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Crane Productivity and Ship Delay in 
Ports 

CARLOS F. DAGANZO 

This paper studie the effect of crane operation. on hi1> service 
al port terminals. It first propuscs a implc approximate approach 
to calculate the ma ·imum berth throughput during periods uf 
congestion. The key a sumplion is lhat the workload distribution 
(over time) for the ships al berth is the same as the workload 
disfJ· ibution for the ship population as a whole. The validity of 
this as ·umplion i. tested with ·imple, exact models for a variety 
of scenarios involving different kinds of ship and crane opera.ting 
strategies. The paper then examine · the effect that two extreme 
crane operating strategies have on ship delay when the traffic 
levcl doe ·· not exceed the muimum throughput. This is done for 
an idealized situation designed to highlight the impact <if Cl'ane 
operalions while admitting clo ed-form solutions. The average ship 
delay can vary considerably with the crane operating trategy. 

A port's efficiency i often mea ured in term fit . ch rough put 
and typical ship turnaround time (i.e., a hip' time at berth 
plu any delay caused by the port). High turnaround times 
ar · not acceptable in the shipping industry becau e of the very 
large pportunity co t typically as ociatcd with . hip delay. 
However, port construction maintenance, and eq·uipment are 
also very expensive. Thu it is important for port to set an 
appropriate expenditure level, and to allocate their resources 
efficiently among their different functions. For xample, they 
should decide carefully how berth length ·h uld be divided 
among the variou traffic types, and how much cargo handling 
equipment sbo.uld be allocated to each terminal. Although 
such d cisions often depend on factor that cannot be quan
tified rational olutions should be found with an understand· 
ing of how the hip 'turnaround time and the port throughput 
depend on different resource allocation levels. 

The port element that influence ship turnaround most 
directly are berth space and crane availability. Although other. 
elements have the potential for delaying operation (tugboat 
unavailability and land- ide congestion, for example) they are 
not con idered in thi pap r. 

Even though queuing· theory ha been applied to ports fsce, 
for example, work by Plumlee, Mettam. Jone and Blunden, 
Nicolau , Miller, Koenisbergand Meyer , D akin and Walton, 
and Sabria (1 - 8). and other references in abria' di" erta· 
tion], and to the berth system in particular, no models seem 
to recognize explicitly the interaction between berth availa
bility and Cfane operating strategies. This may be becau. e the 
requirements for on hore (un)loading equipment can vary 
considerably from hip to hip, and may also be subject to 
peculiar restrictions, which complicates matters. Work by 
Atkins (9) contains one of the best descriptions f the ship 
loading process for modern container porfs. 
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The goal of this paper is to develop an understanding of 
the impact that different crane cheduling strategic have in 
the long run on maximum throughput and ship delay . T 
achieve thi goal, we will work with a repre entation of the 
world that although highly idealized , preserve the phenom
ena of interest. The paper builds on previou work (10,J J) 
that u ed the same idealized model to develop crane ched
uling strategies . 

The model in these references assumed that ·hip were 
divided into holds; that each hold had a certain amount of 
work that needed to be done (measured in time units of crane 
time); that certain holds could be handled without the need 
for a shore crane; and that shore cranes could be moved 
rapidly. The objective was to assign cranes to holds to reduce 
hip delays. ometimes this meant that a large ship with little 

need for crane would eize the cranes working on another 
hip Lhat required more work. 

For the most part all the ship were assumed to be already 
at berth, but a ca e in which ship had to queue for berth 
space wa also di cussed. For this purpose it wa a sumed 
rllat a ship departure alway freed enough pace for another 
. hip and that ships were chosen from the queue in order of 
arriva l. A ju tification for all of these modeling . implifications 
(which are al o adopted here) can be found el ewhere (JO). 

This paper attempts to take the ·e re ults one step further. 
It studies the y· tem' teady- tate performance as a function 
of the ship arrival pattern when the aforementioned crane 
operating rules are used. It presents simple expressions for 
maximum expected throughput as a function of the number 
of cranes and total berth length. It al o provides ship delay 
formulas when ships have to queue for cranes but the berth 
space is never in short supply. 

The next section gives approximate expressions for the 
average number of busy and idle cranes during periods of 
conge tion. These expres ion lead to berth throughput and 
crane productivity formula . The approximation, which is pro
po ed for reasonably efficient crane operation , is tested with 
exact expressions for a special case in which all the holds 
requiring a crane take the same amount of time to be handled. 
(This assumption, which still preserves the main phenomena 
we want to model, is al o u ed in later ections.) 

The following section applies t11e re ulc from the previous 
one; it compares efficient and inefficient crane scheduling 
strategies and examine the trade·off between cranage co t 
and maximum productivity. 

