 

The values of x and xR are computed as described by Higle 
and Witkowski (2), ands is computed as described by Quaye 
(2, p. 33). The probabilities presented in Equations 6 and 7 
are computed as done by Higle and Witkowski (2), with the 
modification for the estimation of the parameters of the regional 
distribution of the accident rates provided in the discussion 
by Morris (2). Note that in each of the preceding techniques, 
the values of S used to determine whether or not a site is 
flagged are allowed to vary freely and are generally supplied 
by the safety analyst. In making comparisons between the 
various techniques, S is held constant so that the four in­
equalities have analogous interpretations. That is, with S fixed, 
Cl and C2 are interpreted as indicating that a flagged site has 
a true rate that exceeds x and xR, respectively, with a confi­
dence of 8 x 100 percent, whereas Bl and B2 are interpreted 
as indicating that a flagged site has a true rate that exceeds 
x and Xn, respectively, with a probability of S. The values of 
S tested are 0.90, 0.95, and 0.99. Correspondingly, k0 takes 
on the values 1.282, 1.645, and 2.327, respectively. These 
values are intentionally selected to agree with the values used 
when identifying the truly hazardous locations, thereby facil­
itating the comparison of H and F. 

Cl is based on the concept of confidence intervals associ­
ated with classical statistical tests of hypothesis. C2 is the rate­
quality technique defined by Norden, Orlansky, and Jacobs 
(6) and Morin (7) and can be thought of as a refinement of 
Cl. Bl and B2 differ only in their respective use of x and xR 
and are simply two variations of the Bayesian technique defined 
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by Higle and Witkowski (2). Both Cl and C2 are computa­
tionally straightforward, whereas Bl and B2 require the 
numerical integration of a gamma probability density function 
and are thus computationally intensive. 

When truly hazardous locations are identified via a thresh­
old value, as in Equation 2, the values of S used in the Baye­
sian techniques will vary. As Bl is intended to be analogous 
to Cl (in a Bayesian fashion), the appropriate value of S is 
taken to depend on :X, s, and AT. That is, buildin,g from the 
observation leading to Equation 3, Jet 

k 
- AT - x 

T-
S 

(8) 

and ST represent the confidence level whose critical value 

d k F 1 "f AT - x 1 5 h correspon s to T· or examp e, 1 --- = . 8 t e value 
s 

of ST used in Equation 7 is 0.9429 [see Ross (4, p. 73)]. On 
the other hand, B2 is intended to be analogous to C2, which 
differs from Cl; thus the value of 8 used will differ from the 
value associated with Equation 8. Using logic similar to that 
which yields Equation 3, let 

(9) 

and let ST; represent the confidence level whose critical value 
corresponds to kn- Note that because kTi depends on V;, STi 
will vary with the location. This is not the case for Bl when 
Equation 2 is used to define the truly hazardous locations. 
When truly hazardous locations are identified using Equation 
2, the techniques being tested are defined as follows: 

Bl T Site i is flagged as hazardous if 

P(X; > x) > sT (10) 

B2T Site i is flagged as hazardous if 

(11) 

where the threshold probabilities oT and ST; are computed in 
accordance with Equations 8 and 9, respectively. The letter 
Tis appended to the names given to the techniques to indicate 
that a threshold rate has been used to determine the set of 
truly hazardous locations. 

Comparison of Techniques 

As previously mentioned, a procedure that works perfectly 
will flag every site that is truly hazardous and no others, 
yielding F = H. It is reasonable, however, to expect that 
none of the techniques being tested work perfectly. Thus, 
errors will be made, and the challenge lies in determining how 
to describe these errors quantitatively. 

As discussed in earlier work (2), a simple accounting of the 
two types of mistakes, false negative and false positive iden­
tifications, yields an inadequate summary of the accuracy of 
the procedures. For example, consider a site that is deemed 



14 

truly hazardous based on Equation 1 with k correspumling tu 
3 = 0.95. If the probability computed in Equation 6 (criterion 
Bl) is at least 0.95, the site is correctly flagged as hazardous. 
Otherwise, Bl yields a false negative identification for this 
location. A false negative identification based on a computed 
probability of 0.949 (representing a "near miss") might be 
judged less harshly than one based on a computed probability 
of 0.70. Hence, there is some vahw in knowing the m;ienitude 
of the error associated with a misidentification. 

