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Locomotive Scheduling Under 
Uncertain Demand 

ScoTT SMITH AND YosEF SHEFFI 

Each day, railroads face the problem of allocating power to trains. 
Often, power requirements for each train are not known with 
certainty, and the fleet of locomotives may not be homogeneous. 
To deal with both of these complications, we formulate a multi
commodity flow problem with convex objective function on a time
space network. The convex objective allows us to minimize expected 
cost under uncertainty by penalizing trip arcs likely to have too 
little power. Our solution heuristic sends locomotives down the 
shortest paths (based on marginal arc costs) in the time-space 
network and then attempts to improve interchanges of locomotives 
around cycles. Two lower bounds are also developed by relaxing 
the multicommodity aspect of the problem. In 19 test problems, 
ranging in size from 15 to 404 arcs, the heuristic performed well, 
with short running times and costs averaging within 3 percent of 
the best of the two lower bounds developed. 

A problem frequently faced by transportation carriers is the 
allocation of a fixed supply of vehicles to a given schedule. 
Examples include the allocation of locomotives to freight trains, 
of buses to transit routes, and of airplanes to flights. These 
examples have the following features in common: 

1. There is a published or "committed to" schedule of ser
vices that have to be carried out; 

2. The supply of vehicles to <rips can be represented as an 
integer, multicommodity minimum cost flow problem over a 
network of trip, layover, and storage arcs. The problem has 
multicommodity aspects because the vehicle fleet is not homo
geneous; for example, locomotives may have different power 
ratings and airplanes may be of different sizes. (Naturally, 
however, there are some important differences between the 
modes. For example, in the rail mode, two or more loco
motives typically are used to meet demand for a given trip, 
whereas only one airplane is used for a single airline trip); 

3. Even though the schedule is fixed, the demand for ser
vice may vary. In the rail context, the tonnage of a given train 
is variable. In the bus or airline context, the number of pas
sengers on a given trip will vary. Further, it may sometimes 
be desirable not to meet all the demand, for example, by 
having standees on buses, or refusing airline reservations, or 
leaving cars behind for the next freight train to pick up. 

This paper formulates this allocation problem and suggests 
solution techniques in the context of rail. First, background 
information on both the formulation of the problem and past 
research in this area is presented. Second, the problem is 
formulated as a mathematical program. Third, a fast heuristic 
solution technique is presented. Finally, the results of the 
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heuristic are compared with lower bounds obtained through 
various relaxations. The techniques presented here explicitly 
consider uncertainty in locomotive demand and are able to 
deal with locomotives of different power ratings. 

BACKGROUND 

This section looks at the network representation of the loco
motive scheduling problem. This formulation underlies vir
tually all other attempts in the literature to develop a solution 
for this problem. Some of that research is reviewed in the 
second part of this section. 

Time-Space Representation 

The rail scheduling problem is typically formulated as a min
imum cost flow problem on a time-space network, which is a 
graph of locations versus time on which activities are plotted 
(Figure 1). Each node in this network represents a terminal 
(yard) at a point in time, and arcs are of the following types: 

1. Trip arcs represent trains between the upstream terminal 
node and the downstream terminal node that the arc connects. 

dummy supersource 

Layover arc 

Trip arc 

End arc 

FIGURE 1 Sample time-space network. 
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There is a power requirement for each trip, which may be 
represented either by a lower bound on the arc flow of loco
motives or by a penalty function that increases greatly as this 
flow falls below the minimum desired value; 

2. Layover arcs represent short-term storage at a terminal. 
They have a lower bound of 0 and some fixed cost per unit; 

3. Bypass arcs represent long-term storage of unneeded 
units and have very low cost per unit; and 

4. End arcs represent locomotive requirements at each ter
minal at the end of the planning horizon. Any practical time
space representation has a finite planning horizon. Therefore, 
if this horizon is short, end effects must be considered. In the 
model here, we want to know how many locomotives are 
needed at each terminal at the end of day, week, or whatever 
period we are modeling. Thus, the end arcs will have either 
cost functions or lower bounds similar to those for trip arcs. 

This is a multicommodity network flow problem with either 
a "bundle constraint" in the lower bound for each arc or a 
penalty term in the cost function that "bundles" the com
modities. We flow locomotive units of various types through 
the network, but a minimum level of motive power must be 
met for each arc. 

