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Guidelines and Computational 
Results for Vector Processing of 
Network Assignment Codes on 
Supercomputers 

KYRIAcos C. MousKos AND HAN: S. MAHMASSANI 

Supercomputers derive their computational performance from faster 
proc~ors as well as innovations in their architecture. To take 
advantage of the vector processing capabilities of supercomputers, 
such as the CRAY X-MP series, it is necessary to modify the code 
to enhance its vector processing performance. These modifications 
can range from simple localized recoding of existing mainframe 
codes to devising new algorithms with the hardware's architecture 
in mind. In this paper, codes for the solution of two network 
ec1uilibrlum assignment problem formulation (Frank-Wolfe algo­
rithm for the single-class user equilibrium problem and. lh di­
agonalization algorithm for multiple user classes with as)•mmetric 
interactions) arc vectorized and le ted on a RAV X-MP/24 super­
computer. Only local vectorizatfon by limited recoding of existing 
programs is performed. Guidelines are given for I his puqlose and 
their application to t.h assignment codes is illustrated. The com­
putational tests performed indicate an improvement in execution 
lime of about 70 to 80 percent of the modified code relative to its 
unvectorized performance on the CRAY supercomputer. Execu­
tion of the vectorized code on the CRAY is about 22 times faster 
than the execution of the unmodified code on a mainframe com­
puter. The significance of the results for research and practice is 
also discussed. 

The network traffic assignment problem arises in connection 
with many transportation planning activities , including the 
analysis of the cost-effectiveness of capital improvement proj­
ects and the evaluation of operational planning strategies in 
traffic networks. Two decades of research have resulted in 
efficient and widely available algorithms for this problem, 
particularly for the case of a single class of users and no 
interactions across links. Such programs are routinely exe­
cuted on microcomputers, though only for moderately sized 
networks . A review and textbook presentation can be found 
elsewhere (1). For more complicated and realistic cases, espe­
cially those involving multiple user classes and asymmetric 
link interactions (1-5), existing algorithms are much more 
demanding computationally, especially for large-scale sys­
tems. Network assignment procedures are also critical for 
solving the network design problem, which is an np-hard prob­
lem that cannot generally be solved optimally using current 
computational techniques. 

Supercomputers offer at least an order of magnitude 
improvement over conventional mainframes in terms of speed 
and memory capabilities , and they greatly enhance our ability 
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to solve large problems under more realistic assumptions. 
Supercomputers derive their high performance not only from 
inherently faster silicon chips, whose performance is fast 
approaching its quantum-mechanical limits, but also from their 
radically different architectures that reflect different degrees 
of parallelism ( 6, 7). The CRAY X-MP series of supercom­
puters, which is used in the present study, appears to have 
gained the widest acceptance and accessibility in the American 
academic community. Its architecture provides a dimension 
of parallelism by using vector or matrix operations of an algo­
rithm (vectorization) . More detailed description of the hard­
ware aspects of the CRAY X-MP that are relevant to appli­
cations programmers can be found in papers by Zenios and 
Mulvey (7) and Chen (8). 

Compilers are generally available for the CRAY supercom­
puter to "vectorize" a particular code by identifying those 
independent portions that can be executed in parallel and 
sequencing the processing and task allocation accordingly. 
However, there are many inherently parallel activities that 
may have been programmed in ways intended for conven­
tional scalar processing but that actually inhibit the vectori­
zation capabilities of the compiler. It is therefore generally 
possible to take fuller advantage of the capabilities of the 
supercomputer's architecture by modifying, or vectorizing, 
the code. Three levels of vectorization can be distinguished 
(7): 

1. Local software vectorization , where the program is re­
examined in its parts and subroutines, and redesigned only 
locally, without program-wide repercussions; 

2. Global software vectorization, affecting the whole im­
plementation of the algorithm and the design of the data 
structures; and 

3. Overall algorithm vectorization, where the solution al­
gorithm itself is conceived to take advantage of the machine 
architecture. 