Consider a hazardous site i that is not flagged (NF) by the 
technique under consideration (i.e., a false negative). Leto 
represent the value corresponding to k for which the site is 
hazardous according to Equation 1 (i.e. 5 = 0.90, 0,25, or 
0.99). Under Cl and C2, one can easily determine 5;, the 
maximum level for which the site ~ould be flagged. For ~xam­
ple, using Cl (Equation 4), set k; =: ~; - _xis. Then 5; can 
easily be determined. The values of k; and 5; are analogously 
defined using C2 (Equation~). In this case, because i is a 
false negative identification, O; < o, and thus, 

(12) 

represents the magnitude of the error associated with the 
misidentification. With the Bayesian methods Bl and B2, 5; 
is equal to the probabilities computed via Equations 6 and 7, 
respectively. The magnitude of the error associated with a 
false positive identification is similarly obtained. In this case, 
a site that is not hazardous is flagged at some value of 5. Using 
logic similar to that above, let !::.; represent the value corre­
sponding to A; - µ/er (from Equation 1). Then !::.; can be 
interpreted as representing the appropriate level at which the 
site would be identified as truly hazardous. In this case, because 
i is a false positive, !::.; < 5, and thus 

T; = 5 - f::.; (13) 

represents the magnitude of the error. Because a site that is 
flagged when 5 = 0.95 will also be flagged when 5 = 0.90, 
a site need not be unique! y flagged (or identified as hazardous) 
at one level. In cases where a site is misidentified for multiple 
values of 5, the maximum value of the error is used for com­
parative purposes. 

Finally, the consequences of false negative and false posi­
tive identifications are distinct. As such, the magnitudes of 
the two types of errors are considered separately. That is, 
letting NF n H represent the set of sites receiving false neg­
ative identifications and n represent the number of sites in 
this category, then 

1 2= p,. 
n 1ENFnH 

(14) 

represents the average error per false negative identification. 
Similar values can be computed using T; for the false positive 
identifications. To summarize, two statistics-(!) number of 
false identifications and (II) average error per misidentifica­
tion-can be computed for each of the techniques identified 
by Equations 4 to 6, for each type of error. Statistic I is 
averaged over the 30 repetitions of the experiment, whereas 
statistic II is averaged only over those repetitions in which a 
misidentification occurs. In addition, two other statistics .are 
of interest: (III) maximum number of misidentifications (over 
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the 30 repetitions) am] (IV) number uf repetitions 011 which 
there are no misidentifications. 

When Equation 2, the threshold technique, is used to deter­
mine the set of truly hazardous sites, comparisons are made 
between BIT and B2T (Equations 10 and 11, respectively). 
Because BlT and B2T involve the direct computation of a 
probability, the same four statistics can be computed for these 
methods (i.e., hy comparine the computed prohahilities to RT 
for Bl T and 5Ti for B2T). One might be interested in knowing 
which observed rates exceed AT. Unfortunately, this simple 
"hit or miss" decision precludes an opportunity for compar­
ison with other methods. As such, when Equation 2 is used, 
comparisons are made only between the Bayesian techniques 
BIT and B2T, affording an opportunity to investigate the 
relative value of allowing the threshold probability to vary 
with the site. 

DISCUSSION 

As discussed earlier, four distinct data sets are used to provide 
four sets of "true" accident rates. The reasons for this are 
twofold. First, to be able to make useful conclusions regarding 
the various techniques, it is necessary to use data that some­
how capture some of the idiosyncrasies of a collection of real 
accident rates (such as accident rate/traffic volume pairings, 
central or outlying tendencies, etc.). Although the literature 
suggests a tendency toward using a gamma distribution to 
represent the true rates (e.g. 1,2,8,9) it is possible that, within 
this experiment, such a choice might bias the results toward 
the Bayesian techniques, as the gamma distribution figures 
heavily in its development. Second, it is possible that a given 
set of rates might, on average, favor a particular technique. 
Note that the variance of this hypothetical collection of true 
rates is (on average) higher than the variance of those rates 
from which they have been generated. To overcome these 
potential shortcomings, multiple data sets with differing char­
acteristics are used in an effort to establish sensitivities to the 
characteristics of the preliminary data set. Consistent results 
across all data sets would suggest that any such sensitivities 
that might exist are probably negligible. 