Past Work 

Comprehensive reviews of rail scheduling are contained in 
two papers by Assad (1,2) and one by Peterson (3). Some of 
the earliest analytical work in locomotive assignment is that 
of Bartlett in 1957 ( 4), who presented a pairing algorithm to 
assign vehicles to a fixed schedule. Later, McGaughey et al. 
(5) described the distribution of locomotives and cabooses 
with a time-space network model. They used an out-of-kilter 
algorithm to find the optimal flow of units through a single
commodity network with a fixed lower bound on the power 
supplied to each arc. In 1976 Florian et al. (6) considered the 
multicommodity aspect of locomotive scheduling, with fixed 
lower bounds. They used Bender's decomposition to solve 
this multicommodity flow problem and reported good results 
with medium-size (about 200 train movements) problems but 
had less success with larger problems. In 1980, Booler (7) 
formulated the same multicommodity flow problem but 
obtained an integer solution using a heuristic method based 
on linear programming. 

All of this work assumes deterministic, known lower bounds 
on the power flows. Furthermore, there has been only limited 
success with multicommodity flows, particularly with large 
problems, as already mentioned. As the first step to the expla
nation of our approach to the problem, the next section for
mulates the locomotive allocation problem as a mathematical 
program. Later we assume that the lower bound is not known 
with certainty, and we reformulate the problem using a 
penalty function. 

FORMULATION 

This section starts with the "traditional" mathematical pro
gramming formulation of the problem. It then incorporates 
the uncertainty in locomotive requirements directly into the 
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power needs. The formulation and notation that follow relate 
to the time-space representation of the locomotive assignment 
problem. 

Define the following: 

i = arc number in the time-space network, 
j = locomotive type, 

x 11 = flow of locomotive type j on arc i, 
H1 = horsepower rating of locomotive type j 
s1 = horsepower flow on arc i (s; = "i.1Hr;), 
x1 = vector of locomotive flows of type j on all arcs, 

C1(s;) general operating cost function on arc i, 
c, operating cost per unit HP flow on arc i, 
!1 demand for power on trip arc i (this may be either 

a deterministic value or a random variable), 
F, cumulative distribution function for l;, 
f, = probability density function for l1, 

µ 1 = average demand for power (expected value of l;), 
rr, standard deviation of demand for power, 

Pls) = general penalty cost function for power shortfall 
on link i, 
penalty per unit of power shortfall on arc i, p, 

Z,(s,) cost function on arc i (including operating cost and 
penalty), 

N = node arc incidence matrix for the time-space net
work, and 

b1 = vector of sources and sinks for locomotive type j. 

We first formulate the problem with deterministic lower bounds 
on the power requirements, and then show how these lower 
bounds can be modeled as random variables. That formula
tion leads to the use of penalty functions in the objective of 
the mathematical program. In all cases, we assume that the 
lower bound is expressed in terms of horsepower, so that 
combinations of locomotive types with the same total power 
rating are interchangeable. The mathematical formulation is 

subject to 

"i.1Hr,1 ~ 11 for all i 

Nx1 = b1 for all j 

x;1 integer and ~ 0 

(1) 

(2) 

(3) 

(4,5) 

This is a multicommodity minimum cost network flow prob
lem. The objective is to assign all locomotive types j to the 
network, whose node-arc incidence matrix is N, at minimum 
cost. The various locomotive types cannot be assigned sep
arately because they all contribute to the power on each train 
link. This bundling of locomotive types appears in the lower 
bound constraint 2. 

Recall that the original problem calls for uncertainty in 
demand. Therefore, the fixed lower bound formulation of 
Equations 1 through 5 may not be realistic. This is because 
a fixed lower bound can be thought of as an infinite cost 
penalty on flows below it. Such a cost function for an arc with 
a lower bound of 5000 and cost per unit flow of c is shown 
in Figure 2. According to this cost function, 4999 HP on this 
train has an infinite cost whereas 5000 HP has the lowest cost, 
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FIGURE 2 Arc cost function with deterministic lower bound. 
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Arc cost function with uncertain power demand. 

requirement is actually a random variable, which can attain 
values lower than 5000 HP. A more realistic cost function 
(Figure 3) might be obtained by reasoning as follows: 

Our forecast demand is 5000 HP but we know the forecast 
might be off by-.as much as 1000 HP. Therefore, our safest 
assignment would be to have 6000 HP on this train; 5000 HP 
would probably work; 4000 HP would be unacceptable. How
ever, we do not want a fixed lower bound of 6000 HP because 
5000 HP may be all the power we have available. 