Recently, Zenios and Mulvey (7) provided an example of 
the kinds of I cal modifications needed to vectorize codes for 
the solution of nonlinear network programs and reported related 
computati nal experience on the CRAY X-MP/24. In addi­
tion to illustrating the potential of upercomputer for solving 
large-scale network optimization problems, their results high­
lighted the need to modify the c d to achi ve better vcc-
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torization. The present paper presents similar information for 
codes to solve the traffic network equilibrium assignment 
problem. The principal objective is to assess the computa­
tional improvements that can be achieved by local vectori­
zation of network traffic assignment codes, for the single-class 
and the two-class (with asymmetric interactions) user equi­
librium problems. The computational experiments are per­
formed on the CRAY X-MP/24 supercomputer. The results 
have important implications for practice in terms of the size 
and complexity of the problems that can be addressed and, 
more important, for the future development of solution 
approaches to the network design problem. 

The next section presents general guidelines for the local 
vectorization of FORTRAN codes. Following a brief descrip­
tion of the algorithms, the application of these principles to 
the single-class user equilibrium assignment codes, and the 
corresponding computational improvements are described. 
Results for the two-class problem are presented next, followed 
by concluding comments. 

CODE VECTORIZATION GUIDELINES 

To develop vectorizable programs and properly exploit the 
supercomputer capabilities, some appreciation of the machine's 
architecture and characteristics is helpful (7,8). The CRAY 
X-MP consists of separate dedicated functional units for vec­
tor floating point operations, vector integer operations, and 
scalar integer operations, respectively. It contains eight vector 
and eight scalar registers where vectors and scalars, respec­
tively, are held before and after being processed on their way 
from and back to the memory. Vectors are processed in a 
pipeline fashion; after an initial startup period the first result 
appears, followed by the other results , one every cycle. The 
Cray FORTRAN (CFT) compiler produces a code that con­
tains vector instructions to drive the high-speed vector and 
floating point functional units and the eight vector registers 
in their specified operation. The compiler, to be on the safe 
side, does not attempt vectorization when it suspects certain 
dependencies within DO loops, even if the corresponding 
operations are inherently vectorizable. Another important 
feature of the CRAY X-MP is the abundance of memory and 
availability of a very high speed, large solid-state device. As 
such, many of the techniques typically used to reduce and 
carefully manage storage in programs developed for main­
frame computers may actually inhibit vectorization and degrade 
performance on the supercomputer. 

The first step in the local vectorization of a program initially 
developed for scalar processing is to perform a time require­
ments analysis to determine the time-intensive parts of the 
code. These should then become the primary targets of the 
recoding effort. A combination of code modifications and 
compiler directives can then be employed. This process is 
iterative and can be continued until the programmer is sat­
isfied that no further meaningful improvement can be achieved. 
Beyond this level, additional improvements would have to be 
sought by higher-level vectorization, as described earlier. 

The primary programming constructs that should be tar­
geted in vectorization efforts are DO loops, where the major­
ity of computer time expense is incurred. As already noted, 
the CRAY X-MP compiler automatically tries to vectorize 
the loops where applicable. When trying to determine whether 
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or not to vectorize a particular DO loop, the CFT compiler 
checks for the existence of any dependencies within the loop. 
Statements that should be avoided within the DO loops, 
according to the UT CHPC User Services Group (9), include 
CALL statements; 1/0 statements; branches to statements not 
in the loop; statement numbers with references from outside 
the loop; references to character variables, arrays, or func­
tional IF statements that may not execute because of the 
effects of previous IF statements; ELSE IF statements. 

The guidelines presented next were followed in vectorizing 
the network assignment codes , based on suggestions in the 
publications of the UT CHPC User Services (9) and the San 
Diego Supercomputer Center (JO): 

1. Data dependencies should be eliminated; a loop will not 
vectorize if, for example, an array is .referencing values 
dependent on computations in lower portions of the array in 
an incrementing loop. The computations cannot be pipelined. 

2. Subscript ambiguities should be eliminated; try to elim­
inate the dependency of a subscript on a previous calculation 
by including the operation in the array. 

3. In the case of nested loops, the one with the largest 
range should be assigned as the innermost loop; this would 
contribute the most to the overall effectiveness of the code 
because the inner loop is the only one that is vectorized. 

4, Conditionals should be eliminated; IF THEN ELSE 
statements can be replaced by conditional vector merge pro­
cedures. Simple IF statements are vectorizable but might inhibit 
vectorization if their references lead to some of the afore­
mentioned dependencies. 

5. The loops should be unrolled to a certain depth, thereby 
eliminating checking for termination conditions and enforcing 
chaining and functional unit overlap. 