The second phase of the experiment, the identification of 
truly hazardous locations, proves to be by far the most elusive 
part of the experimental design. To complete this task, it is 
necessary to decide how to interpret perfect information. The 
method corresponding to Equation 1 is used simply because 
it provides a convenient comparison of Hand F (i.e., via 5). 
Thus, the reader is urged to interpret Statistic II, the average 
deviation per misidentification, as nothing more than a "ball­
park estimate." Note that the use of Equation 1 is likely to 
bias the experiment in favor of Cl. To allow for other inter­
pretations of perfect information, Equation 2 is also used as 
a second method for determining a set of truly hazardous 
intersections. As an added benefit, Equation 2 allows for an 
assessment of the relative value of allowing the critical prob­
abilities used in the Bayesian techniques to vary from one site 
to another. 

The multiple statistics presented earlier are necessary to 
gain a full appreciation of the differences between the various 
techniques. For example, a large value of Statistic I (number 
of errors, averaged over the 30 repetitions) combined with 
low values of Statistic II (average deviation per error) suggests 
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that a large number of "near misses" are observed. Because 
an increase in the statistics associated with the false positives 
may be tolerable if a substantial decrease in the statistics 
associated with the false negatives ensues, the statistics are 
computed separately for false negative and false positive 
identifications. 

RESULTS 

The results of the study are separated on the basis of the 
method used to determine the set of truly hazardous locations. 
Presented first are the results of those repetitions associated 
with the method identified by Equation 1. 

In Table 1 the distribution of the sites among the four 
categories determined by the combinations of H, NH, F, and 
NF are summarized. The values reported represent average 
values over the 30 repetitions of the experiment. As through­
out this paper, within these figures , H corresponds to those 
sites that are truly hazardous, and F corresponds to those sites 
that are flagged as hazardous by the technique under consid­
eration. The prefix N is used to represent the complement of 
the set. For the purposes of consistent comparison, the o levels 
at which a site is deemed truly hazardous and fl agged by the 
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technique under consideration must agree to obtain a correct 
identification. 

In reading Table 1, note that when o = 0.90, Cl correctly 
identifies (on average) 2.17 of the truly hazardous sites (H­
F) and 28.67 of the truly nonhazardous sites (NH-NF) for 
DSl, while incorrectly identifying 0.83 of the truly hazardous 
sites (H-NF, false negatives) and 1.33 of the truly nonhazar­
dous sites (NH-F, false positives) . The corresponding values 
for Bl, on the other hand, are 2.50 and 24.93 for the correct 
identification of hazardous and nonhazardous sites, respec­
tively, and 0.50 and 5.07 for the incorrect identifications. Note 
that for DSl, when o = 0.90, 3 sites (2.17 + 0.83) are truly 
hazardous but 30 are not. 

A number of trends are immediately visible in Table 1. 
First, note that in nearly every instance, C2, Bl, and B2 
correctly identify a significantly higher fraction of the truly 
hazardous sites than does Cl. Consequently, it follows that, 
of the four techniques tested, Cl consistently yields the high­
est number of false negative identifications. The obvious 
exception to this trend is found in DS3 when o = 0.99. In 
this case, there is no site that is truly hazardous, and none of 
the techniques flag any sites. Further, for all techniques, the 
false positive identifications appear to be lowest for DS2. This 
is the data set that contains the outliers, true rates that are 