Next is a study of shjp delay for a multipurpose terminal 
in which ships are either self-sufficient or require, at most, 
two cranes. It is a sumed that berth space is never in short 
supply [this is reasonable from a port economics standpoint 
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(8)], but ships may not always get all the cranes they need 
immediately on arrival. The final section summarizes the results 
and suggests further work. 

CRANE PRODUCTIVITY 

Averaged over time, the number of busy port cranes is related 
to cargo throughput by the relationship: 

(cargo throughput) 

= (busy cranes) x (crane capacity) (1) 

where the crane capacity is the maximum number of cargo 
units that a fully used crane can handle per unit tir11e. 

It is thus important to be able to predict the number of 
busy cranes during periods of congestion. The result can indi
cate the maximum possible berth throughput. 

A Simple Model 

We assume that there is an infinite ship queue and that the 
berth can hold exactly S ships. The ith ship to enter the berth 
is assumed to have H; holds requiring attention. The H1 are 
mutually independent, identically distributed random varia
bles with cumulative distribution function, FH. 

At any given time, the number of busy port cranes equals 
the minimum of two values: the number of available cranes, 
C, and the number of active holds, A (holds still requiring 
attention at the time). 

If the number of active holds present at a berth at a random 
time has the same cumulative distribution function (cdf) as 
the number of holds requiring attention for S ships randomly 
sampled from the queue, then berth throughput can be cal
culated simply. The accuracy of this assumption is tested in 
the next section. The resulting simple throughput expressions 
are derived next. 

Because A is distributed like the sum of S independent, 
identically distributed random variables with cdf, F H(h) A is 
likely to be well approximated by a normal random variable 
and the expected number of busy cranes by the mean of the 
truncated normal variable, min {A, C}: 

E(busycranes) = C - <T\/Sljl([C - Smj/<TYS) (2a) 

and similarly 

E (idle cranes) = <T\/S ljJ ([ C - Sm]/<T v'S) (2b) 

In these equations , m and er are the mean and variance of 
Hi and ljJ ( *) represents lhe integral of the standard normal 
cumulative distribution function. his function is given by 
1p( *) + (*)<I>(*), where <J>( • and 1p( *)are the standard normal 
cdf and probability density function, respectively [see lark 
(12) for a derivation] . The function ljl(• ) i positive , increa. ing, 
and convex; it approaches 0 as its argument approache. -oo, 
and for large positive arguments (greater than 3) its value 
barely exceeds the argumenl. See Figure 1. 

Equation 2b shows that the number of idle cranes depends 
on only Lwo parameters: the " average crane surplus," C -
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Sm, and the "holds at berth variability," <T v'S. Althoug!:i the 
expected number of idle cranes always exceeds the average 
crane surplus, these two are close when there is little variability. 

Equation 2a can be used in conjunction with Equation 1 to 
calculate berth throughput. 

An Assessment of Its Accuracy 

Equations 2a and 2b are based on the assumption that the 
distribution of active holds per ship is the same at berth and 
in the queue. 

Two factors that work in opposite directions (with an inten
sity that depends on the specific crane scheduling strategy) 
tend to disrupt this equality: 

1. A ship's hold with little work may become inactive before 
the ship departs. If this happens often, it will tend to decrease 
the number of active holds at berth; and 

2. Because, with an efficient strategy, ships with low work
loads are given priority, the ships with most active holds will 
tend to be overrepresented at the berth. This tends to increase 
the number of active holds at berth. 

The first factor should be most significant when the distri
bution of (active) hold workloads within a ship is very uneven. 
The second factor should be most significant when the work
load changes drastically across ships. 

The scheduling strategy discussed elsewhere (10) tends to 
reduce the impact of the first factor and increase the impact 
of the second. As mentioned in that reference, the strategy 
"tends to hoard at berth the holds that require work." In the 
remainder of this section we derive, for comparison purposes, 
exact expressions for two simple cases in which the first factor 
does not play a role and the crane allocation strategy proposed 
in earlier work (10) is used. 

It is assumed that all the active holds take exactly the same 
amount of time (without loss of generality we take this time 
to be one unit) and that only one crane can work on ,a hold 
at a time. We start our observation with an empty system; 
thus, at time t = 0, the first S ships in the queue join the 
berth. 
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The preceding assumption, which is also used for the ship 
delay analy ·is, still preserves the main phenomena that we 
try to model; that is, because not all ships require the same 
number of cranes, the numb r of cran s needed by the hip 
at berth fluctuates. If at lime there is a need for more cranes 
than the available number and at other times some cranes are 
idle, crane productivity is wasted. Our crane allocation rules 
are designed to restrain these fluctuations. 

