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An Application of Optimal Control 
Theory to Dynamic User Equilibrium 
Traffic Assignment 

BYUNG-WooK Wrn 

Optimal control theory is applied to the problem of dynamic traffic 
assignment, corresponding to user optimization, in a congested 
network with one origin-destination pair connected by N parallel 
arcs. Two continuous time formulations are considered, one with 
fixed demand and the other with elastic demand. Optimality con­
ditions are derived by Pontryagin's maximum principle and inter­
preted as a dynamic generalization of Wardrop's first principle. 
The existence of singular controls is examined, and the optimality 
of singular controls is assured by the generalized convexity con­
ditions. Under the steady-state assumptions, a dynamic model with 
elastic demand is shown to be a proper extension of Beckmann's 
equivalent optimization problem with elastic demand. Finally, the 
derivation of the dynamic user optimization objective functional 
is demonstrated, which is analogous to the derivation of the objec­
tive function of Beckmann's mathematical programming formu­
lation for user equilibrium. 

The objective of this paper is to explore the application of 
optimal control theory to the problem of dynamic traffic 
assignment corresponding to user optimization. Two contin­
uous time optimal control problems will be formulated, one 
with fixed demand and the other with elastic demand. The 
present paper is concerned with dynamic extensions of the 
steady-state network equilibrium model, particularly Beck­
mann's equivalent optimization problem, which is a mathe­
matical programming formulation (1). This formulation is based 
on the steady-state assumptions: 

(1). The average arc travel cost is some known function of 
the total traffic flow traversed during the period of analysis; 

(2). Travel demands associated with each origin-destination 
(0-D) pair are constant over time; and 

(3). Flow entering each arc is always equal to flow leaving 
that arc during the period of analysis. 

Hence, the relaxation of the steady-state assumptions lead to 
the problem of dynamic traffic assignment in which the net­
work characteristics are explicit functions of time. 

A pioneering research in dynamic traffic assignment was 
accomplished by Merchant and Nemhauser (2-4). They for­
mulated the model as a discrete time, nonlinear, and non­
convex mathematical program corresponding to system 
optimization in a multiple-origin single-destination network. 
They showed that the Kuhn-Tucker optimality conditions can 
be interpreted as a generalization of Wardrop's second prin-
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ciple, which requires equalization of certain marginal travel 
costs for all the paths that are being used. The behavior of 
their dynamic model was also examined under the steady­
state assumptions, and as a result the model was proven to 
be a proper generalization of the conventional static system 
optimal traffic assignment model. 

The algorithmic question of implementing the Merchant­
Nemhauser (M-N) model was resolved by Ho (5). He showed 
that, for a piecewise linear version of the M-N model, a global 
optimum is contained in the set of optimal solutions of a 
certain linear program. He also presented a sufficient con­
dition for optimality, which implies that a global optimum 
can be obtained by successively optimizing at most N + 1 
objective functions for the linear program, where N is the 
number of time periods in the planning horizon. 

Recently Carey (6) resolved a hitherto open question as to 
whether the M-N model satisfies a constraint qualification. It 
was shown that the M-N model does in fact satisfy a constraint 
qualification, which establishes the validity of the optimality 
analysis presented by Merchant and Nemhauser (4). More 
recently, Carey (7) reformulated the M-N model as a convex 
nonlinear mathematical program. As a consequence, the new 
formulation could have analytical, computational, and inter­
pretational advantages in comparison with the original M-N 
model. In particular, the Kuhn-Tucker conditions are both 
necessary and sufficient to characterize an optimal solution; 
in the M-N model, however, they are not sufficient because 
the constraint set is not convex. 

In contrast with the atoremenuoned mathematical pro­
gramming approaches, Luque and Friesz (8) provided a new 
insight into the problem of dynamic traffic assignment through 
the application of optimal control theory. They formulated 
the M-N model as a continuous time-optimal control problem 
corresponding to system optimization. The optimality conditions 
were derived by applying Pontryagin's maximum principle, and 
economic interpretation was conducted and compared with those 
obtained from Merchant and Nemhauser (4). 