TABLE 1 DISTRIBUTION SUMMARY 

Technique 

Cl C2 Bl B2 

F NP F NF F NF F NP 

DSJ (33 Sites) 
0=0.90 H 2.17 0.83 2.43 0.57 2.50 0.50 2.43 0.57 

NH 1.33 28.67 4.63 25.37 5.07 24.93 4.60 25.40 

0=0.95 H 1.13 0.87 1.30 0.70 1.33 0.67 1.23 0.77 
NH 0.73 30.27 4.47 26.53 4.93 26.07 4.20 26.80 

0=0.99 H 0.20 0.80 0.63 0.37 0.57 0.43 0.57 0.43 
NH 0.17 31.83 2.90 29.10 2.93 29.07 2.73 29.27 

DS2 (35 Sites) 
0=0.90 H 2.70 0.30 3.00 0.00 3.00 0.00 3.00 0.00 

NH 0.40 31.60 4.50 27.50 4.60 27.40 4.33 27.67 

0=0.95 H 2.50 0.50 2.97 0.03 2.97 0.03 2.97 0.03 
NH 0.23 31.77 3.07 28.93 3.10 28.90 2.83 29.17 

0=0.99 H 1.27 0.73 2.00 0.00 2.00 0.00 2.00 0.00 
NH 0.27 32.73 2.23 30.77 2.20 30.80 2.03 30.97 

DS3 (28 Sites) 
0=0.90 H 3.07 1.93 4.60 0.40 4.67 0.33 4.60 0.40 

NH 0.33 22.67 3.20 19.80 3.63 19.37 3.13 19.87 

0=0.95 H 0.70 0.30 1.00 0.00 1.00 0.00 1.00 0.00 
NH 1.03 25.97 5.83 21.17 6.13 20.87 5.70 21.30 

0=0.99 H 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
NH 0.17 27.83 5.00 23.00 5.13 22.87 4.83 23.17 

DS4 (96 Sites) 
0=0.90 H 8.83 1.17 9.93 0.07 9.97 0.03 9.93 O.Q7 

NH 2.10 83.90 18.87 67.13 20.63 65.37 18.77 67.23 

0=0.95 H 6.40 2.60 8.97 O.Q3 8.97 0.03 8.97 0.03 
NH 0.40 86.60 16.70 70.30 18.50 68.50 16.33 70.67 

0=0.99 H 1.37 0.63 2.00 0.00 2.00 0.00 2.00 0.00 
NH 1.03 92.97 18.70 75.30 20.13 73.87 17.77 76.23 
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substantially higher than all other rates within the sel. One 
should expect that, in general, the observed rates associated 
with these outliers will be correspondingly higher , and it fol­
lows that any reasonabie identification technique shouid per­
form well in such a situation. Of course, note also that for a 
fixed value of o, Cl tends to flag fewer sites than the remaining 
techniques. Consequently, it yields a larger number of false 
negative errors and a smaller of false positive errors th:m the 
other techniques. 

To appreciate the magnitudes of the errors associated with 
the various techniques, the four summary statistics are pre­
sented in Tables 2 and 3. 

Statistic I, the average number of false identifications, is 
related to the data presented in Table 1. In deriving the sta­
tistics presented in these tables, a site that is incorrectly iden­
tified for two or more values of o is counted only once when 
computing Statistic I. As previously stated, the maximum 
magnitude of the error associated with the misidentification 
is used when computing Statistic II. 

Again, a number of trends are immediately visible in these 
tables. Note again that Cl consistently yields a significantly 
higher number of false negative identifications (Statistic I , 
Table 2) than the other techniques . Moreover, its correspond­
ing error per false negative identification (Statistic II , Table 
2) tends to be comparable with that of the other techniques, 
although in most situations it is somewhat lower than the 
others. Note that for all but DSl, a substantial majority of 
the 30 repetitions of the experiment yield no false negative 
identifications for C2, Bl, and B2. By looking at Statistics III 
and IV, note that only one false negative identification is ever 
made by C2, Bl, and B2 over the 30 iterations with DS2 
(Table 2). Similar comments hold for DS4 and, to a lesser 
extent, for DS3. As previously mentioned, this trend among 
the false negative identificlltions is reversed when the false 
positive identifications (Table 3) are considered, where all 
four statistics are generally better for Cl than for C2, Bl , 
and B2. 

TABLE 2 FALSE NEGATIVE SUMMARY STATISTICS 

Criterion 

Data Set Statistic Cl C2 Bl B2 

DS l (33 Sites) I 1.70 0.90 0.97 1.00 
II 0.101 0.186 0.165 0.184 
m 3 2 2 2 
IV 0 11 9 8 

DS2 (35 Sites) I 1.13 0.03 0.03 O.Q3 
II 0.063 0.059 0.061 0.063 
III 3 1 1 I 
IV 6 29 29 29 

DS3 (28 Sites) I 2.17 0.40 0.33 0.40 
II 0.115 0.149 0.155 0.170 
III 4 1 l I 
IV 0 18 20 18 

DS4 (96 Sites) I 3.70 0.07 0.03 0,07 
II 0.049 0.081 0.087 0.083 
III 6 1 l I 
IV I 28 29 28 
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TABLE 3 FALSE POSITIVE SUMMARY STATISTICS 

Criterion 

Data Set Statistic Cl C2 Bl B2 

DS 1 (33 Sites) I 1.70 5.97 6.37 5.90 
II 0.111 0 .183 0.192 0.182 
III 3 8 8 8 
IV 6 0 0 0 