Before starting the analysis, strategy G needs to be described. 
For the imple cases studied in this paper (in which hold can 
be handled in exactly one time unit, etc.), strategy G reduces 
to Lhe following: 

Strategy G: Each time a new hip joins the berth reallocate 
all the crane again; assign a many cranes as po sible to the 
hip with fewe t active holds · if some cranes are left, allocate 

as many as possible to the ship with second fewest h Id · 
repeat lhis process until either no more cranes or no more 
ships are left. 

The results of the analy is about to be presented indicate 
that the approximate and exact form ulae are pretty clo ·e. 
Although the expressions hould be te ted further (with im
ulations geared to verify the importance of the fir ·t factor) , 
the re ult suggest that Equations 2a and 2b may be good 
fir t-ord r approximation u efut for planning purpo es. 

Multipurpose Terminals 

Two types of hips are con idered in this sub ection: iype-0 
ship that do not require the port's equipment H1 = 0) and 
type-! ships thal require exactly one crane (H1 = 1). Thi · 
ituation cou ld represent a mu'ltipurposc terminal. It i. srudied 

fir t because, with thi traffic pattern , one docs not require 
an involved crane chedu ling algorithm. Allocating crane to 
ships on a first berthed, fir t erved, ba i (wbich happens to 
be the result of strategy G) re Ltlts in maximum produc1ivity. 

Type-0 ·hip spend exactly one tim unit at berth but type-
1 ships may spend a little more time · they may have to wait 
for a crane if tbe b rth ha more type-1 ship. than there ar 
cranes. Thus Factor 2 applies. There will tend to be more 
active hold at b~rth than would be predicted from the queue, 
and Equations 2a and 2b hould underpredict throughput. 

Because all the hold · take exactly one time unit tO be han
dled and because the .ystem tart empty , ship and crane · 
move only at integer times (1 = 0. I , 2, . . . ). The number 
of active hold at berth can change only at these times. Tn 
fact , the wbole sy tern can be m0deled exactly a. a Markov 
chai n embedded at integer time . The tate is the number of 
(type-1 ship remaining at berth at the end of one period, 
but immediately befor the next batch of ship join the berth. 
It is thus possible to derive exact numerical re ult to compare 
them with the approximation. 

Let p denote the fraction of type-1 ships. Then, the (i,j) 
element of the one-step transition probability matrix , M, 
m;1, is: 

m;
1 

= Pr{(C + j - i) type-1 ships join the berth}; if j = 

1, 2, ... , s - c 
= Pr {(C - i) or less type-1 ships join the berth} if 

j = 0. 

For j > 0 the m;1 are the binomial probabilities: 

mij = ( S-i ) p(C+J-O(l-p)(S - C-j) 
C+ 1 - 1 

For j = 0, m;0 = 1 - (m;1 + m;2 + . .. + m,<s - q) 
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The steady-state probability (row) vector, m, can be obtained 
by solving: m = mM, and ensuring that its elements, m;, add 
up to 1. 

The expected number of cranes in use, K, is 

s-c 
K= L m; 

i=O 

['~-; mini/ + ;, CJ P<{i type-! ,hip' join the be<th}] 

s-c 
L: m, 
i=O 

The expected number of cranes in use also gives the through
pul of type-.L hips. Becau ·e the fraction of these ships i p 
and because hips join the berth on a fir t come, first served, 
basi , the total ship throughput, P must be P = Kip. 

Example: Assume that S = 3 and C = 2. In this case the 
calculations required by the preceding expressions are simple. 
We obtain the exact result: 

p = 3 - [p3 (1 - p2 + p3)] 

If the distribution of ships at berth is the ame as in the queue, 
the number of busy cranes is the minimum of and a binomial 
random variable with S trial and probability of success, p. 
For our ca ·e, the expectation of such a variable is (3p - p 3

), 

and 

p = 3 - p2 

As expected, this expres ion underpredict the exact one, but 
the maximum difference is only about 0.1 when p "" 0.6. The 
error i much smaller wbenp is close to 0 or l; it never exceeds 
4 percent. See Figure 2. 

The result derived from Equation 2a, which includes a nor
mal approximation to the binomial, is quite close to this last 
expression (for p = 2/i, one obtains P = 2.56 with the last 
expression and P = 2.51 with Equation 2a). The normal 
approximation would be even better in a case with more berths 
and cranes, just when the binomial calculations become 
cumbersome. 

