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Computational Experience with a 
Simultaneous Transportation 
Equilibrium Model Under Varying 
Parameters 

K. NABIL A. SAFWAT AND MOHAMAD K. HASAN 

Safwat and Magnanti have developed a combined trip generation, 
trip distribution, modal split, and traffic assignment model that 
can predict demand and performance levels on large-scale trans­
portation networks simultaneously-that is, a simultaneous trans­
portation equilibrium model (STEM). Safwat and Brademeyer 
have developed a globally convergent algorithm for predicting 
equilibrium on the STEM. The objective of this paper is to inves­
tigate the relative computational efficiency of the algorithm as a 
function of demand, performance, and network parameters for 
two small, sample networks and one large-scale, real-world net­
work. The algorithm was found indeed to be sensitive to the values 
of several variables and constants of the model. Many of the results 
were as expected and could be generalized. As the values of demand 
parameters increase, the algorithm tends to take more iterations, 
on the average, to arrive at a given accuracy level. Beyond max­
imum "practically feasible" values, however, the algorithm may 
require a considerable computational effort to satisfy a given tight 
level of accuracy. Network configuration may have a considerably 
greater influence on convergence rate than network size. These 
results should further encourage application of the STEM approach 
to large-scale urban transportation studies. 

Safwat and Magnanti (J) have developed a combined trip 
generation, trip distribution, modal split, and traffic assign­
ment model that can predict demand and performance levels 
on large-scale transportation networks simultaneously-that 
is, a simultaneous transportation equilibrium model (STEM). 
The model achieves a practical compromise between behav­
ioral and computational aspects of modeling the equilibrium 
problem. It is formulated as an equivalent convex optimiza­
tion problem, yet it is behaviorally richer than other models 
that can be cast as equivalent convex programs. Although the 
model is not as behaviorally rich as the most general equilib­
rium models, it has computational advantages . It can be solved 
with a globally convergent algorithms [see Safwat and Bra­
demeyer (2) for proof of convergence of the logit distribution 
of trips (LDT) , algorithm under milder assumptions com­
pared with the strict "norm" conditions required for conver­
gence of existing algorithms for general asymmetric models], 
that is also computationally efficient for large-scale networks 
[see Safwat and Walton (3) for computational experience with 
an application of the STEM model to the urban transportation 
network of Austin , Texas]. It is not clear, however, how the 
computational efficiency of the LDT algorithm would be influ-
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enced by variations in demand, performance, and network 
characteristics of the STEM model for different applications. 

The objective of this paper is to investigate the relative 
computational efficiency of the LDT algorithm as a function 
of demand, performance, and network parameters for selected 
example networks as well as the large-scale Austin network. 
This sensitivity analysis should provide useful guidelines for 
future applications of the approach. 

In the following section a brief summary of the STEM 
model and the LDT algorithm is presented. The next section 
includes the sensitivity analysis procedures , results, and inter­
pretations. The final section contains the summary and major 
conclusions. 

A STEM METHODOLOGY 

Following is a brief description of a STEM model and the 
LDT algorithm that predicts equilibrium on the STEM model 
by solving an equivalent convex program (ECP). For a detailed 
description of the methodology, the reader may refer to 
work of Safwat and Magnanti (1). Proof of convergence of 
the LDT algorithm may be found in work by Safwat and 
Brademeyer (2). 

A STEM Model 

In this subsection, a STEM model that describes users' travel 
behavior in response to system's performance on a transpor­
tation network is presented as follows : 

G, = o: S, + E, for all i E I (1) 

S, = max {O,ln 2: exp ( - 0 U,1 + AJ} 
j E D; 

for all i E I (2) 

T,1 G, exp ( - 0 U,1 + A)! 2: exp ( - 0 U,k + Ak) 
kB D; 

for all ij E R (3) 

for all p E P;1, all ij E R (4) 

cp = L sap c.( F.) 
a 'A 

for all p E P,1, all ij E R (5) 
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In this model, the demand variables are 

G, the number of trips generated from origin i, 
T,i = the number of trips distributed from origin i to des­

tination j, 
HP the number of trips traveling via path p from any 

given origin i to any given destination j, and 
F. the number of trips using link a. 

