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Efficient Algorithm for Locating a 
New Transportation Facility in a 
Network 

HuEL-SHEN TsAY AND LIANG-TAY LIN 

The single-location problem is to locate a new transportation facil
ity in a network that can serve all customers at the minimum 
distance or cost. There are four types of single-location problems. 
The absolute I-center problem is considered in this paper. By 
definition, in that problem, the customers are on any vertex and 
the center may be a vertex or a point on an edge. There are two 
previous methods for finding the absolute I-center: (a) the Hakimi 
method (I965) and (b) the Minieka method (I98I). They consid
ered all possible links of a network to determine the best candidate 
point. Later, Larson and Odoni proposed a shortcut to reduce the 
number of links needed for calculation. In this paper, a new short
cut with a stricter bound is first proposed to find the absolute 1-
center directly. The Larson and Odoni shortcut is then introduced 
and integrated with the Minieka method to form a combined method. 
Finally, a new method is developed to find the absolute 1-center 
based on a spanning tree that is obtained from that of the vertex 
to all shortest distances. The number of iterations needed to per
form the analysis is in proportion to the number of vertices instead 
of edges for any given network. To make a consistent comparison, 
four different methods have been programmed and tested with 
several networks. The results show that the new method or the 
new shortcut is fast and powerful in finding the absolute 1-center 
location. They provide the same solutions and belong to polynomial 
time-bounded algorithms. Therefore, we recommend use of the 
new method or shortcut for locating a new facility if the absolute 
1-center problem is considered in a network. 

In selecting the optimal facility, location plays a vital role in 
the fields of transportation, communications , and distribution 
management. Applications may include transit stops, fire sta
tions, warehouses or plant locations, post offices, schools , and 
public buildings. A major concern in location models is to 
find the optimal placement of facilities on a network so the 
cost of locating, operating, and providing service is mini
mized. Here , the cost of serving customers can be defined as 
the cost incurred between customers and the assigned depot; 
it refers to the transportation cost that is primarily due to the 
distance traveled to and from the depot location. Therefore, 
the back-and-forth distance between two nodes is an impor
tant component in determining the location of new facilities. 

Generally speaking, network location research can be cat
egorized into two types : single-depot location and multiple
depot locations. The sirtgle:depot location problem considers 
locating only one depot in the network, either to minimize 
loss or to maximize benefit or to provide good service to 
customers. This facility and its customers may be located at 
the vertex (node) or anywhere along two vertices. The mul
tiple-depot location problem , on the other hand, finds loca-
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tions for more than one depot to serve all customers with an 
objective of minimizing total related cost, minimizing the 
maximum travel distance, or providing the best service. 

Because locating a new transportation facility in a given 
network is our main consideration, it is necessary to know 
the differences between various types of single-location prob
lems. There are four major types of single-location problems 
shown in Table 1. From Table 1, the vertex also represents 
nodes, and each link or edge has an infinite number of possible 
point locations. The vertex I-center and general I-center loca
tion problems have been solved and programmed through 
efficient methods (1,2). These are all polynomial, time-bounded 
algorithms. 

The absolute 1-center problem is defined as a poillt located 
such that the maximum distance from this facility to any node 
is minimized. This new location can be anywhere on a link 
(edge) or at a node (vertex). Basically, it is a problem of one 
point serving multiple nodes. One application of the absolute 
1-center problem, for example, locates a fire station in a rural 
community in a manner that minimizes the maximum response 
time from the station to any farmhouse. It was first presented 
by Hakimi (3,4). The literature on network location problems 
has grown rapidly since the appearance of Hakimi's paper 
(5). The Hakimi method, for each link, constructs upper 
envelopes continuously to compute the intersecting points 
from all nodes in the network. From all feasible intersecting 
points, we choose the best local minimum for the correspond
ing link. Once all links have been examined, the best among 
all such local minima is selected as the absolute 1-center of a 
given network. Its solution is more difficult and complex than 
that of either the vertex 1-center or general 1-center problem. 
In this paper, four methods for solving the absolute 1-center 
problem are extensively discussed and compared . 