1n general e ither approximation should be quite good if p 
<< CIS, because then crane are almost never in short upply 
and both ship types pend the ame time at berth . The approx
imation hould at o be quite good when p >> C!S, as then 
the exact and approximate formulas predict K = C. These 
observations are consistent with the example; the worst 
underprediction occurs when p = C/S. 
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FIGURE 2 Comparison of exact and approximate throughput 
expressions for S = 3 and C = 2 at a multipurpose terminal. 

Single-Purpose Terminals 

This subsection explores the accuracy of our simple model in 
a more complex situation. It is assumed that all the ships 
require at least one crane, but that ships can have a varying 
number of active holds. Now the crane scheduling strategy 
can make a difference, and strategy G is used. (The impli
cations of changing the strategy are examined in the Crane 
Usage Evaluation section .) 

As in the pre eding section, the system can be modeled as 
a Markov chain . Here the state is a vector composed of the 
numbers of ships with 1, 2, 3, ... active holds that are still 
at berth immediately before the next batch of ships joins the 
berth. Although the state space is multidimensional, it is finite ; 
numerical analysis is possible. 

We present numerical results for a terminal with 4 cranes. 
In the first instance (Case A) we assume that the berth can 
hold 3 ships and ' that the ships request either 1 or 2 cranes 
each. For the second case (B) the berth can hold only 2 hip , 
but the ships can request either 1, 2, or 3 cranes. 

Case A is characterized by a single parameter: the fraction, 
p, of ships that have 2 active holds. Only thre pos ible state 
are possible becau e , at mo t, 1 ship can be le ft at berth, and 
this S11ip can only have either 1 or 2 active holds. Thi make-s 
the earch for the steady- tate probability vector (and the 
associated measures of performance we seek) rather simple; 
the analysis is equally simple for an arbitrary number of ships 
and cranes. The process is similar to that outlined in the 
preceding section. Thu , only the re ult are given here. 

The productivity in hips handled by the berth per unit time, 
P, is 

p = 3 - p2 [(3 + p)/(1 + p + 2 p 2
)] (3) 

Clearly, P cannot exceed 3. 
Jn holds per unit time tJ1e productivity is equal to the average 

number of busy cranes K. Because the average number of holds 
per ship is (1 + p), K = P(l + p) . This reduces to 

K = 4 - [(1 + p 2) (1 - p)2/(l + p + 2 p2
)] (4) 

which cannot exceed C = 4. Note that, as expected, if all 
ships have 1 hold (p = 0), then P = 3 and K = 3; aiso as 
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expected, if all ships have 2 holds (p = 1), P = 2 and K = 
4. Figure 3 shows graphically how P and K vary with p. 

We now test the accuracy of the assumption that states that 
the distribution of active holds at berth is equal to the dis
tribution of active holds for S ships in the queue . We calculate 
K assuming that the 3 berthed ships have been randomly taken 
from the queue . Then, 4 cranes will be at work unless the 3 
ships have exactly 1 hold each. This happens with probability 
(1 - p )3

, and thus K is approximately given by 

K = 4 - (1 - p)3 (5) 

The maximum difference between Expressions 4 and 5 occurs 
when p = 0.53 which results in K = 3.87 and 3.90 respec
tively . The discrepancy is .less than 1 percent. As expected , 
Equation 5 yields larger values than does Equa tion 4. If one 
u es Equation 2a, which also include a normal approxima
tion , the re ult is not very different (3.87 instead of 3.90) · 
j u t by chance, it nearly matches the e ac1 value , which is 
also 3.87. In any case it appears that our assumption (about 
the distribution of active holds at berth) does not lead to large 
inaccuracies for this example . 

For Case B, the ship workload changes more from ship to 
ship thus one expect the approximation to be less accurate. 
Two parameters now define the problem: p, the probability 
that a ship has 2 active holds, and q, the probability that the 
ship has 3 active holds. Of course , the fraction of ships with 
a single active hold is (1 - p - q) . The Markov analysis can 
still be used. In this case, too, only three possible states can 
arise: the berth either is empty or has 1 ship that can have 
either 1 or 2 active holds; no other possibilities exist. 

The berth productivity (ships per unit time) is found to be: 

p = 1 + 1/(1 + 2 pq + q2 + q3
) (6) 

This value remains between % and 2; if there are no ships 
with 3 holds (q = 0), then, as expected, P = 2. The crane 
usage, which coincides with the number of holds served per 
unit time is K = P(l + p + 2q), where the quanti ty in 
parentheses is the expected number of active holds per ship: 

K = (1 + p + 2q)(l + 1/(1 + 2pq + q2 + q3)) 

4.s~--~--~--~---r---~ 

1.5 
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(7) 

FIGURE 3 Exact expressions for berth throughput and crane 
usage at a single-purpose terminal with S = 3 and C = 4. 
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The approximation for K using the distribution of holds in 
the queue is: 

K = 4 - 2 (1 - q)(l - p - q) (8) 

Note that if (p + q) = 1, Equation 8 yields K = 4, but 
consideration shows that it should be a little smaller: whenever 
5 active holds are at berth, 1 ship with 1 active hold must 
remain for the next period. If the next ship requests only 2 
cranes, 1 crane will have to be idle. Thus K cannot be 4 except 
when either q = 1 or p = 1. Then all the ships are identical, 
and 5 active holds can never be at berth; in that case the 
approximation is exact. 