It is worth noting that the Merchant-Nemhauser model and 
its extended models consider a system-optimized flow pattern 
that satisfies a dynamic generalization of Wardrop's second 
principle. In general, a traffic flow pattern obeying Wardrop's 
second principle minimizes the total transportation cost of the 
network as a whole, and it can be regarded as the most desir­
able flow pattern for society. In the present paper, however, 
we are interested in a user-optimized flow pattern obeying a 
dynamic generalization of Wardrop's first principle, which 
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requires equalization of certain unit travel costs for all the 
paths that are being used . Suppose that travel demands are 
time-dependent but fixed in a multiple 0-D network. The 
problem of dynamic traffic assignment corresponding to user 
optimization can be viewed as a noncooperative game between 
players associated with various 0-D pairs and departure times. 
Wardrop's first principle can then be generalized for dynamic 
traffic assignment such that: 

Individual drivers attempt to minimize their own travel costs 
by changing routes. At each instant in time , no one can reduce 
his or her travel costs by unilaterally changing routes; there­
fore , the unit travel costs on paths used by drivers who have 
the same departure time and 0-D pair are identical and equal 
to the minimum unit path costs for that 0-D pair. 

Our analysis is restricted to the network with one 0-D pair 
that is connected by N parallel arcs, as shown in. Figure 1. It 
is also assumed that there is one transport mode-for exam­
ple , private automobile. Note that A is the set of directed 
arcs. We will use index a to denote a directed arc. We will 
consider a fixed planning horizon of length T; that is, all 
activities occur at some time t E [O, T]. In the remainder of 
this paper, traffic flow is defined as the average number of 
vehicles passing a fixed point of an arc per unit of time, and 
traffic volume is defined as the total number of vehicles accu­
mulated on arc a at some time t E [O , T] . 

Our dynamic model is related to models proposed by Hur­
dle (9), Hendrickson and Kocur (10), Mahmassani and Her­
man (11), Mahmassani and Chang (12), de Palma et al. (13), 
Ben-Akiva et al. (14,15) , Smith (16) , Daganzo (17), and New­
ell (18). But our model differs in important aspects, which 
include its formulation as a continuous time optimal control 
problem. We do not attempt to compare our model with 
models proposed by the authors just cited . One may refer to 
Friesz (19) and Alfa (20) for literature reviews on the dynamic 
network equilibrium models proposed to date. 

ASSUMPTIONS 

Exit Function 

The flow leaving arc a E A is a function of the traffic volume 
accumulated on that arc at time t E (0 , T]. The exit functions 
g.(x.(t)] are concave, differentiable, nondecreasing, and non­
negative for all x.(t) ;::: 0, with the additional restriction that 
g.(O) = 0 (Figure 2). 

Origin 

N 
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Demand Function 

Denote by 0(t,D(t)] the inverse of the travel demand function 
where D(t) is the travel demand between origin and desti­
nation at time t E (O,T]. The function 0[t,D(t)] is strictly 
monotone, decreasing, differentiable, and nonnegative for all 
D(t) ;::: 0 and has a different function at each time t E (0, T] 
for time-dependent elasticity of demand (Figure 3). 

Cost Function 

The travel cost on arc a E A is a function of the traffic volume 
accumulated on that arc at time t E [O, T]. The cost functions 
c.(x.(t)] are convex, differentiable , nondecreasing, and non­
negative for all x.(t) ;::: 0. Note that the travel cost on arc 
a E A is simultaneously a function of the exit flow of that arc 
at time t E (0, T]; that is, C.(x.(t)) == C.{g.[x.(t)]} (Figure 4). 

0 

FIGURE 2 Exit function. 

0[t,D(t)) 

0 D(t) 

FIGURE 3 Demand function. 

Destination 

FIGURE 1 Simple network with N parallel arcs. 
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0 

0 

FIGURE 4 Cost function. 

DYNAMICS AND CONSTRAINTS 

The dynamic evolution of the state of arc a E A is described 
by the first-order nonlinear differential equations: 

. dx,,(i) 
xa(t) = --;ft = ua(t) - g.[x.(t)] 

\;/ a E A t E [O, 71 (1) 

where 

x.(t) = the state variable, denoting the traffic volume 
on arc a at time t; 

u.(t) = the control variable, denoting the flow entering 
arc a at time t; 

g.[x.(t)] = the flow leaving arc a at time t; and 
x.(t) = the time derivative of the state variable. 

Because the state variable is an explicit function of time, x.(t) 
can be interpreted as the instantaneous rate of change in the 
traffic volume on arc a with respect to time, which is the 
difference between inflow and outflow on arc a. Equation 1 
is called the state equation in this paper. We can see that the 
state equation is linear in the control variable and nonlinear 
in the state variable because of nonlinearity of the exit func­
tion g.[x.(t)] with respect to the state variable. 