The general absolute 1-center location problem is , among 
four types of single-location problems, the most difficult to 
solve. This is a problem of one point serving an infinite num
ber of customer points on each link. Recently, some algo
rithms have been developed and proved to be effective (J,2,6) . 
Because the absolute 1-center is our focus, the general abso
lute 1-center location problem is not discussed here. 

LARSON AND ODONI SHORTCUT 

Because the Hakimi method requires the examination of each 
link before the best absolute center in a network is chosen, 
the number of calculations grows rapidly and sometimes 
becomes unacceptably large as the number of links increases. 
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TABLE 1 FOUR TYPES OF SINGLE LOCATION PROBLEMS 

Type Facility Customer 

Location Locations 

Vertex 1-center Vertex Vertex 

General 1-center Vertex Link* 

Absolute 1-center Link* Vertex 

General Absolute 1-center Link* Link* 

* Represents infinite possible points located on each link or edge. 

Some links, in fact, cannot further improve the optimal solu
tions. Larson and Odoni proposed a shortcut to reduce the 
computational effort required to obtain the absolute 1-center 
(7). That shortcut takes advantage of the fact that it is simple 
to find the optimal solution of a vertex 1-center problem in 
a given network. This solution is then treated as the upper 
bound value to identify those links that actually cannot improve 
the final result. This shortcut is represented by the following 
equation: 

m(r,a) + m(s ,b) - l(r,s) ( "*) 
2 

< mt (1) 

where 

m(r,a) = the distance required for node r to serve the far
thest node a in the network; 

m(s,b) = the distance required for nodes to serve the far
thest node b in the network; 

l(r,s) = link distance between nodes rands; and 
m(i*) = the optimal solution of vertex 1-center. 

It implies that the Hakimi method can be applied to those 
links that do not violate Equation 1. So, for a link (r,s) that 
satisfies Equation 2: 

m(r,a) + m(s,b) - l(r,s) ('*) 
~'----'------'"~'----..__~ °2! m I 

2 
(2) 

The local 1-center of this link (r,s) cannot further improve 
the vertex 1-center solution m(i*). The fact is that the max
imum distance associated with the vertex 1-center must be 
greater than or equal to the corresponding distance for the 
absolute 1-center (7). In other words, if Equation 2 is satis
fied, the link (r,s) need not be examined further. Through 
such a test, considerable computational effort will be reduced. 
But the number of computations that can actually be saved 
depends on the network configuration. It is difficult to predict 
a specific number of reductions if the shortcut is applied. 
However, this shortcut shows its ability to eliminate several 
unnecessary calculations. 

A NEW SHORTCUT 

A new shortcut is proposed in this section . Nodes a and bare 
assumed to be the farthest nodes that can be reached by nodes 

r and s shown on Figure la. Then, we have 

ra = m(r,a) 

sb = m(s,b) 

There exists one point p on the path r-a that makes pa 
m(i*). Similarly, there is another point q on sb with the prop
erty of qb = m(i*) . Equation 1 can be rearranged in the 
following form: 

m(r,a) - m(i*) + m(s,b) - m(i*) - l(r,s) s 
0 

2 

Then, based upon the preceding definitions , we have 

rp + sq - l(r,s) s 0 

(3) 

(4) 

It means that any link in the network satisfying Equation 4 
may be able to improve the final solution of the absolute 
1-center. Only such a link will be considered in making further 
calculations. From Figure lb, x and y are defined as: 

{x I xr + ra = xs + sa , x E link (r,s)} 

{y I ys + sb = yr + rb , y E link (r,s)} 

Let x' and y' have this relationship: 

x'r = Lir + rp 

y's = 2ys +sq 

(5) 

(6) 