Equation 7 is consistent with these observations. The max
imum difference between the exact and approximate expres
sions over all possible values of p and q occurs when p = . 72 
and q = .28. Then the exact value is 3.80, and the approxi
mation is 4.00 (a 5.26 percent error). In most other instances 
the overprediction is less severe. The average (root mean 
square) error over all possible values of p and q is slightly 
less than 3 percent. 

This error is not very large (given the rather large workload 
variability exhibited by this example), suggesting that Equa
tions 2a and 2b may be reasonable predictors in actual situ
ations. Still to be tested, however, is the extent to which 
Factor 1 counterbalances (and perhaps overcorrects) this error. 

CRANE USAGE EVALUATION 

The results from the section on crane productivity are now 
demonstrated. The section immediately following investigates 
the importance of an efficient crane allocation scheme and 
the subsequent section, the trade-off between cranage cost 
and maximum productivity. 

Effect of a Bad Crane Allocation Method 

In this subsection we explore the changes to productivity for 
the single-purpose terminal scenario of the preceding subsec
tion, when a "bad" crane allocation method (strategy B) is 
used. This strategy, which is also described in an earlier work 
(10), is almost the exact opposite of strategy G. For the ideal
ized scenarios in this paper, the strategy is easy to describe: 

At every integer time (t = 0, 1, 2 ... ), reallocate all the 
cranes (one at a time) to the ship with most active unattended 
holds. 

As before, the system can be studied as a Markov chain, 
and the results are as follows: 

p = 3 - p 2 (3 + 2p + 2p2)/(1 + p + 3p2 + p 3 + p 4
) (9) 

for case A, and 

p = 1 + (1 - q2)/(1 + 2pq + q2
) (10) 

for Case B. 
Equations 3 and 9 are rather close. They differ the most in 

the range from p = 0.4 to 0.8, when the difference is on the 
order of 0.02 to 0.025. Thus for Case A, the specific crane 
allocation strategy used does not seem to matter much. The 
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situations where the wrong crane choice influences produc
tivity do not arise often enough. When p = 0.5, the cranes 
are idle 3.9 percent of the time with the good scheme but only 
5.1 percent with the bad one. 

For Case B we perform the same comparison when the 
average number of active holds per ship is 2. At one extreme, 
all the ships have 2 active holds (p = 1), and at the other 
extreme, half the ships have 1 hold and half, 3 holds (p = 0 
and q = 0.5). Whenp = 1, both strategies are equal (clearly), 
and as one moves toward the other extreme the bad strategy 
deteriorates: 3.5 cranes are busy on average with the efficient 
strategy, but only 3.2 with the bad strategy. This is a 10 percent 
difference in productivity. 

These comparisons illustrate the productivity increases that 
can be obtained with efficient operation. The increases are 
not enormous, but when ships are very different from one 
another, they can be significant. Even in these cases, however, 
the percentage changes in productivity are only a few per
centage points larger than the errors in Equations 2a and 2b. 
This suggests that these expressions should be quite robust 
and applicable even if the scheduling strategy only vaguely 
resembles strategy G. 

Although it may seem like a contradiction, increases in 
productivity comparable with the errors in Equation 2 should 
not be dismissed. A 5 percent increase in productivity would 
be highly desirable at a port, but a 5 percent error in our 
ability to predict it does not invalidate a preliminary planning 
tool (in fact, in the planning stages a 5 percent prediction 
error may be quite satisfactory). 

The next subsection explores the trade-off between crane 
cost and productivity. 

Optimum Number of Cranes 

Clearly, there are some benefits associated with a high max
imum productivity. If maximum productivity is increased, say, 
by purchasing more cranes, the terminal can attract more 
business and generate more revenue. Maximum productivity 
also increases with S (see Equation 2a). Thus, it is possible 
to use Equation 2a to determine the most cost-effective com
bination of berth capacity and number of cranes to achieve a 
certain productivity goal. 