For the origin node, the flow conservation constraints can 
be stated as 

L u.(t) = D(t) \;/ t E [O, 71 (2) 
a EA 
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Equation 2 requires that the number of trips generating at 
the origin node at time t must be equal to the summation of 
the control variables over all arcs at time t. Note that D(t) 
would be exogenously determined in the dynamic model with 
fixed demand and endogenously determined in that with elas­
tic demand; see following sections of this paper. 

In addition, we assume that the traffic volume on arc a is 
a known positive constant at time t = 0: 

x.(O) = x~ Va EA (3) 

We also ensure that both the state variable and control var­
iables are nonnegative for all arcs and t E [O, T]: 

x.(t) ::=::: 0 

u.(t) ~ 0 

V a E A t E [0, TJ 

V a E A t E [0, 71 

(4) 

(5) 

Because the assumption that g.(O) = 0 ensures that the state 
variables are always nonnegative, we do not subsequently 
consider constraints (Equation 4) in an explicit manner. For 
simplicity, we do not impose the upper bound on the control 
variables as a physical constraint, indicating the maximum 
inflow admitted to arc a. Define x = ( .. ., x., . .. ) and u = 
( .. ., u., ... ). To save notational efforts, the following set 
is used as the set of feasible solutions. 

D = {(x,u) : Equations 1, 2, 3, and 5 are satisfied} 

DYNAMIC USER EQUILIBRIUM TRAFFIC 
ASSIGNMENT WITH FIXED DEMAND 

Model Formulation 

(6) 

Suppose the number of trips generating from the origin at 
each time t E [O, 71 is fixed and known. We postulate that 
the following continuous time optimal control problem has a 
solution that is a user-optimized flow pattern satisfying a 
dynamic generalization of Wardrop's first principle: 

Minimize 1
1 

= L lTlx.ii>C.(w)ga'(w) dw dt 
a EA 0 0 

subject to (x,u) E D (7) 

The performance index 11 is the summation of an integrated 
integral over all arcs in the network. The derivation of 11 has 
the same analogy to that of the objective function of Beck­
mann's equivalent optimization problem with fixed demand. 
The detailed derivation of 1, is shown in the appendix. Because 
the performance index 11 does not have any intuitive economic 
interpretation, it should be viewed as a mathematical con­
struction to solve the problem of dynamic user equilibrium 
traffic assignment. When 11 achieves its minimum value, the 
control problem (Equation 7) provides us with a user­
optimized traffic flow pattern that is described by the optimal 
trajectories through time of both the state and the control 
variables. Note that the control problem (Equation 7) is for­
mulated in the Lagrange form because we do not impose any 
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state constraint at the terminal time T. We shall suppress the 
time notation (t) when no confusion arises. 

Optimality Conditions 

The necessary conditions for an optimal solution of the control 
problem (Equation 7) can be derived by Pontryagin's maxi­
mum principle [Pontryagin et al., (21)]. As a first step in 
analyzing the necessary conditions, we construct the Hamil­
tonian: 

H = L {xaCa(w)ga'(w)dw + L 'Ya·[ua - ga(xa)] 
aEAJo aEA 

+ µ-[D - L ual + L f3a"[ -ual (8) 
aEA a EA 

where 'Ya(t) is the costate variable associated with the ath state 
Equation 1; µ(t) is the Lagrange multiplier associated with 
the flow conservation constraints at the origin; and f3a(t) is 
also the Lagrange multiplier associated with nonnegativity of 
the ath control variable. 

We can obtain the first-order necessary conditions, also 
known as the Euler-Lagrange equations in the calculus of 
variations. The differential equations governing the evolution 
of the costate variables 'Ya are given from the Hamiltonian 
(Equation 8), which require [see Bryson and Ho, (22)]: 

aH 

= [C.(xa) 'Ya] g a' (xa) \>'aEA tE[O,T] (9) 

Equation 9 will be called the costate equation. Boundary 
conditions on the costate variables are obtained by the trans­
versality conditions: 

'Ya(T) = Q \>'a EA (10) 

According to Pontryagin's maximum principle, the Ham­
iltonian must be minimized at each time t E [O, T]. The Kuhn­
Tucker optimality conditions for u! to be an optimal solution 
that minimizes the Hamiltonian are readily obtained as: 

aH 
Q = 'Ya - µ - f3a \>'a EA (11) 

f3a 2'.: 0 and f3a . ua = 0 'v' a EA (12) 

In the terminology of optimal control theory, aH/aua is often 
called impulse response function because the gradient of the 
Hamiltonian with respect to the control variable represents 
the variation in the performance index 11 as a consequence 
of a unit impulse in the corresponding control variable at time 
t, while holding x~ constant and satisfying the state equation 
(Equation 1). In particular, Equation 12 contains the com­
plementary slackness conditions to take into account non­
negativity of the control variables. 