As far as ~ rsa (Figure 1 b) is concerned, the distance from x 
passing through node r to node a should be equal to the 
distance traveling from x through nodes s to a. Suppose x is 
the absolute 1-center of a given network; path x-r-a will have 
the longest distance. This value can be further decreased if 
the absolute 1-center is not located on x. There are two pos
sibilities. The first way con ·ide rs the center located on the 
left-hand side of x. In such circumstances, the best location 
obviously belongs to node r. The distance from node r to the 
farthest node a is m(i*) plus rp , ra = m(i*) + rp. It is greater 
than or at most equal to m(i*) and may not be the best choice. 
Another possibility is to move the center to the right-hand 
side of x. The distance from x' to a becomes m(i*) if only rp 
distance units are shifted from x to x'. Furthermore, once the 
length of link (r,s) is larger than x'r (i.e., l(r,s) "2! 2xr + rp, 
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FIGURE I (a) Graphic representation of service from link (r,s). (b) Graphic 
representation of different service range for link (r,s). 

the service distance from x' to node a will be less than or 
equal to m(i*). It is also necessary to make l(r,s) ~ 2ys + sq 
to have the same property. Besides, x' must lie in the left 
side of y' to guarantee that the shortest distance from x' to 
node a or from y' to node bis smaller than m(i*). Thus, 

l(r,s) ~ 2.Xr + rp + 2ys +sq (7) 

[( ) 
> 2 [m(r,a) + l(r,s) + m(s,a) _ ( )] ( ) _ ('*) r,s -

2 
m r,a + m r,a m z 

+2[ m(s,b) + l(~s) + m(r,b) - m(s,b) J + m(s,b) - m(i*) 

l(r,s) ~ l(r,s) + m(s,a) - m(i*) + l(r,s) + m(r,b) - m(i*) 

m(s,a) + m(r,b) + l(r, ·) ('*) 
~-~-~--~~ s mi 

2 
(8) 

m(r, b) = the distance from node r to the farthest node b 
(for s) and 

m(s,a) = the distance from nodes to the farthest node a 
(for r). 

Any link that violates Equation 8 cannot improve the final 
solution of absolute 1-center and will not be further 
considered. 

Because 

m(r,a) s m(s,a) + /(r,s) 

m(s,b) s m(r,b) + l(r,s) 

m(r,a) + m(s,b) - L(r s) 

2 

m(s,a) + m(r,b) + l(r,s) ('*) s s m z 
2 

(9) 

It is noted that the proposed shortcut has a more strict bound 
than the Larson and Odoni shortcut does based on Equa-
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tion 9. If the proposed shortcut given in Equation 8 is con
sidered, then the local 1-center of link (r,s) is located on the 
middle point of x'y'. Its location has DI distance units from 
node r. 

DI= x'r + 112[/(r,s) - x'r - y's] 

= l(r,s) + m(s,a) - m(i*) + [l(r,s) 

- 2l(r,s) - m(s,a) 

- m(r,b) + 2m(i*)] 

112[/(r,s) + m(s,a) - m(r,b)] (10) 

The service distance of this local 1-center to the farthest node 
is 

SS = m(i*) - l/2[l(r,4s) - x'r - y's] 

= m(i*) - 112[/(r,s) - 2l(r,s) - m(s,a) 

- m(r,b) + 2m(i*)] 

l/2[m(s,a) + m(s,b) + l(r,s)] (11) 

Based on the preceding discussion, the proposed shortcut can 
be performed as follows. First, for any link in the network, 
we check whether it satisfies Equation 8. If the answer is yes , 
then Equations 10 and 11 will be applied to find the local 
1-center of that link. Otherwise, the link need not be further 
considered. After all links have been examined, the location 
and service distance of absolute 1-center for the given network 
can easily be determined. The foregoing procedure is rather 
simple and makes it easy to obtain the final solution without 
using elaborate computations. Comparisons of this new short
cut with other methods are given later. 