To yield a cost function that looks like the one shown in 
Figure 3, we move constraint 2 into the objective with a pen
alty term. By doing so, we acknowledge that (a) power 
requirements may vary in a random manner and (b) the lower 
bound on power is not a hard-and-fast rule; rather, there is 
a trade-off between service quality and the amount of power 
supplied. This formulation provides a more realistic repre
sentation and, arguably, makes the problem easier to solve. 
Thus, rather than having the demand for power, 11, as a fixed 
lower bound, it is modeled as a random variable. 

The shape of the cost function derived this way depends 
on three elements: 

1. The operating cost of additional power; we assume this 
is some function, C;(s;) of the power supplied, s1• This cost is 
assumed independent of the demand, 11, and locomotive type; 
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2. The distribution of the demand for power, l;. The prob
ability density function for l; is denoted by f; and its cumulative 
distribution by F1• This· distribution has mean µ,1 and variance 
a}; and 

3. The magnitude and shape of the penalty, given a short
age. This will have the form P1(l1 - s;) (recall thats1 = IjH;c1J. 

In the equations that follow, the subscript i is dropped to 
make the notation easier to read . 

The cost as a function of power supply, s, is Z(s). Given 
the probability density function of l, this cost can be expressed 
as follows: 

Z(s) = C(s) + r P(l - s) f(I) di (6) 

As a tractable approximation to the normal distribution, we 
assume that l follows a logistic distribution where 

F({) = [1 + exp ((alu) (µ, - {))] - 1 

f({) = (alu) exp((a!u) (µ, - /)) 

x [1 + exp((a/rr) (µ, - 1))]-2 

where a = -rr/\/J = 1.81 

The cost function, Z(s), now becomes 

Z(s) = cs + p r lf(l) di - ps r f({) di 

= cs + p r If(/) di + ps(F(s) - 1) 

After integrating (by parts) the cost becomes 

Z(s) = cs + (pula)log(l!F(s)) 

(7) 

(8) 

(9) 

(10) 

In the logistic distribution mentioned above, negative demand 
is theoretically possible. However the parameters are such 
that this is not a problem in practice. 

Cost functions were also derived for uniform and gamma 
distributed demands , with some examples plotted in Figure 
4. Note the following points: 

1. All functions approach the CT = 0 case asymptotically as 
s becomes either very large or very small with respect to f.L; 

2. There is not much difference between the ca es wi.th 
logistic, uniform , and gamma distribution-. This is reassuring, 
I ecause it indicates that the exact shape of the distribution 
for demand may not matter much , and we can u e the logi tic 
distribution to form a tractable cost function . Although the 
gamma di tribution i probably the most realistic r presen
tation of l (it never ha values bel w zero) it does not yield 
a clo ed form for Z(s) and, consequently, i difficult to work 
with; 

3. All functions have the desired shape (as in Figure 3). In 
the remainder of the paper, we assume that the demand for 
power I is logistically distributed with mean µ, and standard 
deviation u. 
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The problem we are solving can now be summarized as fol
lows: Minimize the total cost of flowing power on all arcs, 
subject to the following constraints: 

1. Flow conservation constraints are met for each power 
class and 

2. The number of locomotives on each arc is integer and 
nonnegative. 

In other words: 

min I;{c,s, + (p,a/a) log(l + exp [(a/µ;)(µ,-s,)])} (11) 

subject to Nxj = bj for all j 

X;j integer and ;::: 0 

(As before, s, is defined as IjHr,i and a = 1.81.) 

(12) 

(13,14) 

This representation, in addition to having the advantages 
mentioned earlier, also lends itself well to the treatment of 
uncertain end effect arcs, which can be modeled like trip arcs 
with high CJ. The next section looks at solution approaches 
for this problem. 

SOLUTION APPROACHES 

We have formulated a nonlinear, multicommodity integer net
work flow problem. Exact solution techniques for such a prob
lem are likely to be neither easy nor fast. This problem, how
ever, is similar to the (multicommodity) traffic assignment 
equivalent program. The traffic assignment problem deals 
with the assignment of an origin-destination trip matrix to a 
transportation network so as to minimize each user's travel 
time (or cost). In traffic assignment, the arcs have a fuzzy 
upper bound that arises from highway congestion effects, 
whereas our problem has a fuzzy lower bound arising from 
power shortfall . Both problems can be formulated as a solu
tion to a convex program over network flows. The heuristrc 
used to solve the locomotive scheduling borrows from both 
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the incremental assignment method and the Frank-Wolfe 
algorithm used to solve the traffic assignment problem. 