The performance variables are 

S1 = an accessibility variable that measures the expected 
maximum utility of travel on the transport system as 
perceived from origin i; 

U,i the average minimum "perceived" cost of travel from 
i to j; 

Cp the average cost of travel via path p from ,my given 
i to any given j; and 

Ca = the average cost of travel on link a expressed as a 
function of the number of trips ( F.) on that link. 

The rest of the quantities are 

E, = a composite measure of the effect that the socio­
economic variables, which are exogenous to the trans­
port system, have on trip generation from origin i; 

Ai a composite measure of the effect that the socio­
economic variables, which are exogenous to the trans­
portation system, have on trip attraction at destina­
tion j; 

a a parameter that measures the additional number of 
trips that would be generated from any given origin 
i if the expected maximum utility of travel, as per­
ceived by travelers at i, increased by unity; 

0 a parameter that measures the sensitivity of the utility 
of travel between any given origin-destination pair ij 
as a result of changes in the system's performance 
between that given 0-D pair; 

if link a belongs to path p 
otherwise; 

and the defined sets are 

I = set of origins, 
R = set of destinations, 

P,i = set of simple paths from i to j, and 
D, = set of destinations accessible from origin i. 

The basic assumptions of this STEM model may be sum­
marized as follows: 

1. Trip generation ( G;) is given by any general function as 
long as it is linearly dependent on the system's performance 
through an accessibility measure (S;) based on the random 
utility theory of travel behavior (i.e., the expected maximum 
utility of travel). 

2. Trip distribution (T1) is given by a logit model where 
each measured utility function includes the average minimum 
perceived travel cost ( U1) as a linear variable. 

3. Modal split and trip assignment are simultaneously user 
optimized. Notice that the STEM framework allows for the 
modal split to be given by a logit model or (together with trip 
assignment) to be system optimized [see Safwat ( 4)]. 
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LDT Algorithm 

The LDT algorithm belongs essentially to the class of feasible 
direction methods. At any given iteration r, the method involves 
two main steps. The first step determines a direction for 
improvement (d'). The second step determines an optimum 
step size (A*) along that direction. The current solution x' is 
then updated, that is, x'+ 1 = x' + A* d', and the process is 
repeated until a convergence criterion is met. Feasible direc­
tion algorithms differ mainly in the way feasible directions 
are determined and may not always converge to the optimum 
solution. 

The feasible direction d', in the LDT algorithm, is deter­
mined as follows: 

Step 1. Update link cost by calculating C~ = C"( F~) for 
all a E A. Set i = 1 in an ordered set of origin /. 

Step 2. Find the shortest path tree from i to all j E D 1• Let 
Uij be the cost of the shortest path from i to j. 

Step 3. Find d' = Y' - X' where the vector X' = (S', T', 
F') and the vector Y' = (L', Q', V') are given by 

Lj = max {O, In L exp ( - 01 Uij + A)} for all i E I 
j E D; 

Qij = (a,Lj + E;)exp( - 01 U,i + A)IL (- 01 Ujk + Ak) ijER 

B' p 
if p = p* E pii 

otherwise, 

kEDi 

for all p E P1i, ij E R 

v~ = L L oap B~ for all a EA 
ij E R p E Pij 

Then the feasible direction at iteration r is the vector d' 
with the following components: 

d~ V~ - F~ 

for all i E I 

for all ij E R 

for all a EA 

Safwat and Brademeyer (2) proved that the LDT algorithm 
is globally convergent under the same mild assumptions as 
with the STEM model. 

SENSITIVITY ANALYSIS PROCEDURES AND 
RESULTS 

Several major factors may influence the convergence rate of 
the LDT algorithm: 

1. Trip generation parameter (a), 
2. Minimum trip generation (E;), 
3. Trip distribution parameter (0), 
4. Attractiveness measure (A1i), 
5. Link performance function (Ca), 
6. Network configuration, 
7. Network size, 
8. Convergence criterion, and 
9. Accuracy level. 
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It is very clear that the combinations of values for these 
factors are enormous; hence, we have to be selective and more 
focused, particularly when initial experimental results revealed 
that the LDT algorithm is indeed sensitive to the selected 
values. This required a systematic approach and additional 
care in the "selection process." 