MINIEKA METHOD 

A polynomial time algorithm for finding the ab. olute l-center 
of a network was propo ed by Minieka (8). This alg rithm is 
combinatorial in nature and requires only knowledge of the 
ho.rtesl path di taoces between all pairs of nodes. Concep

tually , it j · different from the H akimi method . onsider p on 
a link (r,s) as one point on the .link (r,s) that is p unit from 
r and l(r,s) - p units from s where 0 :S p s l(r,s) . Tho e 
n des that are best reached from p by traveling through node 
r are set in node set R. Similarly, others best reached through 
node s belong to set S. On the basis of this definition, the 
Minieka method for finding p *, the local 1-center on a link 
(r,s), follows these steps: 

Step 1: Obtain the shortest matrix between all nodes through 
any efficient algorithm . 

Step 2: Place all nodes in R, and arrange the e<juence of 
nodes according to tbe order of their distance from node r, 
with the most distant node first. Compare the maximum dis
tance from node r to all other nodes of the network with the 
link length l(r, s) and then store the higher value as the first 
point-to-node distance . 

Step 3: Remove from R and place into S the node that is 
currently most dista."?t from node r . 

Step 4: Compare the di tance from nodes to the node that 
bas the maximum distance in R with the largest value of the 
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current set S. If this new distance is smaller than the existing 
maximum distance, go to Step 3; otherwise go to Step 5. 

Step 5: Calculate the maximum distance needed from both 
sets R and S, using the equation 

MD = [d(r,z;) + d(sh) + l(r,s)]/2 (12) 

where 

MD = the current maximum distance needed to serve 
customers in the both sets R and S; 

d(r,z;) = maximum distance from node r to node Z; in the 
current set R; 

d(s ,zk) = maximum distance from node s to node zk in the 
current set S; and 

l(r,s) = actual link distance between nodes r ands. 

Step 6: Compute the p* by subtracting d(r, z ;) from MD . 
Step 7: Go to Step 3 until all other nodes have been exam

ined and moved to set S. Compare the length of link (r,s) 
with the maximum distance from S, and then store the higher 
value as a MD with p * equal to the length of link (r ,s). 

Step 8: Choose the smallest MD and its related p* value 
among all candidates . This is the local 1-center of link (r ,s) . 

The foregoing procedure can be used for finding the local 
1-center of link (r,s). Obviously, it is also applicable to all 
other links. Thus, the local centers of other links are found 
through the same steps . After all links have been examined , 
the best absolute 1-center of the network is determined simply 
by choosing the minimum among all local 1-center candidates . 
This method performs the preceding steps easily and can be 
used to solve large network problems. Its computational effort 
mainly .lies in obtaining the all-to-all shortest-distance matrix . 
Therefore, this is a polynomial time-bounded algorithm and 
is easy to program. 

A COMBINED METHOD 

Although the Minieka method is efficient in computing the 
local 1-center on a link , it still requires much effort to examine 
all links of a given network if no bounding technique is applied. 
For the Larson and Odoni shortcut, considerable reduction 
in computational effort can be achieved by omitting many 
unnecessary links before searching for the absolute 1-center. 
After the shortcut is applied, however, the inefficient Hakimi 
method is used to find local centers for those critical links 
that do not violate Equation 1. Therefore , it becomes feasible 
to combine the Minieka method with the Larson and Odoni 
shortcut to reduce further the number of calculations and 
computer time. The basic idea of this combination is simply 
to consider the Larson and Odoni shortcut first in deleting 
links that cannot improve the solution. Then only those links 
satisfying Equation 1 are examined and calculated to deter
mine their local centers using the Minieka method. It is expected 
that the computational effort will be reduced through this 
combined method. The steps of this combined method are 
summarized next. 

Step 1: Obtain the shortest distance matrix between all 
nodes. 

Step 2: Apply the Larson and Odoni shortcut to delete 
those links that satisfy Equation 2. 
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Step 3: Use the Minieka method to find the local 1-center 
for each critical link and store it as a candidate. 