6. Vectorizable loops should be separated from unvecto­
rizable loops-in particular, separate loops that contain CALL 
statements or 1/0 statements or any of the statements men­
tioned previously that are independent of the other compu­
tations within the loop. 

Before describing the application of these rules to the net­
work assigment codes considered in the study, the basic steps 
of the algorithms for the single-class user equilibrium and the 
multiclass user equilibrium with asymmetric costs problems 
are presented. 

REVIEW OF THE NETWORK EQUILIBRIUM 
ALGORITHMS 

Given a known matrix of origin-destination flows, a network 
of directed links connecting nodes, and link performance func­
tions that describe the dependence of link costs on the cor­
responding link flows, the single-class user equilibrium algo­
rithm solves for the flows onto the individual links of the 
network so as to achieve certain equilibrium conditions whereby 
no driver can improve her travel time by unilaterally switching 
routes . Exact solution algorithms for the single-class user 
equilibrium problem are based on Beckman's equivalent 
mathematical programming formulation (11), which can be 
solved by any of several nonlinear optimization techniques. 
The most widely used algorithm for its solution is based on 
the Frank-Wolfe or convex combinations method. This algo-
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rithm is well documented, and a detailed presentation can be 
found in a paper by Sheffi (1). A brief overview is presented 
here. 

The algorithm consists of an iterative procedure that, at 
each iteration, first finds a search direction by solving a linear­
ized approximation, then solves for the optimal move size 
along that direction. The efficiency of the algorithm derives 
from the fact that the direction-finding step is equivalent to 
performing an all-or-nothing assignment. The latter requires 
the repeated application of a shortest path routine, which is 
the principal computationally demanding element of the code. 
An additional source of computational cost is the line search 
to find the optimal move size along a particular direction and 
the computation of the relatively complicated nonlinear travel 
cost (link performance) functions. Letting ta(.) denote the link 
performance function for link a, the principal steps of the 
algorithm can be summarized as follows: 

STEP 0: Initialization. Perform all-or-nothing assignment 
based on the free flow travei times ta = ta(O), Va; This yeilds 
the set of link flows {X~}. Set counter n = 1. 

STEP 1: Update. Sett~ = t"(X~), 'Va. 
STEP 2: Direction finding. Perform all-or-nothing assign­

ment based on {t~}. This yields a set of (auxiliary) link flows 
{y~}. 

STEP 3. Line search. Find optimal move size o:" that solves: 

l
x~+a(y~-X~) 

min 2: ta (w) dw 
a 0 

subject to 0 $ o:" s; 1. 

STEP 4: Move. Set X~+i = X~ + o:" (y~ - X~), 'Va. 
STEP 5: Convergence test. If a convergence criterion is 

met, STOP (the current solution is the set of equilibrium link 
flows); otherwise, set n = n + 1 and GO TO STEP 1. 

The preceding algorithmic steps are implemented in the 
computer code as follows. The input of the characteristics of 
the network, the 0-D matrix, link characteristics, and con­
vergence measures, are included in TRAFASN. The initial­
ization STEP 0 takes place in subroutine UE, where all the 
main steps of the algorithm are controlled. Following the 
initialization of all the paths to zero flows, subroutine AON 
is called to initialize the flows on the links to zero. Then the 
travel times on the links are computed, initially with zero 
flows. All travel time computations are performed by calling 
a separate function called COSTFN. Given these travel times, 
subroutine SHPATH is called, as many times as the number 
of origins, to identify the shortest path for each 0-D pair. 
Then the flow for each 0-D pair is allocated on the links that 
make up each shortest path. The calculation of the travel times 
and the allocation of the flows to the links (all-or-nothing 
assignment) correspond to STEP 1 and STEP 2 of the algo­
rithm, respectively. STEP 3 is controlled by subroutine 
BISECT, where the move size is determined by a line search 
using the bisection method. This move size is used in updating 
the flows (STEP 4), followed by the convergence test 
(STEP 5), calculated in subroutine UE. The output of the 
program is controlled by subroutine DUMP. 