Review of Incremental Assignment and Frank
Wolfe 

In incremental assignment , wc start with zero flow on the 
network and choose a number of increments, n. The algo
rithm, then, in each of n iterations, greedily assigns lln of the 
total flow along each shortest path from origin to destination. 
Because the cost function is nonlinear, these shortest paths 
may change with each iteration (8). Although this algorithm 
can be set to maintain integrality of the solution, has intuitive 
appeal, and is easy to implement, it has a number of short
comings. First, it does not always work, as shown through 
counterexamples by Ferland et al. (9). Second, if it is to 
produce reasonable solutions, the number of increments may 
have to be very large, thus unduly increasing the running time. 

The Frank-Wolfe algorithm (8) is a feasible direction method 
and therefore starts with an initial feasible solution and moves 
to improved solutions , maintaining feasibility throughout. It 
does this by developing linear approximations to the objective 
function and by solving linear subproblems to find the correct 
distances to move in improving directions . With cost min
imization and a convex objective function, the Frank-Wolfe 
method does converge to the optimal solution and is easy to 
implement on networks. Furthermore, a lower bound to the 
optimal solution is provided at each iteration. Flows, how
ever, are split between paths; thus integrality is lost. In most 
traffic assignment problems, convergence is rapid (about five 
iterations) but may be slowed if the solution is in a highly 
nonlinear portion of the objective function (10) . 

The Two-Commodity Heuristic Approach 

The heuristic presented here obtains a feasible solution to the 
problem through incremental assignment, and then obtains 
improvement. through a fea ible direction method. Unlike 
Frank-Wolfe, it maintains integrality and exploit the int -
grality of the problem by moving one locomotive unit at a 
time, thus obviating the need for line searches in the feasible 
direction method. 

The heuristic runs in two phases. First, it loads the network 
by assigning one unit at a time to shortest paths. This is 
referred to as the GREEDY phase. Second, after the network 
is loaded, it attempts improvements by sending flows around 
augmenting negative cycles in an INTERCHANGE phase. 
These augmenting cycles are similar to the augmenting paths 
of maximum flow algorithms in that they include both forward 
and reverse arcs; thus flow can be removed from an arc when 
going against the flow direction. Both phases are outlined in 
more detail below: 

GREEDY Phase 

Step 0. Initialization. Start with zero flow, and compute 
arc marginal costs at zero flow. 

Step 1. Send one unit down the shortest path from any 
source to the supersink; update arc flows. (Note rhat the order 
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in which units are selected will affect the outcome. For the 
experiments here, the largest units were arbitrarily selected 
first). 

Step 2. Recompute arc marginal costs along that path. 
Step 3. If all units have been sent, go to the INTER

CHANGE phase, otherwise, go to Step 1. 

Note that for large problems, this phase can be speeded up 
by sending more than one unit at first. Also, saving the short
est path tree rooted at the sink node and reoptimizing it after 
every assignment (rather than recomputing the shortest path 
at each iteration) offers another opportunity to speed up this 
phase of the heuristic. 

INTERCHANGE Phase 

tep 0. Identify arcs thal are candidates for improvement. 
In the pre enl implementation the e a re arc with large neg
ative marginal co t (i.e., trip arcs with insufficient pow r) . 

Step L. earcb for a flow-augmenting negative cycle involv
ing ome candidate arc. lf no negative cycle can be found in 
the network, stop. Otherwise, go to Step 2. 

Step 2. Interchange flows around this cycle and update arc 
marginal costs. Go back to Step 1. 

The interchanges performed in the second phase are gen
erally more complicated than simply sending one unit of flow 
around the cycle. This is because the interchanges often involve 
minor HP changes and thus may involve the exchange of two 
Joe motive type . For example, if our two locomotives types 
have 2000 I P and 3000 HP, respectively two interchanges 
that wou ld produce a small hor epower change would be: 

1. Add one high-power and remove one low-power unit 
on the arc that needs additional power (net change of 1000 
HP) or 

2. Add two I.ow-power and remove one high-power unit 
(net change of 1000 HP). 

Within the heuristic, these interchanges are performed in the 
following manner: 

1. Create an ordered list of arcs that will benefit from more 
power. 

2. Attempt to find an improving interchange involving one 
of the arcs on the ordered list. This is done as follows: 

2a. Select the first interchange type. 
2b. REPEAT. 