DS2 (35 Sites) I 0.63 5.40 5.50 5.20 
II 0.154 0.234 0.235 0.231 
III 2 9 9 9 
IV 15 0 0 0 

DS3 (28 Sites) I 1.47 7.57 8.10 7.50 
II 0.068 0.141 0 .149 0.139 
III 3 10 11 10 
IV 2 0 0 0 

DS4 (96 Sites) I 3.30 26.70 28.50 26.53 
II 0.069 0.167 0.179 0.167 
III 6 30 32 30 
IV 1 0 0 0 

A final trend emerging from these tables warrants obser­
vation. There is virtually no difference between the perform­
ances of C2, Bl, and B2. Close agreement between Bl and 
B2 is to be expected, as there is generally little difference 
between x and xR in Equations 6 and 7. However, that C2 so 
closely agrees with the Bayesian techniques may follow from 
the fact that the Poisson distribution plays so heavily in the 
derivations of Equations 5, 6, and 7. 

We now turn to the presentation of the results of the exper­
iment when Equation 2, the threshold criterion, is used to 
define the set of truly hazardous intersections. In Table 4 the 
distribution of the sites among the four categories determined 
by the combinations of H, NH, F, and NF is summarized. 

TABLE 4 DISTRIBUTION SUMMARY, 
THRESHOLD VALUES 

Technique 

BIT B2T 

F NF F NP 
DSJ (33 Sites) 

Ar=l.5/MVE 
H 1.57 0.43 1.27 0.73 

NH 6.40 24.60 1.97 29.03 

DS2 (35 Sites) 
Ar=l.5/MVE 

H 3.00 0.00 2.93 0,07 
NH 6.30 25.70 1.47 30.53 

DS3 (28 Sites) 
Ar=2.0JMVE 

H 1.00 0.00 0.73 0.27 
NH 6.17 20.83 0.93 26.07 

DS4 (96 Sites) 
Ar=2.0/MV£ 

H 8.97 0.03 8.17 0.83 
NH 19.63 67.37 3.37 83.63 
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Again, the values reported represent average values over the 
30 iterations. The threshold values, AT were arbitrarily chosen 
in the range of the 90th to 95th percentile of the true distri­
butions presented in Figure 1 and are comparable with, but 
not identical to, the critical values identified in Equation 1. 

As with the results presented in Table 1, BlT and B2T 
appear to identify successfully most sites that are truly haz­
ardous (i.e., H n NFtends to be small, relative to H). Although 
B2T results in a slightly higher number of false negative iden­
tifications than does BlT, it is generally accompanied by a sub­
stantial decrease in the number of false positive identifications. 

In Table 5, the average fractions of truly hazardous sites 
that are not flagged by the various techniques, the false neg­
ative identifications, are presented. Similar information 
regarding the false positive identifications is contained in Table 
6. Note that this information is directly obtained from Tables 
1 and 4. It is included here to facilitate qualitative comparisons 
between the various techniques. 

In evaluating the false negative identifications as a fraction 
of the number of sites that are truly hazardous, Table 5 indi­
cates that in 8 of the 11 cases in which there are truly haz­
ardous locations, C2, Bl, and B2 yield fractions that are, at 
most, 0.08 (in 7 cases, this fraction is, at most, 0.01). The 
corresponding fractions for Cl are much higher, with values 
above 0.25 in 7 of the 11 cases and one fraction as high as 
0.8 (although this corresponds to a situation in which only 
one site in the data set is hazardous). This can be taken to 
be encouraging evidence that C2, Bl, and B2 are generally 
successful in flagging sites that are truly hazardous. Unfor-

TABLE 5 FALSE NEGATIVE FRACTTONS, NF n HIH 

Ii Cl C2 Bl B2 BIT B2T 

DSJ 
0.90 0.28 0.19 0.17 0.19 
0.95 0.43 0.35 0.34 0.39 0.215 0.365 
0 ,99 0.80 0.37 0.43 041 

DS2 
0.90 0.10 0. 0. 0. 
0.95 0.17 0.01 0.01 0.01 0. 0.023 
0.99 0.37 0. 0. 0. 

DS3 
0.90 0.39 0.08 0.07 0.08 
0.95 0.30 0. 0. 0. 0. 0.27 
0.99 n/a n/a n/a n/a 

DS4 
0.90 0.12 0.007 0.007 0.007 
0.95 0.29 0.003 0.003 0.003 0.033 0.092 
0.99 0.32 0. 0. 0. 