The two-class user equilihrium problem arises when two 
classes of users (e.g., cars and trucks) share the use of the 
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physical right-of-way on the highway facilities. The travel times 
(costs) experienced by one class of users depend not only on 
the flow of elements belonging to that class but also on the 
flow of the other class. When the respective effects of the 
flow of one class on the travel time of the other are not 
symmetric (e.g., the effect of one additional truck on the cars' 
average travel time is greater than the effect of an additional 
car on the trucks' travel time), the resulting user equilibrium 
problem does not have an equivalent mathematical program­
ming formulation. One of the most commonly used algorithms 
for its solution is a direct algorithm called the diagonalization 
algorithm. A discussion of other approaches is given in the 
review paper by Friesz (12). 

In the solution of the two-class user equilibrium problem, 
a separate copy of the physical network is created for each 
class of users, as described in Mahmassani et al. ( 4). The 
interactions between classes sharing the same physical links 
are then represented through the performance (cost) func­
tions associated with each link in the individual network cop­
ies. In the general case, these functions would specify the 
dependence of a link's travel cost on flows on any other link. 
In the two-class case, the specification of the cost functions 
reflects the desired dependence between user classes as inter­
actions among links. 

At each iteration, the diagonalization algorithm requires 
the solution of a single-class user equilibrium problem as a 
subproblem. The latter arises because at the nth iteration, aii 
cross-link effects are fixed at their levels from the (n - l)th 
iteration, and the cost on any given link is allowed to respond 
only to its own corresponding flow. This subproblem is solved 
using the Frank-Wolfe algorithm. Because each iteration of 
the diagonalization algorithm requires several iterations of 
the Frank-Wolfe algorithm to solve the diagonalized sub­
problem, it is more computationally demanding than the sin­
gle-class algorithm. In addition, because there are as many 
origin-destination trip matrices as there are classes of users, 
greater use must be made of the shortest path and the all-or­
nothing assignment procedures. Furthermore, the travel cost 
functions are more complicated, increasing the computational 
burden for the move size finding. 

Nevertheless, the computer code for the diagonalization 
algorithm, especially for its streamlined versions (1,5), does 
not differ significantly from the single-class code. It is com­
posed of the same subroutines, with some modifications to 
take into account the division of the traffic into trucks and 
passenger cars. The previously listed subroutines and func­
tions are renamed in this case, in the respective order in which 
they were previously mentioned, as UETRDIA, UED, AON­
UED, TRCOST, SHPUED, BISUED, and DUMPUED. For 
this reason, the modifications performed to vectorize the sin­
gle-class code are directly beneficial to the diagonlization code. 
In the next section, these modifications are described for the 
single-class code, along with computational results with the 
vectorized code on two networks used in previous numerical 
experiments ( 4,5). 

COMPUTATIONAL RESULTS FOR SINGLE­
CLASS UE CODE 

The purpose of this section is to illustrate the process followed 
to vectorize the network assignment code and to document 
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the improvements achievable by different types of modifi­
cations. Most of the testing accompanying the various indi­
vidual changes was performed on a medium-sized network 
with 182 0-D pairs, 128 nodes, and 336 links. A similar net­
work was used extensively in earlier experiments with stream­
lined versions of the diagonalization algorithm (4,5). A max­
imum of 500 iterations of the algorithm were allowed before 
the code was terminated for any test run with this network. 
All runs were performed on the CRAY X-MP/24 using two 
available Fortran compilers: the CFf 1.15 and the CFT77 
v2.0. The CFf 1.15 is written in CRAY assembly language, 
the CFT77 in Pascal. The CFT77 has superior scalar perfor­
mance and implements array syntax (arrays handled as enti­
ties) and automatic arrays (storage allocated at run time). In 
many cases, it has closer FORTRAN syntax error handling 
and vectorizes some loops that the CFf 1.15 would not. The 
CFf 1.15 generates scalar and conditional vector loops and 
chooses between the two at run time, whereas the CFT77 
generates only vector code and computes the vector length 
at run time. 

Following the steps described earlier, the performance of 
the code was first assessed without the vectorizing capabilities 
of the CFf compilers, and a time analysis was performed to 
determine the most computationally intensive elements of the 
program. The results are shown in Table 1. The total time to 
execute was 15.679 sec, using the CFf 1.15 compiler and 14.99 
sec using the other compiler (with vectorization blocked in 
both cases). This compares with 79 sec on a CYB ER CDC 
170/750 mainframe or about five times more than the super­
computer without any vectorization. 