Step 4: Repeat Step 3 until all critical links have been 
examined. 

This combined method takes advantages of the most effi
cient parts of the Minieka method and the Larson and Odoni 
shortcut. Tests of a newly developed computer program show 
that the program works well and reduces some computer time. 
These tests are discussed more extensively later. 

ANEW METHOD 

In this section, a new method for finding the absolute 1-center 
is proposed. The solution is obtained from a spanning tree 
based on the vertex's one-to-all shortest distances. It first 
considers the longest and second longest distances of the span
ning tree from each node in a network (9,10). For each such 
tree, the local 1-center is found. Then the minimum of local 
centers is selected as the absolute 1-center for the entire net
work. Because the new method finds the local 1-center from 
the spanning tree of each node, the maximum number of 
iterations needed to perform the computation is in proportion 
to the number of nodes, instead of links, for the given net
work . In other words, conceptually, the new method can reduce 
computer time more than the previous method if larger net
works are considered. The steps included in this new method 
are as follows: 

Step 1: Obtain the shortest path for each vertex to all other 
nodes. 

(a) 

B 

(b) 

B 

\ 
\ 
\ 
\ 
\ 

K 

M 
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Step 2: Find the farthest node i and second longest distance 
node j to form the nonoverlap distance x(i,j) according to the 
minimum spanning free of each node from Step 1. 

Step 3: Determine the service distance of local 1-center for 
each node and store it as a candidate: 

1/2(max x(i,j)] (13) 

Step 4: Repeat Steps 2 to 3 until all nodes have been 
examined. 

Step 5: Choose the minimum value among all candidates. 
This is the absolute 1-center for the given network. 

It is easy to perform the preceding steps by using the graphic 
method manually. Steps 2 and 3 need to be modified, how
ever, if the new method is to be programmed. After several 
tests, it is found that the local 1-center of the designated node 
may not always be located on the path that includes the longest 
and second longest distances rooted at each node. More ver
ifying steps must be added to obtain a better solution of the 
local 1-center. The best way to perform this analysis is to 
check all connecting links from that node. This can be observed 
in Figure 2a. Suppose node I, with the longest path I-A and 
the second longest path 1-B, is under consideration. The piv
otal local 1-center of node I is located on M with MI distance 
from node I. Link (I, K) represents one connecting links orig
inating from node I. The service distance SS of the initial local 
1-center based on the previous steps equals V2(IA + IB). If 
the shortest distances from node K to nodes A and B satisfy 
Equation 14, 

Max [D(K,A),D(K,B)] GL <SS (14) 

A 

z 

A 

FIGURE 2 (a) The farthest node A and second longest distance 
node B for node I and one of connecting links (l,K). (b) Checking 
steps for connecting links rooted from node I. 
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where 

D(K,A) = the shortest distance from nodes K to A
D(K,B) = the shortest distance from nodes K to B: and 

GL = higher value of D(K,A) and D(K,B), ' 

then it is possible for the local 1-center to be located on the 
connecting link (/,K) instead of the original shortest path. 
What would be the most desired loclltinn of local 1-center for 
node I? Before performing more analyses, we denote W as 
the nodes that are different from nodes I, K, A, and B but 
satisfy the following two conditions. 

D(K,W) ~ GL 

D(I, W) + D(l,K) ~ GL 

where 

D(K, W) = the shortest distanc~ from nodes K to W; 
D(I, W) = the shortest distance from nodes I to W; and 
D(I,K) = the shortest distance from nodes I to K. 

Let Zbe the node that has the largest value among all D(I, W). 
The new local 1-center stays on link (/,K) if Equation 15 is 
met. 

D(l,Z) + D(J,K) ~ GL (lS) 

Otherwise, the local 1-center remains at the node K. The 
service distance and location of local 1-center for node I become 
SS and p *, respectively. 