TABLE 6 FALSE POSITIVE FRACTIONS, F n NH/NH 

Ii Cl C2 Bl B2 BIT B2T 

OSI 
0.90 0.044 0.154 0.169 0.153 
0.95 0.024 0.144 0.159 0.135 0.206 0.063 
0.99 0.005 0.091 0.092 O.OR~ 

DS2 
0.90 0.012 0.141 0.144 0.135 
0.95 0.007 0.096 0.097 0.088 0.197 0.046 
0.99 0.008 0J l67 0.067 0.062 

DS3 
0.90 0.014 0.139 0.158 0.136 
0.95 0.038 0.216 0.227 0.211 0.228 0.034 
OQQ 0.006 0.178 0.183 0.173 

DS4 
0.90 0.024 0.219 0.240 0.218 
0.95 0.005 0.192 0.213 0.188 0.226 0.039 
0.99 0.011 0.199 0.214 0.189 
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tunately, this success comes at a cost of a substantial increase 
in the number of false positive identifications over the number 
associated with Cl. In reviewing Table 6, note that of the 
sites flagged, Cl yields a consistently lower fraction of false 
positive identifications than the other three. This false positive 
trend, which opposes the false negative trend, is to be expected 
because false positive and false negative errors are inversely 
related. 

As one might expect, BlT exhibits both false negative and 
false positive profiles that are roughly comparable to those 
exhibited by Bl (and hence, by C2 and B2 as well). Of course, 
differences between BlT and Bl are to be expected because 
the true rates do not follow a normal distribution; thus, for 
example, the 95th percentile of the true distribution does not 
necessarily correspond to µ + l.645cr. B2T, on the other 
hand, appears to exhibit false negative profiles that are com­
parable with those exhibited by B2 (and hence, by Bl and 
C2) while exhibiting false positive profiles that are comparable 
with those exhibited by Cl. The most notable difference occurs 
with DS3, where an average of 27 percent of the truly haz­
ardous sites receive a false negative identification under B2T 
(note that there is only one such site). 

Tables 7 and 8 contain the summary statistics associated 
with the portion of the experiment pertaining to the threshold 
values. In reviewing Tables 7 and 8, note again that B2T 
suffers from a higher number of false negative identifications 
than does BlT. In looking at Statistic II, however, it appears 
that with the exception of DSl, the false negative identifi­
cations associated with B2T are "near misses ." This is true 
even for DS3, for which the large fraction of false negative 
identifications was previously reported . This "near miss" phe­
nomenon is observed to an even greater extent with the false 
positives. Thus, it seems that in general, B2T yields more 
false negatives than BlT, although it tends to come very close 
to identifying all hazardous sites correctly. In addition, B2T 
identifies fewer false positives than Bl T and tends to come 
closer to identifying them correctly than does BlT, as indi-

TABLE 7 FALSE NEGATIVE SUMMARY 
STATISTICS, THRESHOLD VALUES 

Criterion 

Data Set Statistic BIT B2T 

DSl (33 Sites) I 0.43 0.73 
II 0.2533 0.2352 

ID 2 2 
IV 19 13 

DS2 (35 Sites) I 0.00 0.07 
II n/a 0.0306 

ID 0 1 
IV 30 28 

DS3 (28 Sites) I 0.00 0.27 
II n/a 0.0027 

III 0 1 
IV 30 22 

DS4 (96 Sites) I 0.03 0.83 
II 0.0627 0.0119 
m 1 2 
IV 29 9 
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TABLE 8 FALSE POSITIVE SUMMARY 
STATISTICS, THRESHOLD VALUES 

Criterion 

Data Set Statistic BIT B2T 

DS 1 (33 Sites) I 6.40 1.97 
II 0.0823 0.0113 

III 12 4 
IV 0 3 

DS2 (35 Sites) I 6.30 1.47 
II 0.1082 0.0133 
III 11 5 
IV 0 10 

DS3 (28 Sites) I 6.17 0.93 
II 0.0449 0.0001 

III 9 3 
IV 0 8 

DS4 (96 Sites) I 19.63 3.37 
II 0.0539 0.0001 

III 22 7 
IV 0 0 

cated by Statistic II. Thus, with the Bayesian technique, it 
seems that there is some merit in allowing the probability that 
must be exceeded before a site is flagged to vary with the site. 