Next, the program was executed by removing the prohi­
bition of vectorization. The results, shown in Table 2 for both 
compilers, indicate that the execution times for some of the 
routines were reduced considerably, though not uniformly. 
A total reduction of 28 percent was achieved by the vectorized 
compilation using the CFf 1.15 compiler, and of 32 percent 
using the other compiler, without any program modification. 
The shortest path routine vectorized quite well, exhibiting a 
reduction of about 60 percent. The reductions for functions 
COSTFN and FINT were much more modest, however, less 
than 5 percent, thereby pointing our efforts toward seeking 
to improve them. 

TABLE 1 EXECUTION TIMES AND PERCENTAGE OF 
TOTAL EFFORT FOR EACH SUBROUTINE WHEN 
VECTORIZATION IS BLOCKED (MAXBLOCK = 1) IN 
COMPILER FOR THE SINGLE CLASS UE CODE ON 
NETWORK 1 

CFl' l.15 CFI77v2.0 

EXECUTION EXECUTION 
TIME TIME 

SUBROUTINE (Seconds) (%) (Seconds) (%) 

AON 2.195 (14.00) 2.559 (17.07) 
BISECT 3.065 (19.55) 2.412 (16.09) 
COSTFN 5.928 (37.81) 6.115 (40.79) 
DUMP 0.222 (1.41) 0.202 (1.35) 
FINT 0.507 (3.24) 0.521 (3.47) 
SHPATH 3.330 (21.24) 2.827 (18.86) 
TRAFASN 0.051 (0.32) 0.050 (0.33) 
UE 0.381 (2.43) 0.304 (2.03) 

Total Execulion Time 15.679 (100) 14.990 (100) 

TABLE 2 EXECUTION TIMES (IN SECONDS) AND 
PERCENTAGE OF TOTAL EFFORT WITH 
VECTORIZATION USING BOTH CFT COMPILERS FOR 
THE SINGLE CLASS UE CODE ON NETWORK 1 

CFf 1.15 CFr77 v 2.0 

EXECUTION 
TIME EXECUTION 

SUBROUTINE (Seconds) (%) TIME (%) 

AON 1.430 (12.68) 0.917 (8.99) 
BISECT 1.813 (16.08) 1.517 (14.87) 
COSTFN 5.694 (50.50) 5.785 (56.72) 
DUMP 0.215 (1.91) 0.201 (1.97) 
FINT 0.485 (4.30) 0.487 (4.78) 
SHPATH 1.391 (12.33) 1.055 (10.34) 
TRAFASN 0.050 (0.44) 0.048 (0.47) 
UE 0.198 (l.75) 0.191 (1.87) 

Total Execulion Time 11.275 (100) 10.199 (100) 
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To achieve such improvements, one needs to eliminate data 
dependencies that inhibit vectorization, as discussed earlier. 
One strategy in this case is to include the travel cost functions 
within the BISECT routine instead of repeatedly calling a 
separate function (COSTFN). Calling functions or subrou­
tines in a loop may inhibit vectorization. This change led to 
a reduction of 1.274 sec (or 11.3 percent) using the CFf 1.15 
compiler. However, it was suspected that a further data 
dependency existed in the loop for computing the link per­
formance functions that inhibited vectorization. These func­
tions have the following general form: 

where t0 a is the travel time on link a under free flow conditions, 
ca is a parameter generally interpreted as the capacity of link 
a, and 13 and 'Y are link-specific parameters. The data depen­
dency in the manner in which the computation of these func­
tions was originally coded arises from the separate calculations 
of the parameters A 1 and Bl, as shown in Figure 1. The 
expressions for these parameters were therefore included 
directly in the travel time equation. The foregoing changes 
are shown in Figure 1 as an example of the kind of local code 
modifications that can dramatically improve the vector per­
formance of FORTRAN codes. The execution time summary 
following these changes is reported in Table 3 for both com­
pilers. There was a dramatic drop in execution time to 5.568 
sec (or a 51 percent improvement over the unmodified code) 
for the CFf 1.15 compiler, and to 4.061 (60 percent reduction) 
for the other, primarily because of a drop in BISECT, con­
firming the prior existence of a dependency that had inhibited 
the vectorization of the loop. 