Two small example networks and one large, real-world net­
work were used in the analysis. The first small example net­
work (Network 1) was obtained from work by Nguyen and 
Dupuis (5) and the second (Network 2), from the work of 
Nagurney (6); both were proposed for testing algorithms for 
the asymmetric traffic assignment problem. Network 1 con­
sists of 19 links, 13 nodes, 4 origin-destination pairs, and 2 
origins (see Figure 1); and Network 2 consists of 36 links, 22 
nodes, 12 origin-destination pairs, and 4 origins (see Figure 
2). Tables 1 and 2 include the "observed" interzonal demand 
volumes on Networks 1 and 2, respectively. Note that these 

FIGURE I Network 1. 

l 

FIGURE 2 Network 2. 
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networks are, however, different from the "original" ones in 
terms of their demand and link performance functions. 

The trip generation parameter E; was selected as the 
"observed" trip generation. Two values of the attractiveness 
measure A;i were tested. 

1. A;i equals the natural logarithm of the observed trip 
distribution from i to j (this is a reasonable estimate that is 
based on theoretical grounds), and 

2. A;i equals five times the value in item 1. 

Two link performance functions were considered: linear 
and the usual BPR (i.e., Bureau of Public Roads) 4th power 
function. These are 

Cost** 1: C. = t0 • [1 + b (F.fCAP.)] and 

Cost** 4: C. = t0 • [1 + b (F.fCAP.)4] 
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TABLE 1 TRIP DISTRIBUTION MATRIX FOR 
NETWORK 1 

3 4 

l 400 BOO 

2 600 200 

TABLE 2 TRIP DISTRIBUTION 
MATRIX FOR NETWORK 2 

5 6 7 8 

235 230 220 

2 240 235 225 

3 230 220 235 

4 235 225 240 

where t is the free-flow travel time on link a, b is the link 
congesti~n parameter, and CAP a is the practical capacity of 
link a. These "parameters" were selected at "reasonable" 
values for all links of a given network such that the average 
volume-to-capacity ratio on the network at equilibrium is 
approximately 0.6 (i.e., t0 a = 1 and b = 1.15 for both 
networks, and CAP" = 700 for Network 1 and 400 for 
Network 2). 

The third network (i.e., the large-scale urban transporta­
tion network of Austin, Texas) consists of 7 ,096 links, 2, 137 
nodes, 19,213 origin-destination pairs, and 520 origins. The 
network was used earlier by Safwat and Walton (3), and no 
changes were made in its demand or performance functions. 
The average volume-to-capacity ratio on the Austin network 
was approximately 0.2; this is quite conceivable because the 
network includes existing, committed, and proposed improve­
ments for the year 2000. 

The analysis focused on the two major travel demand 
parameters a and 0. For the two example networks, possible 
values of these two parameters were considered at two dif­
ferent values of the other one. That is, the values of a varied 
between 0.001 and 50 while values for 0 were set at 0.05 and 
0.12, and the values of 0 varied between 0.01 and 0.9 while 
values of a were set at 0.001 and 10. For the Austin network, 
the values of a varied between 1 and 50 while the value of 0 
was set at 0.05, and the values of 8 ranged between .05 and 
0.14 while the value of a was set at 1. The ranges of values 
were selected to capture "significant" variability in the com­
putational efficiency of the algorithm, as reflected by the num­
ber of iterations required to arrive at a prescribed accuracy 
level based on a given convergence criterion. In some cases, 
however, there were "practically maximum" values of the 
parameters beyond which the algorithm could not arrive at 
the prescribed accuracy level (which was selected to be tight) 
in thousands of iterations. 
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Two convergence criteria and two accuracy levels were 
included in the analysis. Notice that at any iteration in the 
LDT algorithm the following equation holds true for all ij E 

R [see Safwat and Magnanti (1)]: 

Gj exp ( - 8 Uji + A1) exp (0 Cij) 

Tij = :L ( - 0 u;k + Ad 
k E Di 

where 

Cij = 1/0 [Si - In (a Sj + E;) 

for all ij E R 

It is obvious that at equilibrium 8 Cij = 0 for all ij E R; 
hence, two convergence criteria may be specified as follows: 

1. Stop whenever - E 1 < 8 Cij ~ + E 1 for all ij E R or 
2. Stop whenever TERi'~1S = "v1L (e Cij) 2 < 2 2 

where E1, E2 > 0 are small accuracy levels (selected at 0.05 
and 0.1 in our analysis) and TERMS is the Total Equilibrium 
Root Mean Squares error. 