DISCUSSION OF SENSITIVITY 

Given that the procedures being tested represent statistical 
analyses of data that are subject to random variations, one 
must expect that some sites will be incorrectly categorized. 
One should expect sites with true accident rates that are close 
to the critical rate, µ, + ka or An to be prone to misidenti­
fication. In fact, all of the false negative errors associated with 
DSl for B = 0.99 are attributed to this phenomenon. There 
is one site with a true rate only slightly higher than the critical 
rate suggested by Equation 1. Similarly, in DS3 there is one 
rate that is slightly higher than the critical rate for B = 0.90. 
This particular site accounts for nearly 60 percent of the C2, 
Bl, and B2 false negative errors and for nearly 30 percent of 
the Cl false negative errors. This phenomenon, which is largely 
unavoidable, accounts for approximately one-half of all mis­
identifications. Several other phenomena cause false negative 
and false positive identifications among locations that do not 
have this characteristic. These phenomena, which might not 
be expected, are discussed next. 

Many of the false negatives produced by Cl can be directly 
attributed to the dependence of the Cl critical rates (defined 
by Equation 4) on the sample mean and variance of the sim­
ulated data. A high sample mean and/or a high sample var­
iance yields a high critical value that must be exceeded before 
Cl flags a site as hazardous. When these sample statistics are 
high, the generated accident rate at a given location must be 
high enough to exceed the critical rate. Such an occurrence 
will naturally result in a lower number of sites flagged as 
hazardous and a correspondingly higher number of false neg­
ative identifications. Additionally, cases were observed in which 
a sing!~ site having the same observed accident rate in two 
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different repetitions of the experiment was flagged for only 
one of the repetitions, because of differences in the sample 
statistics. 

The false positive identifications are much more dramatic 
for C2, Ill, and Il2 than for Cl, as indicated by Tables 3 and 
6. This appears to result from a sensitivity of these criteria to 
large variations in the traffic volume at the locations involved, 
as alluded to in the discussion by Morris (2). Recall that in 
the Bayesian procedure, the parameters associated with the 
gamma distributions from which the desired probabilities are 
computed are updated using the number of accidents observed 
at the site and the traffic volume at the site [see Higle and 
Witkowski (2)]. In general, a low traffic volume will result in 
a distribution with a high variance, a distribution that is fairly 
"spread out." For a site with a low traffic volume, the com­
puted probabilities tend to be lower than for a site with a high 
traffic volume, whose accident rate distribution has a lower 
variance and is more "peaked." Thus, when using Bl and 
B2, a site with a low rate and a high volume will be sensitive 
to the observation of a "higher than expected" number of 
accidents. Such an occurrence leads to a false positive iden­
tification. Most of the false positive identifications associated 
with Bl, B2, and C2 are due to this sensitivity to the traffic 
volumes. Because lraffit: volumes Lem! tu ue high, ielaLive Lo 
the number of accidents, C2 and the Bayesian criteria used 
in the first phase of the experiment, indicated by Equations 
6 and 7, can be expected to be plagued by a high number of 
false positive identifications. 

Although C2, Bl, and B2 tend to perform well in terms of 
the number of false negative identifications, Tables 2 and 5 
indicate that they yield the largest number of false negative 
identifications for preliminary data set DSl. This increase 
over the remaining preliminary data sets appears to be directly 
attributed to a single site that is truly hazardous for B = 0.95 
and, consequently, for B = 0.90 as well. This particular site 
has a low volume, and the updated distribution used in the 
Bayesian procedure has a correspondingly high variance. As 
a result it is prone to false negative identification, particularly 
when the observed accident rate is lower than the true acci­
dent rate. 

The second phase of the' experiment allows for the com­
parison of two variations of the Bayesian technique presented 
elsewhere (2). With BlT, a single "critical value" is applied 
to all sites, whereas with B2T, the critical value varies among 
the sites as a function of the traffic volume at the site. Based 
on Table 4, the difference between these two variations is 
dramatic. BlT is essentially the same as the procedures Bl 
and B2 and thus exhibits the previously discussed sensitivity 
to the traffic volume, resulting in a number of false positive 
identifications. With B2T, a large traffic volume results in a 
correspondingly large vahie that the computed probability 
must exceed to be flagged as hazardous. In addition, these 
values are generally higher than the value used in BlT, and 
it follows that fewer sites are flagged by B2T than by BlT. 
The dramatic reduction in the number of false positive iden­
tifications follows. As might be expected, this reduction is 
accompanied by an increase in the number of false negative 
identifications made by B2T. With the exception of prelimi­
nary data set DSl (See Tables 4 and 5), however, B2T still 
exhibits a tendency to identify the truly hazardous locations 
correctly. As with C2, Bl, and B2, B2T is plagued by the 
truly hazardous site in DSl that is subject to low traffic vol-
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umes. This site still receives false negative identifications when 
the observed accident rate is low. 