Select the first arc. 
REPEAT. 

Try to find an improving interchange (flow
augmenting negative cycle) with this arc and inter
change type. If one is found, go to Step 3. Other
wise, select the next arc 

UNTIL all arcs examined. 
Consider the next interchange type. 
UNTIL all interchange types have been considered. 

3. If we have found an interchange 
Perform the interchange and update arc marginal 
costs. 

49 

Update the ordered list of arcs, go back to Step 2. 
Otherwise, we terminate, because no interchange can 
be found. 

Example 

Consider a two-node network with two trip arcs and one 
bypass arc (Figure 5) . The arc costs are showrt in Table 1. 
The locomotive supply includes one high-powered (3000 HP) 
and two low-powered (2000 HP) locomotives. The greedy 
phase of the heuristic performs as follows: 

1. Send the high-powered unit down arc 1. 
2. Send a low-powered unit down arc 2. 
3. Send a low-powered unit down arc 1. 

We now have 5000 HP on arc 1 and 2000 HP on arc 2. Arc 
2 is short of power. 

arc 1 

3000HP [!] E ... , ? 
2000 HP © - -:::;r ------------------bypass arc 

FIGURE 5 Sample network. 

TABLE 1 COSTS FOR THE EXAMPLE 
NETWORK 

arc 1 arc 2 bypass 

Parameters 

4200 3000 0 

1000 1000 0 

c 1 1 0 

p 10 10 0 

Costs 

Flow (HP) arc 1 arc 2 bypass 

0 42002 30024 0 

1000 33016 21146 0 

2000 24102 12837 0 

3000 15596 6829. 0 

4000 8919. 4837. 0 

5000 6166. 5146. 0 

6000 6208. 6024. 0 

7000 7034. 7003. 0 

8000 8005. 8000. 0 
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Moving to the interchange phase, we see that the high
powered unit on arc 1 can be exchanged with the low-powered 
unit on arc 2. After this exchange is performed, we are fin
ished , as no more improving interchanges can be seen. 

The progress of the heuristic in terms of the arc flows and 
the objective function is plotted in Figure 6. The method 
works by first moving in big jumps (whole units) toward the 
optimal solution, then refining the solution by making smHller 
jumps (interchanges). 

Advantages and Disadvantages of the Heuristic 
Approach 

This doub!e-ph3se heuristic has several advantages . First, it 
maintains feasibility throughout. Second, by always moving 
in an improving direction, the method is intuitively appealing. 
Therefore, it may lend itself well to interactive use. Third, it 
is easy to incorporate other side constraints into the frame
work of this heuristic. Some of these are the following: 

1. Prohibition of certain locomotive types from certain sec
tions of track, 

2. Assigning newer, more reliable, locomotives to high
priority trains, and 

3. Sending locomotives to home shops for scheduled 
maintenance. 

Finally, the heuristic is also quite fast and produces close to 
optimal results in several test problems. 

The disadvantages of this method are, first, its heuristic 
nature: optimality is not guaranteed. In addition, the com
plexity of the interchange phase increases as the number of 
the commodities is increased beyond two. This was not a 
problem in the case study reported later but may present 
difficulty in other applications. 

LOWER BOUNDS 

Several lower bounds were derived to test the performance of 
the heuristic. A lower bound may be (a) an optimal solution 
to a relaxed version of the primal problem, (b) a dual feasible 
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FIGURE 6 Progress to the best heuristic solution. 
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solution, or (c) some combination of the foregoing, such as a 
dual feasible solution to a relaxed version of the primal. Two 
lower bounds were derived for the problem discussed here. 

Frank-Wolfe Relaxation 

By relaxing the integrality constraint in the original problem, 
we obtain a single-commodity (horsepower) network flow 
problem with convex objective function. This can be solved 
with the Frank-Wolfe (convex combinations) method already 
reviewed. The Frank-Wolfe method provides both a feasible 
solution and lower bound on the relaxed problem at every 
iteration. This lower bound on the relaxed problem will, nat
urally, also provide a lower bound on the original minimi
zation problem in the following manner: 

heuristic solution ~ optimal solution 

~ optimal solution to relaxed problem 

~ lower bound to relaxed problem 

Unfortunately, a complete relaxation of the integrality con
straint in this manner may lead to a large gap between the 
optimal solution and the optimal solution to the relaxed prob
lem. Such a gap makes it difficult to evaluate the performance 
of the heuristic. 