SS1 = 1/2[D(/,Z) + D(I,K) + GL] 

p* = SS1 - D(l,Z) 

(16) 

(17) 

After obtaining the new SS1, if SS1 is smaller than SS, then 
SS 1 will substitute SS as the new service distance of local 
1-center. The location of this local 1-center is located on the 
connecting link (/,K) with p* distance units from node I. 
Otherwise, the SS value still represents the service distance 
of local 1-center. After all connecting links have been exam
ined, the smallest value among all SS is chosen. The smallest 
value and its corresponding location p * are considered the 
local 1-center of node /. 

To put the preceding discussion into sequential steps, we 
substitute the following Steps la through Sa for Steps 2 and 
3 and add Steps 6a to 8a for checking connecting links. Before 
describing these steps, let c(i,j) be the shortest distance from 
nodes i to j and b(i,j) = A be the nearest node number on 
the shortest path from node i to all other nodes j; g(i,j) rep
resents the largest value among all c(i,j), and h(i,j') denotes 
the second largest value in the all remaining c(i,j). B gives 
the node letter j that has the second longest distance from 
node i. Besides, N(i) shows the node letter i currently under 
consideration. 

Step la: List all c(i,j) and b(i,j) = A for node i; 
Step 2a: Find the largest value g(i,j) among c(i,j) and its 

nea!est node letter A from node i to all other nodes; 
Step 3a: Determine the second largest value among 

remaining c(i,j) that the nearest node number is not A and 
denote it as h(i,j') and b(i,j') = B; 

Step 4a: Calculate Q(i) through the following equation: 

(
") g(i,j) + h(i,j') Q l = ;;;_c.-'-'------''-'--'-

2 
(18) 
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Step Sa: If [Q(i) - h(i,j')] is less than or equal to c(i,A), 
then Q(i) is the local 1-center distance for node i. Determine 
the suitable location p * for Q(i) and go to Step 6a. If 
[Q(i) - h(i,j'] > c(i,A), go back to Step 4; 

Step 6a: Check one connecting link from node i to node 
k: 

GL = Max[D(k,A),D(k,B)] 

If GL ~ Q(i), go to Step 7a; otherwise, go to Step 8a; 

Step 7a: Find z that satisfies the following two conditions 
and has the largest value: 

D(i,z) + D(i,k) ~ GL and D(k,z) ~ GL 

If there is no z available, go to Step 8a. 

Q'(i) = 1/2[D(i,z) + D(i,k) + GL] 

If Q'(i) < Q(i), then Q(i) = Q'(i), p* = Q'(i) - D(i,z). 
Go to Step 8a. 

Step 8a: Check other connecting links originating from node 
i. If all links have been examined, go to Step 4; otherwise, 
go to Step 6a. 

EXAMPLE 

Find the absolute 1-center of the network shown in Figure 3 
using the new method. This example requires that the shortest 
distance from each node to all vertices be calculated in the 
first step. Then, the spanning tree of the designated node 
based on the shortest distance from each node to all vertices 
is calculated in the second step. The spanning tree of the 
designated node based on the shortest distance is then obtained. 
Figure 4 shows the spanning tree of node 7. After several 
checking steps, the initial local 1-center becomes the center 
of node 7. From this figure, it can be seen that the distance 
between nodes 5 and 10 is 15S. Thus, the initial local 1-center 
for node 7 equals 77.S units, according to Equation 13. This 
center will be located on link (7,8) at a distance of O.S units 
from node 7. Similarly, the initial local 1-center of node 6 can 
be easily obtained from Figure Sa. This initial local 1-center 
has 62.S distance units and stays on link (6,10) with a distance 

25 

FIGURE 3 Distance and configuration of given network. 
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FIGURE 4 Spanning tree of node 7 and its location of local 1-center. 