Equations 2a and 2b can also be used to determine the 
equipment needs for a given berth capacity. Let a denote the 
yearly marginal profit associated with one unit of productivity, 
and let us measure the productivity by the average number 
of busy cranes as given by Equation 2a. Let f3 denote the 
yearly cost associated with owning one crane. This cost does 
not include any operating costs, which should have been fac
tored into a. Thus, the total yearly profit associated with 
owning C cranes is: 

Profit = a{C - <I VS lfl ([C - Sm]l<I VS)} - f3C 

This is a concave function of C, which will have a unique 
maximum at the point where the derivative vanishes: the root 
of the equation, 

(1 - f3/o.) = <I>{(C - Sm)l(<I VS)} (11) 
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where <I>(*) stands for the standard normai cdf. Equation 11 
has a solution if 13 < u. The best number of cranes to have 
is the nearest positive integer to this solution. In reality one 
should never have 13 > u because this would mean that the 
profits obtained by continuous operation of a crane are not 
enough to offset its fixed cost: the terminal should not oper
ate. 

The calculations suggested in this subsection assume that 
the marginal profit associated with an extra productivity unit 
is constant. This is a coarse approximation that may be valid 
for long-term planning (when it is planned to use the terminal 
capacity nearly to its fullest), but not always. If, as is more 
common, to provide a good level of service to its users, the 
terminal is not used to its fullest, then the most significant 
benefit derived from the availability of more cranes is a reduc
tion in ship delay; and ship delay is not linear with the number 
of cranes. 

The next section derives ship delay expressions that can be 
used to address these questions. 

SHIP DELAY 

This section explores the relationship between ship delay and 
crane operations. As before, this is done by means of idealized 
models that can be solved analytically. It is assumed that ship 
arrivals to the terminal are stationary and random, and that 
while the terminal may not have enough cranes from time to 
time to serve all the ships at berth, the berth is long enough 
so that ship queuing is extremely rare. This should be the 
case at well-run ports and will help to separate the effects of 
crane operations on delay from those of berth availability. 

The Model 

Ships fall into two categories: type-0 ships that need no cranes 
and type-1 ships that need cranes. The service times of type-
0 ships are arbitrary. Type-1 ships can be one- or two-hatched; 
that is, they may have either one or two active holds, which 
require exactly one time unit of a crane's attention. 

Because the berth is almost never congested, it will be 
assumed that it never is; for all practical purposes, its length 
is infinity. This implies that the type-0 ships never interact 
with the type-1 ships and that the operations of both can be 
studied separately. Of course, to make sure that the infinite 
berth length assumption is reasonable, one will have to check 
a posteriori that the total number of type-0 and type-1 ships 
at berth is very unlikely to exceed the maximum possible 
number. 

The two crane scheduling strategies already presented will 
be compared. Strategy G (good) gives priority to the ships 
with one active hold and strategy B (bad), to the ships with 
two holds. 

For both ship types we seek the expectation and the vari
ance of the number of ships at berth. The expectations give 
an indication of the cost of delay; and together with the var
iance they yield insight into the maximum number of ships 
that are likely to be present simultaneously at the berth. 
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Results 

Let us focus our attention on the type-1 ships and imagine 
that all ships have exactly two holds; that is, one-hatched ships 
have another (empty) hold. Let Q denote the total number 
of holds at berth that are still active. This does not include 
any holds that have already been handled, even if the ship 
still is at berth. We define Q = Q1 + Q2 , where Q 1 denotes 
the number of holds belonging to one-hatched ships and Q2 , 

to two-hatched ships. 
The total number of type-1 ships, N 1, in the system can be 

obtained as a function of Q1 and Q2 • This is because with 
strategy G all the active holds on two-hatched ships are spread 
across as few ships as possible. Thus, 

(12) 

where the last term in this equation is rounded to the nearest 
integer, if Q2 is odd With strategy G, ships with one hold 
have priority. Thus, Q1 can be visualized as the number of 
customers (holds) in a queuing system with C servers with 
deterministic (unit) service times. A simple model for Q2 , 

however, is not readily available (it would seem to require 
priority queues). To avoid this complication, we express N 1 

as a function of Q1 and Q. Because Q = Q1 + Q2 , we can 
write: 

(13a) 

or approximately, 

(13b) 

This expression is more useful because the total number of 
holds can be modeled as a queuing system with C servers 
where the customers are the holds on all ships; some arrive 
in batches of two. 

Queuing systems with many servers and a variety of arrival 
and service processes have been extensively studied. Here we 
use Newell's approximate formulas (13) because of their sim
plicity and generality. They apply to arrival processes that 
can be approximated by a diffusion process (e.g., with inde
pendent increments, compound Poisson). 