Given the preceding results, similar changes were made 
wherever the functions COSTFN and FINT were called. A 
further step was to specify the 1/C(N) in the travel cost equa­
tions a variable Cl(N), calculated early in the program, so 
that XIC(N) was transformed to X * Cl(N), which eliminates 
the repetitive division. A division is computationally more 
demanding than a multiplication on the CRAY. The execu­
tion time summary after these and other minor changes is 
shown in Table 4 for both compilers. The total execution times 
dropped by about 57 percent and 68 percent relative to the 
unmodified but compiler vectorized code for the CFf 1.15 
and CFf v2.0 compilers, respectively, and by about 69 percent 
and 78 percent relative to the unmodified and noncompiler 
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original loop in bisect: 

DO 30 N=1, NARC 
X • FL(N) + AMD.(NFL(N)-FL(N)) 
A1 =ALP (TYP(N)) 
81 • 8ET(TYP(N)) 
CST - COSTFN (L(N), C(N), V(N), X, A1, 81) 

3 0 D • D + CST'(NFL(N) - FL(N)) 

1st Change: Removing the call function COSTFN 

DO 30 N=1, NARC 
X 3 FL(N) + AMO' (NFL(N) -FL(N)) 
A1 3 ALP (TYP(N)) 
81 = 8ET(TYP(N)) 
CST = L(N)/V(N) 
IF(C(N). NE.O) CST = CST.(1 + A1.(X/C(N))"81) 

30 D = D + CST'(NFL(N) - FL(N)) 

2nd Change: Incorporaling expressions for Al and Bl 
directly in the cost (CST) calculation 

DO 30 N=1, NARC 
X = FL(N) + AMD• (NFL(N) - FL(N)) 
CST - L(N)/V(N)' (1+ ALP(TYP(N))'(X/C(N))"8ET(TYP(N))) 

3 0 D = D + CST'(NFL(N) - FL(N)) 

FIGURE 1 Changes to subroutine BISECT to eliminate data 
dependencies. 

TABLE 3 EXECUTION TIME SUMMARY FOLLOWING 
MODIFICATION OF BISECT AS SHOWN IN FIGURE 1, 
USING BOTH COMPILERS FOR THE SINGLE CLASS UE 
CODE ON NETWORK 1 

CFI' 1.15 CFI'77 y 2.0 

EXECUTION 
TIME EXECUTION 

SUBROUTINE (Seconds) (%) TIME (%) 

AON 1.433 (25.73) 0.931 (22.93) 
BISECT 1.328 (23.85) 0.654 (16.09) 
COS1FN 0.477 (8.56) 0.494 (12.15) 

DUMP 0.211 (3.79) 0.203 (4.99) 
FINT 0.475 (8.53) 0.488 (12.02) 

SHPAlH 1.411 (25.34) 1.061 (26.12) 
1RAFASN 0.050 (0.90) 0.047 (l.17) 

UE 0.184 (3.30) 0.184 (4.52) 

Total Execution Time 5.568 (100) 4.061 (100) 

TABLE 4 EXECUTION TIME SUMMARY FOLLOWING 
ALL MODIFICATIONS TO THE SINGLE CLASS UE CODE, 
USING BOTH COMPILERS, FOR NETWORK 1 

CFI' 1.15 CFT77 y 2.0 

EXECUTION 
TIME EXECUTION 

SUBROUTINE (Seconds) (%) TIME (%) 

AON 1.357 (27.99) 0.847 (25.66) 
BISECT 1.313 (27.07) 0.641 (19.43) 
DUMP 0.204 (4.21) 0.206 (6.23) 

SHPAlH 1.392 (28.71) 1.056 (31.99) 
1RAFASN 0.050 (1.04) 0.048 (1.47) 

UE 0.533 (10.99) 0.505 (15.23) 

Total Execution Time 4.849 (100) 3.301 (100) 
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vectorized case. The ratio of CDC mainframe to vectorized 
performance thus becomes of the order of 25 times, compared 
with about 5 times without any vectorization. This highlights 
the need for and potential of relatively simple local code 
modifications to take better advantage of supercomputing 
capabilities. It is of course possible to improve further on the 
code's performance; however, the point was reached where 
the marginal improvements due to additional changes did not 
justify further effort. 

Additional tests of the final vectorized code were performed 
on a large network of 700 nodes and 1,956 links, confirming 
the magnitude of the improvement achieved by local vecto­
rization relative to the execution of the unmodified code on 
the supercomputer and to the CDC mainframe. 