The convergence rate of the LDT algorithm was measured 
in terms of the number of iterations required to achieve a 
given level of accuracy. This is a proxy measure for the CPU 
time as it was more or less constant for each iteration. In 
particular, for the example networks, the CPU time for input 
and initial solution was 0.09 sec and, per iteration, 0.01 sec 
on a VAX 8650 minicomputer that was used for analysis. For 
the Austin network the CPU times were about 190 and 170, 
respectively. 

Because the emphasis in analysis is on the demand param­
eters a and 0, values of other factors were selected on the 
basis of their respective influence on the effect of changes in 
these two parameters on the convergence rate of the algo­
rithm. For instance, to select the appropriate value for the 
attractiveness measure A,1, Figure 3 shows the effect of 0 on 
the number of iterations to arrive at a prespecified accuracy 
level (which was selected at E1 = 0.05 as determined by the 
sensitivity analysis procedure itself, as is explained later) for 
the two different values of the attractiveness measure A;1 already 
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FIGURE 3 Effect of theta on convergence rate (Network 1, 
Cost** 4, alpha = 0.001, epsilon = 0.05). 
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indicated. In Figure 3, the parameter ex was set at a small 
value of0.001 to reduce its influence on results to a minimum; 
the usual BPR 4th power link cost function (Cost** 4) was 
selected because it is more realistic than the linear cost func­
tion (Cost** 1); and Network 1 was used because its config­
uration was found to have more influence on the results than 
Network 2 (see Figure 4). 

The graphs in Figure 3 show very clearly that using five 
times the value of a "reasonable estimate" for A;j caused the 
number of iterations to increase considerably for all values of 
0; the increase becomes more significant as 0 increases. On 
the basis of these results, the attractiveness measure for the 
remainder of the analysis was set at its more "reasonable" 
value-that is 

A,; = In ("observed" trips from i to j) 

To select a convergence criterion, Figure 5 shows the sen­
sitivity of results with respect to the two proposed criteria. 
As expected, the second criterion (i.e., TERMS) was always 
met before the first, "stricter" one, and the patterns of con­
vergence are similar. This is so because e2 = 0.1 implies 
achieving an average value of E1 = 0.05, whereas the first 
criterion allows a maximum value of 0.05 on each individual 
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FIGURE 4 Effect of theta on convergence rate (Cost** 4, 
alpha = 0.001, epsilon = 0.05). 
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FIGURE 5 Effect of theta on convergence rate for epsilon = 
0.05 and TERMS = 0.1 (Network 1, Cost** 4, alpha = 0.001). 

21 

link. The first criterion was used in the remainder of the 
analysis to achieve more accurate results. As for the accuracy 
level, Figure 6 shows the results for two different values of 
E1 (i .e., 0.05 and 0.1). Again the results were as expected in 
terms of the magnitudes and shapes of the two curves in the 
figure. The value of 0.05 was used throughout the analysis to 
obtain more accurate results. 

The effect of network configuration and size. is shown in 
Figure 4 for the two example networks. Surprisingly, the 
"larger" Network 2 always converged considerably more quickly 
regardless of the change in the parameter 0, whereas the 
"smaller" Network 1 revealed relatively slower convergence 
rates, particularly at higher values of 0. It seems that Network 
2 has a significantly "simpler" configuration than Network 1 
in terms of layout, traffic circulation, and travel demand data 
(see Figures 1 and 2). These results indicate that network 
configuration may be a significant factor that could override 
the effect of network size. 