Greatest Common Factor (GCF) Relaxation 

This relaxation is based on the following observation: Any 
feasible solution will have a horsepower flow in each arc that 
is a multiple of the greatest common factor (GCF) of the 
horsepower ratings. For example, if there are two locomotive 
types rated at 2000 HP and 3000 HP, the flow on each arc 
will be a multiple of 1000 HP. If there are three locomotive 
types with ratings of 1750 HP, 2000 HP, and 3000 HP, the 
flow on each arc must be a multiple of 250 HP. Any other 
horsepower flow is infeasible because it cannot possibly be 
produced as a combination of locomotive flows. 

We can use this observation to transform the original net
work problem with convex nonlinear cost function to a con
ventional linear network flow problem with integral upper 
bounds on the arc flows. This latter problem is easy to solve. 
The steps in the transformation are 

1. Let b = GCF of the locomotive power ratings. 
2. Transform the cost function by making it piecewise lin

ear with breakpoints at multiples of b. See Figure 7. Note 
that the cost function remains convex and we change its value 
only at points that cannot be generated by any combination 
of locomotives. 

3. Create n arcs (one for each division in the cost function) 
for each original arc in the network (Figure 8) . (We do not 
need to add additional constraints because the cost function 
is still convex, thus the arcs will be loaded in the correct 
order). 

4. Because our sources, sinks, and bounds are all multiples 
of b, we can scale flows down by a factor of b without losing 
integrality. The solution to this problem, when scaled back 
up, wiil be a muitipie of b. 
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5. We now have a conventional mm1mum cost network 
flow problem that will provide a valid lower bound on the 
original problem because (a) all feasible solutions to the orig
inal problem are feasible in this problem and (b) the cost 
function was changed only at infeasible points in the original 
problem. Note, however, that a feasible solution in this prob
lem may not be feasible in the original problem. An example 
would be an arc flow that is greater than zero but less than 
the power rating of the smallest locomotive. 

TEST PROBLEMS AND RESULTS 

The heuristic was implemented in FORTRAN on a Micro Vax 
II running Micro VMS 4.5 and tested on 19 problems of four 
time-space network configurations (Table 2). The smallest of 
these networks is shown in Figure 1, and Problems Ll-LS 
were drawn from an actual 3-day train schedule for the Grand 
Trunk Western Railroad. 

The logistic form of the cost function was used in all cases. 
The power requirements varied from 3000 HP to 15,000 HP 
on the trip arcs, and locomotive supplies were fixed to be 
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"barely adequate." The basic networks had pie = 10, e = 
0.5, er/µ = 0.20, but these were systematically varied in some 
of the test problems. Table 2 shows these parameters and 
results for the various networks. The heuristic-optimal values 
of the objective function behaved reasonably, with the fol
lowing configurations having increased costs over the baseline 
(Problems Sl, Ll): 

• Higher penalty term: Increasing the penalty term tenfold 
approximately doubled the objective function (Problems S3, 
L3). 

• Higher standard deviation: Increasing er/µ from 0.1 to 1 
also increased the cost substantially (Problems S5, LS). 

• Lower power supply: Because the initial power supply 
was "barely adequate," reducing it increased costs somewhat 
as more trains were underpowered (Problems S6, L6). 

We would expect average running times to be a function 
of both the number of locomotives supplied and of the size 
of the network. In the cases here, as the networks became 
larger, running times seemed to be O(nt) where n is the num
ber of nodes and t the number of locomotives. They were 
reasonable in all cases, ranging from O.S sec for the smallest 
network to 63 sec for the largest. This is acceptable because 
it is envisioned that in an operating environment, the model 
will be run about once per 8-hr shift rather than continuously. 

The numerical results were normalized to the best lower 
bound found, which was the GCF lower bound. The results 
of the heuristic were, on average, within 3 percent of this 
bound. These normalized results are shown in Table 2. Prob
lems with a flat objective function (low pie and high er/µ -
problems S2, SS, L2, LS) tended to perform better with results, 
on average, within about 1 percent of the lower bound. Con
versely, problems with a highly nonlinear objective (S3, S4, 
L3, L4) give results that were on average only within 6-7 
percent of the lower bound. The Frank-Wolfe algorithm also 
tended to have poor convergence on these problems. 