COMPUTATIONAL RESULTS FOR 
DIAGONALIZATION CODE 

As explained earlier, the diagonalization program for multiple 
user classes with asymmetric interactions is very similar to the 
single-class code. Thus the modifications implemented for the 
former closely parallel those described in the previous section 
for the latter. These changes primarily affected the compu­
tation of the link performance functions, which are more com­
plicated in the case of multiple user classes, and the BISUED 
subroutine (the equivalent of the BISECT subroutine for the 
single-class code). Additional details can be found in the report 
by Mahmassani et al. (13). 

The performance of the vectorized diagonalization code 
was tested on a relatively large network, with two classes of 
vehicles operating on it. The interactions between vehicle 
classes are represented in the link performance functions, as 
described by Mahmassani and Mouskos (4,5). The network 
consists of 364 0-D pairs, 1,400 nodes, and 3,912 links. A 
total of 25 iterations were allowed before the code was ter­
minated for all test runs. For this network, time analyses were 
performed for (a) original code with no compiler vectoriza­
tion, (b) original code with compiler vectorization, and 
(c) modified code with compiler vectorization. The corre­
sponding execution time analyses are summarized in Tables 
5, 6, and 7, respectively, for both CFT compilers. 

Comparing the results of Tables 5 and 6, compiler vecto­
rization without code modification leads to an improvement 
from 23 sec to about 13.5 sec (i.e., a 41.5 percent reduction) 

TABLE 5 EXECUTION TIME SUMMARY FOR THE 
UNMODIFIED DIAGONALIZATION CODE WITH 
VECTORIZATION BLOCKED 

CFT 1.15 CFT77v2.0 
EXECUTION EXECUTION 

TIME TIME 
SUBROUTINE (Seconds) (%) (Seconds) (%) 

AONED 1.192 (5.17) 0.949 (4.89) 
BISUED 5.726 (24.84) 2.795 (14.40) 
DUMPUED 0.434 (1.88) 0.257 (l.32) 
SHPUED 10.033 (43.52) 8.429 (43.41) 
TR COST 4.608 (19.99) 5.945 (30.41) 
UED 0.245 (1.06) 0.239 (1.23) 
UETRDIA 0.815 (3.54) 0.802 (4.13) 

Total Execution Time 23.053 (100) 19.414 (JOO) 
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TABLE 6 EXECUTION TIME SUMMARY FOR THE 
UNMODIFIED DIAGONALIZATION CODE WITH 
VECTORIZATION USING BOTH CFT COMPILERS 

CFf 1.15 CFf77 v 2.0 

EXECUTION EXECUTION 
TIME TIME 

SUBROUTINE (Seconds) (%) (Seconds) (%) 

AO NED 0.661 (4.90) 0.448 (3.45) 
BISUED 2.856 (21.17) 1.983 (15.25) 
DUMPUED 0.201 (1.49) 0.136 (1.04) 
SHPUED 4.389 (32.54) 3.712 (28.56) 
TR COST 4.440 (32.91) 5.865 (45.13) 
UED 0.125 (0.93) 0.084 (0.64) 
UETRDIA 0.816 (6.05) 0.770 (5.92) 

Total Execution TIJlle 13.489 (100) 12.998 (100) 

TABLE 7 EXECUTION TIME SUMMARY FOR THE 
MODIFIED DIAGONALIZATION CODE WITH COMPILER 
VECTORIZATION 

CFf 1.15 CFf77 v 2.0 

EXECUTION EXECUTION 
TIME TIME 

SUBROUTINE (Seconds) (%) (Seconds) (%) 

AO NED 0.423 (6.26) 0.299 (5.18) 
BISUED 0.861 (12.74) 0.795 (13.76) 
DUMPUED 0.217 (3.21) 0.187 (3.24) 
SHPUED 4.326 (63.99) 3.647 (63.11) 
UED 0.125 (1.85) 0.084 (1.45) 
UETRDIA 0.808 (11.95) 0.766 (13.26) 

Total Execution TllllC 6.759 (100) 5.779 (100) 

for the CFT 1.15 compiler and a 33 percent reduction for the 
other compiler. This time is cut by about half after the code 
is modified, as shown by Table 7, for a total reduction of 
about 70 percent, corresponding to a nonvectorized to vec­
torized improvement ratio in excess of 300 percent, for both 
compilers. As a reference, the code executed in 126 sec on 
the CDC mainframe, so the vectorized code on the CRAY 
performed 22 times better than the unmodified code on the 
mainframe. 