The preceding necessary conditions for optimality may be 
collected in the following compact form: 

-'Ya = [ C.(xa) - 'Ya] g~(xa) \>'a EA tE[O, T] (13) 

'Ya(T) = 0 \>'a EA 

\>'a EA tE [O, T] 

\>'aEA tE[O,T] 
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(14) 

(15) 

(16) 

The optimality conditions (Equations 13-16) can be under­
stood such that if at some time t E [O, T] 'Ya > µ for all a E 
A, the flow entering arc a is equal to zero, and if 'Ya = µ, ua 
is either zero or singular in nature. Singular ·control is dis­
cussed further in the next section. It is implied that the quan­
tities determining the control variable ua are the value of 
['Y~ - µ],which is the difference between the costate variable 
and the Lagrange multiplier. Hence, we may conjecture that 
the optimality conditions are analogous to the principle of the 
flow of electricity, in which electric current moves from a 
node with higher voltage to a node with lower voltage. 

The Arrow-Kurz sufficiency theorem (23, 24) ensures that 
the necessary conditions are also sufficient when the Hamil­
tonian is convex in the state variables. We can see that the 
Hamiltonian (Equation 8) is convex in the state variables 
under the assumptions made previously. Hence, the opti­
mality conditions (Equations 13-16) are necessary and also 
sufficient. 

Singular Controls 

Because the Hamiltonian (Equation 8) is linear in the control 
variable, the gradient of the Hamiltonian with respect to ua 
does not depend on the control variable. Therefore, the opti­
mality conditions for u: to be an optimal control that min­
imizes the Hamiltonian provide no useful information to 
determine the optimal control in terms of the state and costate 
variables. In this case we must take successive time derivatives 

aH 
of - = 'Y - µ - f3a and make appropriate substitutions 

aua a 

by using the state Equation 1 and the costate Equation 9 until 
we find an explicit expression for the control variables. The 
optimal control determined by this procedure is called a sin­
gular control. A finite time interval for which a singular con­
trol exist is called a singular interval. An extremal arc on 

which the determinant of the matrix ji_ [aH] vanishes iden-
iJ 110 dll0 

tically is called a singular arc. 
To determine the singular control, we must use the fact 

that successive time derivatives of the gradient of the Ham­
iltonian would be also constant and equal to zero on a singular 
arc. The first and second time derivatives of the gradient 
of the Hamiltonian with respect to ua give the following 
relationship: 

'Ya= fl and :Ya= fl (17) 

We substitute the costate equation (Equation 9) into the first 
relationship in Equation 17: 

(Ca - 'Ya)g~ + Jl = Q (18) 

The second time derivatives of Equation 18 are calculated: 

(C:,Xa - 'Ya)g~ + (Ca - 'Ya)g~ Xa + J1 = Q (19) 
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By using the state equation (1), we may manipulate Equation 
19 to yield the following expression for the smgular control: 

µg,: - j.i. + (C~g~ + (C. - µ)g:Jgrt 
I I + c ) II ,.ga " - µ g. 

(20) 

One may ask whether the singular control given by Equa­
tion 20 is optimal or not. To answer this question, we shall 
derive the necessary conditions for optimality of singular con­
trols. The generalized convexity condition can be obtained 
elsewhere (22): 

a [ d
2 [aHJJ 

aua dt 2 aua 
-(Ca - 'Ya)g~ - Cg~:::; 0 

(21) 

According to the costate equations (Equation 9) and assump­
tions made earlier, the generalized convexity conditions are 
satisfied. Hence, we can conclude that the singular control 
(Equation 20) is optimal. 