11 

(b) 

25 
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10 
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initial local 
1-center 
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FIGURE 5 (a) Initial local 1-center of node 6 with 62.5 units service distance. (b) 
Location of local 1-center for node 6 with 58 units. 
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of 2.S units from node 6. It is not the best solution for node 
6. Tn fact, the local 1-center of node 6 is located on link (6,8) 
with SS distance units from node 6 to serve all other nodes 
by applying Steps 6a to Sa to examine each connecting link 
rooted from node 6. Its final location can be seen from Figure 
Sb. This location and service distance also represents the abso
lute 1-center for the given network. Therefore, from this 
example, it is important to examine all connecting links 
of any designated node before its local 1-center is finally 
determined. 

Another way of searching the local 1-center of each node 
is simply to apply the given Steps la to Sa. A complete com
putational procedure for node 7 is shown on Table 2 based 
on these steps. Definitions of all variables in the table are 
referred to this section. Table 3 gives the computational result 
of local 1-center for node 6. This case provides the user a 
better solution after checking each connecting link originated 
from node 6. It is noted that the results obtained from Ta
ble 3 are the same as those shown in Figure Sb. 
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COMPARISON OF FOUR METHODS 

Thus far, four different methods for finding the absolute 
1-center have been discussed: the new shortcut, the Minieka 
method, the combined method, and the new method. As far 
as computer time and computational complexity are con
cerned, it is necessary to understand the capabilities and lim
itations of these four methods. One analytic strategy is to 
apply four methods to the same given network. To make such 
a comparison, nine networks with different numbers of nodes 
and links are selected. In these networks, an absolute 1-center 
will be sought such that the maximum service distance from 
this center to all nodes is minimized. The absolute 1-center 
can be located anywhere on a link or at a node. 

Four computer programs have been developed separately 
for the four methods. Each program reads the same network 
input file and prints the output in an identical format. Each 
program was run on a PC/ AT with a math coprocessor 
80287-10. For each network, the final distance and location 

TABLE 2 COMPUTATION OF LOCAL I-CENTER FOR NODE 7 BY APPL YING 
STEPS la TO 8a 

Node i Node j 

N(7)=7 

c(7,j)= 

b(7,j)= 

1 2 3 

36 52 13 

4 4 4 

4 5 6 

9 77 32 

4 4 4 

A. Search the initial local 1-center: 

g ( 7. 10) = 78. A = 10, h(7,5) = 77, 

b(7,10) = 8 ~ b(7,5) = 4 

Q(7) = g(7,10); h(7,5) = 77.5 

7 8 9 

0 27 28 

7 8 9 

B = 5 

Q(7) - h(7,5) = 77.5 - 77 = 0.5 < c(7,8) = 27, O.K. 

10 

78 

8 

11 

38 

9 

The initial local 1-center of node 7 is located on link (7,8) 

B. 

and 0.5 distance units from node 7. 

Check each connecting link 

( 1) link ( 7, 4) , k = 4 

GL = max[D{4,10) = 87, D(4,5) = 68] = 87 I; Q(7) 

(2) link (7,9), k = 9 

GL = max[D(9,10) = 86, D(9,5) = 95] = 95 I; Q(7) 

No connecting links can provide a better solution, so the local 

1-center of node 7 is still located on link (7,8) and 0.5 

distance units from node 7. 
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TABLE 3 COMPUTATION OF LOCAL 1-CENTER FOR NODE 6 BY APPLYING STEPS 
la TO Sa 

Node i Node j 

N(6)=6 1 2 3 4 5 6 7 8 9 10 11 

c(6,j )= 50 20 27 33 45 0 42 15 50 65 60 

b(6,j)= 4 2 4 4 2 6 4 

A. Search the initial local 1-center: 

g(6, 10) = 65, 

b(6,10) 1 b(7,11) 

A = 10, h(6,11) = 60, 

Q(6) = g(6,10) + h(6,11) = 62.5 
2 

8 4 

B = 11 

Q(6) - h(6,11) = 62.5 - 60 = 2.5 < c(6,10) = 60, O.K. 