CONCLUDING COMMENTS 

The results presented in this paper provide an indication of 
the magnitude of the reductions in execution time of network 
assignment codes on the CRAY X-MP/24 supercomputer that 
can be achieved by the vectorization of the codes, and relative 
to mainframe computers. For both the single-class user equi­
librium and the two-class user equilibrium problem with asym­
metric interactions, considerable improvement was achieved 
following local vectorization by limited modifications to the 
codes: about 80 percent and 70 percent, respectively, over 
the unvectorized execution. Our experience confirms the 
effectiveness of the recommendations followed to optimize 
these two FORTRAN codes, mainly trying to avoid depen­
dencies within the DO LOOPS. Inserting in line the travel 
cost functions proved very helpful in both cases. The unmo­
dified codes ran about 5 times faster on the CRAY X-MP 
without compiler vectorization, and between about 7 and 10 
times faster with compiler vectorization, than on the CDC 
mainframe. However, after the modifications, execution on 
the CRAY was about 22 times faster than on the mainframe. 
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Of course, generalization of these conclusions requires addi­
tional experiments on networks with different configurations 
and sizes. It is expected that the relative improvement due to 
the modifications would depend on the extent to which the 
shortest path routine is called in a particular problem. 

It is therefore important to realize that off-the-shelf codes 
for network analysis originally developed to maximize effi­
ciency on mainframes are not likely to run very efficiently on 
supercomputers with vector processing capabilities. The results 
given here demonstrate that relatively simple local modifi­
cations can have significant impacts on the vector performance 
of such codes. The generally applicable guidelines followed 
in our vectorization of these codes are easy to implement and 
have been shown to be quite effective. 

In this study, no attempt was made to go beyond the local 
level of code vectorization. It is quite possible that additional 
improvements can be achieved by using more efficient data 
structures, or different algorithms, for the overall problem or 
any of its parts, specifically conceived or selected for their 
potential for efficient vector performance. Interesting chal­
lenges lie ahead along those lines as solution procedures are 
revised and devised to take advantage of increasingly available 
innovative hardware. For instance, local modifications in the 
shortest path routine did not yield significant improvements, 
suggesting that additional reduction may require more global 
attempts. 

Having established the foregoing results, it is important to 
ask what their implications might be for research and practice. 
Should researchers and practitioners attempt to perform all 
assignment runs on supercomputers? The answer is of course 
that most everyday applications of traffic assignment models, 
especially of the fixed-demand single-class variety, will and 
should continue their migration to microcomputers. The capa­
bilities offered by supercomputers mean that one can address 
very large-scale problems, and afford greater detail in network 
representation and, more important, greater realism in the 
underlying assumptions. For instance, problems with multiple 
user classes and asymmetric interactions are notoriously de­
manding computationally; supercomputers offer an attractive 
computing environment in which to solve such problems and 
not be discouraged from performing sensitivity analyses. In 
addition, supercomputer capabilities may lead to break­
throughs in two subjects of current interest to researchers and 
of great potential practical significance: dynamic assignment 
problems and the network design problem. Both problems 
give rise to serious computational hurdles that have consid­
erably slowed progress on their substantive aspects and on 
their solution in practical applications. 

The network design problem belongs to the category of np­
hard problems. A particular variant of practical interest arises 
in connection with the selection of truck-related improve­
ments, described by Mahmassani et al. (4,14), that can be 
stated as follows: Given a network with known 0-D matrices 
for each category of network users and a number of links n, 
the problem is to propose various improvements to the links 
so as to improve operating conditions and service levels offered 
by the network. If k improvement options are available for 
each link, the problem's combinatorial complexity rises to k". 
Because the calculation of the travel costs associated with a 
particular combination of improvements requires the appli­
cation of a traffic assignment procedure (to find either a user 
equilibrium solution or a system optimum solution), improve-
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men ts in the execution of traffic assignment codes have impor­
tant implications for the size of practical network design prob­
lems that can be solved. The encouraging results obtained in 
this study allow some optimism toward vectorizing transpor­
tation network design codes, of which the network equilib­
rium assignment is a component, and attempting their exe­
cution on the CRAY. Furthermore, it would be useful to go 
beyond local code vectorization to consider global restruc­
turing of the code to achieve greater levels of computational 
efficiency. 
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