Dynamic User Equilibrium Principle 

The important question now arises as to whether or not a 
traffic flow pattern, described by time trajectories of the state 
and control variables as an optimal solution of Equation 7, 
satisfies a dynamic generalization of Wardrop's first principle. 
To answer this question, we define the following function by 
manipulating the costate equation (Equation 9): 

<l>a(t) = C.(xa) + 'Y)g~(xa) \faEA tE[O,T] (22) 

It is well known that when the performance index 11 achieves 
its minimum value l~, we have the following properties (22): 

ar 
'Ya(t) =_I_ 

c1x.,(t) 

. d ( iJ}I ) 
'Y.(t) = dt 1Jx,,(1) \f a E A t E [O, T] (23) 

We see that 'Y.(t) is the time rate of change in the value of 
the performance index 11 as a consequence of a change in the 
corresponding state variable x0 (t) along the optimal state tra­
jectory at time t E [O, T]. Therefore, we may interpret <l>a(t) 
as the sum of static and dynamic terms: C.(x.) is the unit 
travel cost on arc a that is equilibrated in the static user 
optimization problem; and 'Y.I g~ is· regarded as the contri­
bution to arc unit travel cost due to the dynamic nature of 
our control problem. In the present paper, we call <l>.(t) the 
instantaneous travel cost on arc a EA at time t E [O, T]. 

We are now ready to state and prove the following theorem: 

Theorem 1: If at some time t E [O, T], u. > 0 for all a EA, 
then <l>0 (t) = inf {<l>"(t) : \fa EA}. 
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Proof. From the costate equation (9), we see that 

\f a E A t E [O, T] (24) 

However, from Equation 15, we know that 

'Ya 2" µ \f a E A t E [O, T] (25) 

It follows at once from Equations 24 and 25 that 

<l>.(t) 2" µ \f a E A, t E [0, T] (26) 

\l./e also know that if ua > 0 for all a c:: A, then Equation 25 
holds as an equality because of the complementary slackness 
conditions of Equations 15 and 16. Hence, the theorem is 
immediately proved. 

Theorem 1 tell us that user equilibrium conditions hold at 
each instant in our dynamic model. Hence, we regard Theo­
rem 1 as a dynamic generalization of Wardrop's first principle, 
which is termed the Dynamic User Equilibrium Principle in 
the present paper. But it is restricted to a network with one 
0-D pair connected by N parallel arcs. This principle can also 
be restated at each instant t E [O, T]: 

u.(t) > 0 

u0 (t) = 0 

fora= 1,2,. .. . ,k 

for a = k + 1, ... ., N 

DYNAMIC USER EQUILIBRIUM TRAFFIC 
ASSIGNMENT WITH ELASTIC DEMAND 

Model Formulation 

(27) 

(28) 

(29) 

Suppose that travel demands change in response to travel costs 
between the elements of an origin-destination pair. We pos­
tulate that the following continuous, time-optimal control 
problem has a solution that is a user-optimized flow pattern 
obeying a dynamic generalization of Wardrop's first principle: 

Minimize 12 = L {T rx·(•) c.(w)g~(w) dw dt 
a E A Jo Jo 

{T (D(t) 

- Jo Jo 0(t, y) dy dt 

subject to 

(x, u) E !1 

D(t) = L u.(t) 
a EA 

(30) 

where D(t) is the number of trips generating at the origin at 
time t E [O, T] and 0[t, D(t)] is the inverse of the travel demand 
function. Note that D(t) is determined endogenously in the 
control problem (Equation 30). The performance index 12 is 
decomposed into two terms: the performance index 11 and an 
integrated integral of the inverse demand function. 
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Optimality Conditions 

To analyze the necessary conditions, we construct the Ham­
iltonian: 

ix, iD 
H = L Ca(w)g;(w) dw - 6(t, y) dy 

aEA 0 0 

+ L 'Ya · [u. - ga(x.)] + L ~a · [ -u.] (31) 
a EA a E A 

It is important to note that the second term of H is strictly 
concave in the control variable ua because the integral of a 
monotone decreasing function is strictly concave. The nega­
tive of a strictly concave function is, however, a strictly convex 
function. 