A similar type of argument can be made for strategy B. 
Because now two-hatched ships have priority, Q2 (and not 
Q1) is easily predicted. Thus it is now advantageous to express 
Equation 12 as a function of Q and Q2 as follows: 

(14) 

Newell's Queuing Expressions 

For our deterministic service time queuing system (assuming 
that the customer arrival process follows a stationary process 
that can be approximated by a diffusion process), Newell's 
(13) approximate expressions simplify. Let A. denote the aver
age customer arrival rate and a 2

, the variance of the number 
of arrivals in one time unit (this value equals A. for a Poisson 
process). These two parameters characterize the arrival proc
ess. Then the expected number of customers in the system 
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(being and waiting to be served) is a function of >.., u2, and 
the following dimensionless constant, µ: 

µ = (C - >..)lu (15) 

This constant represents how far the system is from being 
saturated. If it is negative, the system is oversaturated; a 
steady-state solution does not exist and the queue would grow 
steadily with time. Ifµ is close to zero but positive, the system 
has a steady state in which there usually is a queue; and ifµ 
is greater than 2, queues arise only rarely. The probability 
that all the servers are busy is: 

Pr{busy} = q>(µ)/ili (µ) (16) 

where iii(*) is the function appearing in Equations 2a and 2b. 
The expected number of customers in the system is 

E{no. customers} 

= A. + u{µ <P( - µ) + q>(µ)/(2 µ iii (µ))} (17) 

which for uncongested systems (µ >2) can be approximated 
by 

E{no. customers} = A. + u q>(µ) 

Note that as µ approaches infinity, the expected number of 
customers approaches A.. This is the result that is obtained for 
the infinite channel queue, and it is a lower bound to the 
actual number. Figure 4 displays the quantity in braces in 
Equation 17 and the probability that all servers are busy; both 
plotted against µ. 

Expected Number of Ships and Expected Delay 

To calculate E(Q) and E(Q1) (or E(Q2)) for strategy B, one 
needs to determine the mean and variance of the pertinent 
hold arrival process. Let a1 and a2 represent the arrival rates 
for one- and two-hatched ships, respectively, and u 1 and u2 

2.5 

Eq. 16 
2 ---Eq. 17 

Q) 
1.5 
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> 
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FIGURE 4 Grai>hs for quick evaluation of Equations 16 
and 17. 
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the corresponding variances per unit time. If ships are tramps 
(they do not fol low a schedule) , one would expect these var
iances to be close to the arrival rates . The arrival rates for 
holds (total, and on one- and two-hatched ships) are (a 1 + 
2 a2), a1 , and 2a2 • 

One can then use Equations 15 and 17 with these arrival 
rates and the corresponding variances. These are either (u1 

+ 4u2), u 1 , or 4u2 • The coefficient 4 appears in these expres
sions because some holds arrive in batches of two. 

Equations 15 and 16 can be used to calculate the probability 
that the system is busy, p 0 , and the probability that the system 
is busy with all the cranes attending priority holds: p 1 for 
strategy G (where priority ships have only one hold) and p 2 

for strategy B. Clearly, Po > P1,P2· 
The expected number of ships at berth is given by the 

expectation of Equations 13a or 14. These are not linear func
tions of the Qs, but the equations need only to be rounded 
up when the system has an odd number of active holds belong
ing to two-hatched ships. For strategy G this can happen only 
when there is a queue, and then only about half the time. 
Thus the expectations of Equations 13a and 13b differ only 
by p 012 ; but Equation 13b is linear. Thus: 

(18) 

For strategy B, an odd number of active holds belonging to 
two hatched ships can arise only if the system has an odd 
number of cranes, and then only for about half the time when 
the system is saturated with these types of ships. Thus: 

(2E(Q) - E(Q2 ) + p 2)/2 if C is odd 

(2E(Q) - E(Q2))/2 if C is even 

(19a) 

(19b) 

The average ship time in port is obtained by dividing these 
expressions by the average ship arrival rate: 

(20) 

Example 

To illustrate these expressions , assume that C = 4 and that 
ship arrivals are Poisson with a1 = 1 and a2 = 0.5. Then the 
total hold arrival rate is (1 + 2(0.5)) = 2, and the combined 
u 2 is (1 + 4(0.5)) = 3. Thus µ = 21'/3, p 0 = 0.17, E(Q) 
= 2.39, E(Q1) = 1.0, and E(Q2) = 1.07. The average number 
of ships with the good strategy is about 1.78 and with the bad 
strategy, 1.86. The average ship time in port is 1.19 time units 
for strategy G and 1.24 for strategy B. If cranes were never 
in short supply, these numbers would be 1. Thus, one can 
think of the excess (0.19 and 0.24 time units) as the delay 
caused by crane shortages; switching strategies can reduce 
this delay by about 25 percent (0.06 time units). If the delays 
are longer, choosing the best crane allocation strategy should 
be more important. With 3 cranes, for example, the average 
number of ships in the system is 2.25 with strategy G and 2.52 
with strategy B. The corresponding times in port are 1.5 and 
1.68 time units; the difference between the strategies still 
amounts to about 25 percent of the ship delay, but the dif
ference is now larger in absolute value. 
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Discussion 