FURTHER WORK 

We have developed a model that deals explicitly with the 
uncertainty in power requirements. Moreover, the heuristic 
used to solve this model is promising because it is both fast 
and fairly accurate. Further research should focus on im
provements to the heuristic and incorporation of schedule 
variability. 

The present implementation of the heuristic does not optim
ize speed. Some improvements, mentioned earlier, include 
sending more than one unit at a time in the early stages of 
the heuristic, and keeping and reoptimizing a shortest path 
tree rooted at the supersink, rather than recalculating shortest 
paths for each iteration. Another improvement to the heu
ristic would be the incorporation of additional side constraints 
and provision for more than two commodities. 

Of possibly greater interest is the incorporation of schedule 
variability. Although the model now assumes a fixed schedule, 
one way to do this would be to incorporate the heuristic into 
an interactive system that displays where and when shortages 
of locomotives are likely to occur, and then allowing the user 
to adjust the schedule accordingly before running the heuristic 



TABLE 2 TEST RESULTS 

GCF Normalized Costs · 

Trial Trips arcs nodes kHP p/c '1'/,,µ. Cost greedy 

Tl 

T2 

Sl 

S2 

S3 

S4 

SS 

S6 

S7 

Ml 

M2 

Ll 

L2 

L3 

L4 

LS 

L6 

L7 

L8 

3 

3 

9 

9 

9 

9 

9 

9 

9 

3S 

3S 

102 

102 

102 

102 

102 

102 

102 

102 

lS 

lS 

42 

42 

42 

42 

42 

42 

42 

1S3 

1S3 

404 

404 

404 

404 

404 

404 

404 

404 

10 

10 

2S 

2S 

2S 

2S 

2S 

2S 

2S 

88 

88 

239 

239 

239 

239 

239 

239 

239 

239 

13 

13 

S2 

S2 

S2 

S2 

S2 

37 

67 

137 

168 

283 

283 

283 

283 

283 

253 

309 

406 

10 0.1 

10 0.1 

10 0.1 

5 0.1 

so 0.1 

10 0.05 

10 1 

10 0.1 

10 0.1 

10 0.1 

10 0.1 

10 0.1 

5 0 .1 

so 0.1 

10 0 . 05 

10 1 

10 0.1 

10 0.1 

10 0.1 

18.8 

18 . 6 

123 

105 

249 

105 

254 

184 

110 

1156 

1085 

1531 

1191 

3598 

1414 

2475 

1577 

1484 

1454 

1.017 

1. 069 

1.025 

1.016 

1. 066 

1.053 

1.002 

1. 038 

1. 065 

1.034 

1. 035 

1. 065 

1. 027 

1.133 

1.117 

1.014 

1. 062 

1. 068 

1.041 

average 1.050 

Trips - number of trips in this network 

kHP = total horsepower supply (thousands HP) 

p/ c - ratio of penalty to cost term 

<r/p - coefficient of v ariation for power demand 

GCF Cost = Total cost (thousands $) for GCF relaxation 

greedy - total cost after GREEDY phase / GCF Cost 

int - total cost after INTERCHANGE phase / GCF Cost 

FW - total cost of Frank-Wolfe solution / GCF Cost 

FWLB - total cost of Frank-Wolfe lower bound / GCF Cost 

GCF - total cost of GCF relaxati on / GCF Cost 

int 

1.017 0.998 

1.028 0.991 

1.018 0.995 

1.013 0 . 999 

1.044 0.988 

1.047 0.994 

1. 000 1. 000 

1.000 0 . 999 

1.008 0.996 

1. 011 1. 013 

1. 031 1. 004 

1. 035 1. 020 

1. 021 1. 004 

1.104 1. 039 

1.067 1.034 

1. 010 1. 005 

1.048 1.017 

1. 046 1. 015 

1. 020 1. 009 

1.030 1. 006 

run time - total runni ng time for the heuristic, excluding input/output 

and computation time for relaxations . 

0.951 

0.981 

0.984 

0 . 991 

0.978 

0.881 

0.996 

0 . 995 

0 . 979 

0.976 

0.976 

0.933 

0 . 968 

0.914 

0.886 

0.992 

0 . 960 

0.927 

0.919 

0.957 

GCF 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
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again. However, to adjust schedules within the algorithm will 
require consideration of system wide train scheduling and cus
tomer demand, both of which are very difficult to quantify. 
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