The costate equations and transversality conditions are 
identical to Equations 9 and 10, respectively. The Kuhn-Tucker 
optimality conditions for the minimization of the Hamiltonian 
(Equation 31) with respect to the control variables are obtained: 

aH 
- = 0 = 'Ya - 6[t, L Ua] - ~a 
aua aEA 

'v'a EA (32) 

~. 2: 0 and ~. · Ua = 0 'v'a EA (33) 

We may collect the necessary conditions for optimality of 
the problem of dynamic user equilibrium traffic assignment 
with elastic demand in the following compact form: 

-'Ya= [C.(xa) - 'Ya]g;(xa) 

-y0 (T) = 0 

'Ya - 62:0 

Ua ·('Ya - 6) = 0 

'v'aEA tE[O,T] 

'v'aEA 

'v'aEA tE[O, T] 

'v'aEA tE[O,T] 

(34) 

(35) 

(36) 

(37) 

It can be understood from the optimality conditions (Equa­
tions 34-37) that if at some time t E [O, T] 'Ya > 6 for all a 
E A, the flow entering arc a is equal to zero; and if 'Ya = 6, 
then ua is explicitly determined by the state equation (Equa­
tion 1) and the costate equation (9) as a solution of a two­
point boundary-value problem. It is worth noting that the 
control problem (Equation 30) does not have singular 
controls. 

The Arrow-Kurz sufficiency theorem (23, 24) ensures that 
the optimality conditions (Equations 34-37) are necessary 
and also sufficient, because the Hamiltonian (Equation 31) is 
convex in the state variables under the assumptions made 
previously. In addition, Theorem 1 holds for the dynamic 
model (Equation 30) except for the fact that µ(t) is replaced 
by 6[t, D(t)] in Equations 25 and 26. 

Equivalency Under the Steady-State Assumptions 

We wish to assure that the control problem (Equation 30) is 
a proper dynamic extension of Beckmann's equivalent optimi­
zation problem with elastic demand. To do this, we examine 
the behavior of our dynamic model under the steady-state 
assumptions, such that the time rate of a change in the traffic 
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volume on each arc would be zero during [O, T] and travel 
demands would be constant over time. 

Through a change of the variables of integration, we may 
rewrite the first term in the Hamiltonian (Equation 31) and 
have the following relation: 

i
x, ig,(x,) 

L Ca(w)g;(w) dw = L Ca(s) ds 
aEAO aEAO 

(38) 

Let fa denote the flow on arc a because u" is always equal to 
g0 (xa) under the steady-state a umptions. In addition , the 
inverse of the demand function is denoted by 0(D). We are 
now ready to formulate our dynamic model (Equation 30) as 
a nonlinear convex mathematical program under the steady­
state assumptions as follows: 

Minimize Z(f, D) 

subject to 

D = L fa 
a EA 

'v'a EA 

if, iD L C.(s) ds - 6(y) dy 
aEA 0 0 

(39) 

(40) 

(41) 

(42) 

The Kuhn-Tucker optimality conditions for the problem 
(Equations 39 through 42) can be readily obtained as 

fa [Ca(f.) - A] = 0 

C.Cfa) - A 2: 0 

D [A - 6(D)] = 0 

A - 6(D) 2: 0 

!a 2: 0 

'v'a EA 

'v'a EA 

'v'a EA 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

where A is the Lagrange multiplier interpreted as the minimum 
travel cost between members of the 0-D pair. Because the 
optimality conditions (Equations 43-48) are identical to user 
equilibrium conditions, we can conclude that our dynamic 
model is a proper generalization of Beckmann's equivalent 
optimization problem with elastic demand. Obviously, the 
dynamic model (Equation 7) is also a proper extension of the 
static user equilibrium traffic assignment model with fixed 
demand. 

CONCLUSION 

Our analysis has been restricted to a very simple network. 
Obviously, its further extension would be to have a more 
complex network with multiple origins and multiple desti­
nations (25-27). We have not discussed any computational 
issues on implementing our dynamic model; such issues are 
important in assessing the applicability to a realistic network. 
The existing solution algorithms for dynamic system-optimal 
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traffic assignment could probably be modified to solve our 
dynamic model after the discretization of continuous time­
optimal control problems (3, 5). We have also assumed that 
the exit function is nondecreasing; however, it is not true 
according to traffic flow theory. In fact, an exit function is 
both increasing and decreasing, and an exit flow is maximized 
at an optimum density (traffic volume per unit length). Finally, 
the concept of dynamic user equilibrium milrle in this paper 
must be clearly redefined and compared with one that already 
exists in the transportation literature. An important question 
would be whether or not our dynamic model with elastic 
demand is equivalent to a deterministic user equilibrium model 
of joint route and departure time. 