The convergence rates of the algorithm with respect to 
changes in 0 are shown in Figures 7, 8, 9, and 10. For the 
example networks, Figures 7 and 8 show that regardless of 
the value of ex and network configuration, the number of 
iterations would on the average increase as 0 increases, as 
would be expected, because larger values of 0 imply higher 
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FIGURE 6 Effect of theta on convergence rate for epsilon = 
0.05 and epsilon = 0.1 (Network 1, Cost** 4, alpha = 0.001). 
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FIGURE 7 Effect of theta on convergence rate (Network 1, 
Cost** 4, epsilon = 0.05). 
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FIGURE 8 Effect of theta on convergence rate (Network 2, 
Cost** 4, epsilon = 0.05). 
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FIGURE 9 Effect of theta on convergence rate (Network 1, 
alpha = 0.001, epsilon = 0.05). 
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sensitivity of travel demands to changes in the system's per­
formance. The rate of increase, however, may depend on 
network configuration and, more important, the shape of the 
link performance function; as the cost function becomes steeper, 
Figure 9 shows that, again as expected, the rate of conver­
gence becomes nonlinearly slower. 

Figure 10 shows that for the Austin network the results are 
monotonic and confirm the same trend. The relatively faslt:r 
convergence on the Austin network may be due to the fact 
that it is far less congested than the two example networks. 
Also, network configuration may have been a significant fac­
tor that superseded the effect of network size, which does not 
seem to be a significant factor. 

The results for the effect of the demand parameter a on 
convergence rate are shown in Figures 11through14. Figure 
11 shows the effect of a for two different values of e (0.05 
and 0.12). It is very clear that the decrease in the value for 
e has dampened the effect of a on convergence rate. This 
behavior is in conformity with our intuition. A similar trend 
was observed for different cost functions (see Figure 12) and 
network configuration (see Figures 13 and 14). In Figure 12, 
then BPR 4th power function adversely influenced the rate 
of convergence nonlinearly, whereas the linear cost function 
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FIGURE 11 Effect of alpha on convergence rate (Network 1, 
Cost** 4, epsilon = 0.05). 

FIGURE 12 Effect of alpha on convergence rate (Network l; 
theta = 0.05, epsilon = 0.05). 
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had virtually no effect. Figure 13, consistent with Figure 4, 
shows that configuration of Network 2 appears to be "sim­
pler" than that of Network 1. The results of the Austin net­
work shown in Figure 14 are also consistent with those of the 
example networks. 

SUMMARY AND CONCLUSIONS 

The objective of this paper was to investigate the computa­
tional efficiency of the LDT algorithm for predicting equilib­
rium on a simultaneous transportation equilibrium model 
(STEM) as influenced by several demand and performance 
parameters of the STEM model as well as network charac­
teristics. The sensitivity analysis considered several major fac­
tors, including demand parameters (a, 0, £ 1 and A 1J, per­
formance functions (linear and 4th power), convergence 
criterion, accuracy level, and network configuration and size. 
The focus, however, was on the two major demand param­
eters a, 0. 

The main conclusions of this paper may be summarized as 
follows: 

23 

1. The effect of each of the two major parameters a, 0 on 
convergence rate was found to be, as expected, sensitive to 
the values of the other one in addition to the values of other 
major variables and constants of the STEM model and the 
network configuration and size. 

2. In general, as the value of the parameter increases, the 
number of iterations to arrive at a prespecified accuracy level 
will tend to increase as expected. The effect of 0 seems to be 
more significant than that of a. The combined effect of both 
parameters is considerably greater than that of the individual 
parameters separately. 

3. There are maximum "practically feasible" values of a, 
0 beyond which the algorithm may take a considerable com­
putational effort to satisfy a given tight level of accuracy. 
These maximum values may differ from one application to 
another. The possible reason for the existence of such prac­
tically "upper bounds" on the values of parameters may be 
related to the flatness of the objective function of the equiv­
alent convex program that is being solved by the LDT algo­
rithm, particularly when the network is less congested. 

4. Network configuration may have considerable effects on 
the convergence rate whereas network size may not. 

These results, especially those of the Austin network, fur­
ther encourage the application of the STEM approach to real­
world urban transportation studies. Actual calibration of 
demand and performance parameters will certainly provide 
additional insights into the practicality of the proposed method. 
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