10 

The initial local 1-center of node 6 is located on link (6,10) 

and 2.5 distance units from node 6. 

B. Check each connecting link: 

(1) link (6,2), k = 2 

GL = max[D(2,10) = 85, D(2,11) = 80] = 85 ~ Q(6) 

( 2) link ( 6, 4) , k = 4 

GL = max[D(4,10) = 87, D(2,11) = 47] = 87 t Q(6) 

( 3) link ( 6, 8), k = 8 

GL = max[D(8,10) = 51, D(2,11) = 47] = 51 < Q(6) 

One connecting link (6,8) may provide a better solution. 

More checking steps need to be undertaken. 

D(6,1) + D(6,8) = 65? GL = 51 

D(8,1) = 63? GL = 51 

Q'(6) = [D(6,1)+D(6,8)+GL] = [50+15+51] = 58 ~ Q(6) 

P* = Q'(b) - D(b,1) = 58 - 50 = 8 ~ c(6,8) = 15 O.K. 

8 

Thus, the local 1-center of node 6 is located on link (6,8) 

and 8 distan~e units from node 6. 
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of the absolute 1-center are the same according to the output 
of the four computer programs. They all provide the best 
solution. Comparisons of computer time used and the num
bers of links and nodes considered by each method are sum
marized in Table 4. It can be seen that the combined method 
is more efficient than the Minieka method, because the former 
skips many unnecessary links before searching the local 1-
center. The new method and the new shortcut are obviously 
better than the combined method. Both the new method and 
the shortcut use almost the same computer running time. For 
a network with 80 nodes and 141 links , the new method and 
shortcut need only 45 percent of the Minieka's computer time 
and 61 percent of the time required by the combined method. 
The results show that the new method and the shortcut are 

computationally fast and powerful if larger networks are con
sidered. Also, both new methods can be categorized as poly
nomial time-bounded algorithms. 

CONCLUSIONS 

The combined method finds the absolute 1-center with fewer 
link computations than the Minieka method does, if the latter 
is assumed to examine all links. The computational complexity 
of this technique relies on the efforts of finding the all-to-all 
shortest distance paths and requires O(N3) calculations. Hence, 
the combined method is a polynomially bounded algorithm 
and requires less computational effort. The proposed new 
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TABLE 4 COMPARISONS OF FOUR METHODS BY RUNNING ON PC/AT WITH A 
MATH COPROCESSOR 80287-10 

Network No. of No. of Minieka 
Method 

Number Nodes Links (sec) 

1 15 27 3.6 

2 17 36 4. 7 

3 25 50 9.9 

4 30 40 13.1 

5 40 56 27.7 

6 45 95 44.0 

7 50 74 51. 7 

8 65 100 109.5 

9 80 141 207.4 

shortcut gives a stricter bound than does the Larson and Odoni 
shortcut. After this new shortcut is applied, the location and 
its service distance to the local 1-center for the desired link 
can be obtained directly. The new method finds the absolute 
1-center by considering the number of nodes instead of the 
number of links in a network. Although the combined method 
has reduced the number of links needed in calculating the 
local 1-center, the number of remaining links, in most cases , 
is still greater than the number of nodes considered for the 
given network. Therefore, after several tests, it can be con
cluded that the new method and the new shortcut are faster 
and more powerful than the combined method or the Minieka 
method, especially for a large network. On this basis, the new 
method or the new shortcut is recommended for use in locat
ing a new transportation facility if the absolute 1-center loca
tion problem is being considered. 
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Combined New Shortcut New Method 
Method 
(sec) (sec) (sec) 

4.5 4.1 3.7 

5.3 4.5 4.0 

9.5 7.5 7.2 

12.4 10.0 9.5 

23.3 17.5 17.0 

32.8 22.6 22.2 

41.0 28..4 28.0 

82.2 53.4 53.0 

148.0 90.4 90.0 
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