CONCLUSIONS 

In evaluating the performance of the various criteria , one must 
weigh the relative severity of false negative and false positive 
errors. A false negative error is likely to result in a failure to 
improve a truly hazardous location, and may lead to various 
forms of catastrophic loss . False positive errors may or may 
not result in the unnecessary improvement of a location that 
is not truly hazardous, depending on the judgment of the 
safety analyst and budgetary constraints . Thus, false negative 
errors are considered far more serious than false positive errors . 

Because all techniques tested within the confines of this 
experiment behave consistently across all data sets, it does 
not appear that the underlying characteristics of the set of 
true accident rates influence the performance of a technique . 
Thus, these techniques can be expected to perform in a man­
ner similar to that observed within this experiment, inde­
pendent of regional data characteristics that might exist for a 
given jurisdiction. In reviewing cases in which the various 
techniques tested yield incorrect identifications (either false 
negatives or false positives), a number of trends become clear. 
Many of the errors are associated with locations whose true 
accident rates are close to the critical rates used to define the 
set of sites that are truly hazardous. This phenomenon, which 
accounts for a large fraction of the errors, is observed among 
all techniques tested; it is to be expected and is probably 
unavoidable. 

Cl, the classically based statistical technique, flags a smaller 
number of sites and consequently yields a greater number of 
false negative identifications and larger magnitudes of false 
negative error than the other techniques. Surprisingly, many 
of the false negative identifications associated with Cl result 
from its apparent sensitivity to the sample mean and standard 
deviation of the observed accident rates. It is disconcerting 
to note that even when two sets of data yield the same observed 
accident rate at a given location, differing sample statistics 
can result in differing identifications. This sensitivity, which 
is not observed among the other techniques, casts doubt on 
the reliability of Cl as an appropriate technique for the iden­
tification of hazardous locations. 

The Bayesian techniques Bl and B2 and the classically 
based rate-quality technique C2 perform in a similar fashion . 
Each yields low numbers of false negative identifications and 
correspondingly low false negative errors. This comes at the 
expense of an increase in the number of false positive iden­
tifications, which may be the result of a sensitivity to the 
volume of traffic at the sites . The relatively large number of 
false positive errors is disconcerting but may not be serious, 
given that false negative identifications are to be avoided. It 
appears that Bl, B2, and C2 exhibit a sensitivity to the volume 
of traffic at the sites that can result in a large number of false 
positive identifications. This may present difficulties in that 
many of the sites identified as hazardous are often not truly 
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hazardous. Nonetheless , the rate-quality technique, C2, yields 
results that are virtually indistinguishable from those of the 
Bayesian techniques anq is computationally straightforward. 

In an effort to counteract the apparent sensitiVlty of C2, 
Bl, and B2 to large variations in traffic volume, one can use 
a variation of the Bayesian method in which the value the 
computed probability must exceed before a site is identified 
as hazardous is allowed to vary as a function of the traffic 
volume at the site. B2T is an example of such a technique. 
With this technique, a small (but noticeable) increase in the 
number of false negative identifications is accompanied by a 
dramatic decrease in the number of false positive identifica­
tions. Thus, B2T tends to identify correctly sites that are truly 
hazardous without additionally identifying as hazardous a large 
number that are not truly hazardous. On the basis of the 
results obtained when Equation 2 is used in the identification 
of truly hazardous locations, it appears that there is some 
merit in allowing the probability used to flag locations in the 
Bayesian technique to vary among the sites, as suggested by 
Equations 8-11. Continued investigation into the potential 
advantage of this observation is encouraged. In particular, in 
using the observation leading to Equation 3, it will be interesting 
to note whether or not such a refinement of the Bayesian tech­
nique will yield sufficient improvement over the rate-quality 
technique to justify the computational burden associated with 
the technique. 
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