The results in the preceding section assumed that the berth 
is so long that ships never have to queue for berthing space 
and that the ship arrival process has independent increments. 
To check that ships do not have to queue for berthing space, 
one can calculate the mean and variance of the total number 
of ships at berth and verify that both are small enough. For 
type-0 ships, the mean and variance, E(N0 ) and var (N0), can 
be obtained with the formulas for an infinite server system 
(see Newell (13)]. Earlier, formulas were given for the mean 
number of type-1 ships, E(N1), but not for its variance. If Q1 

and Q were independent (they should be positively corre
lated), Equation 13b would indicate that: 

var(N1) = (var(Q) + var(Q 1))/4 

where var(Q) and var(Q1) are given by a formula, which is 
similar to Equation 17 but is not given here. If Q and Q1 were 
perfectly correlated, the variance would instead be: 

The actual value should be between these limits, which should 
then be added to var(N0) to obtain the variance for the total 
number of ships. Although an exact value is not given here, 
the calculations may indicate whether the available berth space 
is likely to suffice; great accuracy is not always needed for 
this purpose. If some of the ships are liners, the assumption 
of an arrival process with independent increments does not 
hold. Some graphical simulations can be done. For example, 
if all the ships are liners, two cumulative plots of the number 
of cranes demanded by one- and two- hatched ships versus 
time (as per their schedules) can be constructed. These graphs 
will help determine when each hold gets served with algorithm 
G and the departure time of each ship . This yields the desired 
information. If only some of the ships are liners (and liners 
have priority), one can use the preceding process to determine 
how many free cranes there are on average after serving the 
liners. If this number does not fluctuate with time very much 
(the liner schedules could be fairly regular), one could use 
this average (instead of C) with the expressions in the earlier 
section to obtain a first estimate of tramp delay. Clearly, there 
are many situations where the queuing formulas presented in 
this section do not apply. Nonetheless, the results give an 
indication of the kind of delay savings that can be attained 
by efficient crane scheduling. 

CONCLUSION 

This paper represents an initial attempt at understanding crane 
operations at ports by means of simple analytical formulas. 
It provides some approximate expressions for the average 
num.ber of busy cranes during congested periods (a measure 
directly related to the maximum terminal throughput) and for 
ship delay. 

The maximum terminal throughput depends on several fac
tors: the berth capacity (in ships), the number of cranes, the 
amount of work per hold and its variability within and across 
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ships, and the crane operating strategy. The crane operating 
strategy influences throughput considerably less than the other 
factors . In all the cases examined, throughput does not change 
by more than about 10 percent when one switches from an 
inefficient to an efficient strategy. This indicates that detailed 
models of crane operations are not needed to obtain rough 
productivity estimates . 

A simple formul<t , which is proposed for efficient crane 
operations, was tested against exact expressions for some spe
cial cases . The errors were on the order of just a few percent. 
Although further testing is needed, this suggests that such a 
formula may be useful for quick response economic and plan
ning purposes, in instances where detailed simulations are not 
possible. 

The paper also illustrates how the maximum productivity 
expressions can be used for evaluating the effectiveness of 
various terminal configurations. As an example , it calculates 
the optimum number of cranes when the berth capacity is 
fixed anU iht: L:O~t of additional cranes is counterbalanced by 
corresponding productivity increases. 

The paper also studies the impact of crane scheduling on 
ship delay for a berth that has a finite number of cranes but 
is ample enough to hold all ships ; ships arrive at random so 
some of them may have to wait for a crane if too many are 
already at berth. The paper examines idealized situations that 
can be modeled analytically, and yet are rich enough to be 
sensitive to the crane allocation strategy . For a given strategy, 
the expected delay depends on only three parameters: the 
number of cranes and the average and standard deviation of 
the number of arrivals in the time that it takes to serve one 
hold. For the examples studied, representing lightly congested 
conditions, the expected delay was reduced by about 25 per
cent when switching from an inefficient to an efficient crane 
scheduling strategy. 

The results in this paper represent only an initial effort 
toward providing crane usage analytic models. It definitely 
would be desirable to validate the approximate productivity 
equations under a wider set of conditions, and to extend the 
queuing models to situations where berth space is not quite 
so plentiful. 
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