APPENDIX: THE DERIVATION OF THE 
PERFORMANCE INDEX ] 1 

Luque and Friesz (8) considered the optimal control problem 
for dynamic system-optimal traffic assignment in a multiple­
origin, single-destination network. We need to transform their 
original formulation into the control problem for a single 
origin-destination network: 

Minimize J3 = .~ r S.[x.(t)] dt (A-1) 

subject to 

(x, u) E il 

where s.[x.(t)] is the total travel cost on arc a at time t. The 
costate equations are obtained: 

. oH 
- -y = -" ax. 

= s;(x.) - -y.g~(x.) \:/ a E A t E [0, T] 

Then we define the following function : 

<P.(t) 
s; (x.) + 'Y. 

g;(x. ) 
\:/ a E A t E [O , T] 

(A-2) 

(A-3) 

Luque and Friesz (8) state that the numerator of Equation 
A-3 has the units of incremental travel cost per unit increment 
of traffic volume on arc a, whereas g;(x.) has the units of 
incremental flow per increment of traffic volume. Equation 
A-3 expresses incremental travel cost per unit increment of 
flow; therefore <J>.(t) can be interpreted as the instantaneous 
marginal travel cost on arc a at time t. The theorem proved 
in Luque and Friesz (8) enables us to state a dynamic gen­
eralization of Wardrop's second principle for all t E [O, TJ: 

u.(t) > 0 

u.(t) = 0 

for a = 1, 2, .... , k 

for a = k + 1, . . . . , N 

(A-4) 

(A-5) 

(A-6) 
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We can see that the set of arcs is grouped into two subsets: 
one for arcs with positive inflow and equal instantaneous mar­
ginal travel cost, and the other for arcs with zero inflow and 
travel costs greater than or equal to minimum instantaneous 
marginal travel cost. 

We now hypothesize that the optimal control problem of 
Equation A-1 with a fictitious performance index f 3 deter­
mines a dynamic user-optimized traffic flow pattern . The 
remaining question is how to identify a fictitious performance 
index i 3 • To answer this question, we define S.[x. (t)] as a 
fictitious travel cost on arc a when it contains the traffic vol­
ume x.(t) at time t E [O, T]. Provided that the preceding 
hypothesis is accepted , the following optimal control problem 
must give a traffic flow pattern obeying the Dynamic User 
Equilibrium Principle : 

Minimize j 3 = L (T s.[x.(t)] dt 
aEA Jo (A-7) 

subject to 

(x, u) E il 

Then we can readily obtain the fictitious instantaneous mar­
ginal travel cost on arc a at time t as 

\:/ a E A t E (0, T] (A-8) 

For the hypothesis to be true, the following condition must 
be satisfied: 

<1>.(1) = <i>.(t) \:/a EA, t E [0 , T] (A-9) 

Using Equation 22, we have the following relation: 

\:/ a E A t E [O, T] (A-10) 

Then we manipulate Equation A-10 as follows : 

S;(x.) = C.(x.)·g;(x.) \:/ a E A t E [0 , T] (A-11) 

h S'( ) _ dS,,(x,,) 
w ere ax. - dx 

a 

Equation A-11 can be rewritten as 

dS;(x.) = C0 (x.)·g;(x. )·dx0 \:/a EA, t E [O, T] (A-12) 

Turning A-12 into a definite integral, we get the explicit form 
of a fictitious travel cost: 

r x .(t) 

sa(x.(t)] = Jo c.(w)g;(w) dw 

\:/ a E A t E [O, T] (A-13) 
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Consequently, we can get the explicit expression of the per­
formance index 11 by substituting Equation A-13 to Equation 
A-7: 

lT l'!(r) 2: c.(w)g~(w) dw dt 
a E A 0 0 

(A-14) 

GLOSSARY 

a: 
A: 
x0 (t): 

x.(t): 
u0 (t): 

-y .( t): 

'Y(t): 
µ(t): 

[3.(t): 

H: 
C.[x.(t)]: 

g.[x.(t)]: 

C~[xa(t)]: 

g~[x.(t)]: 

(0, T]: 

D(t): 

0[t, D(t)] : 
cf> .(t): 

<l>a(t): 

S~[xa(t)]: 

an arc; 
the set of arcs in the network; 
the state variable, indicating the traffic volume 
accumulated on arc a at time t; 
the time derivative of the state variable; 
the control variable, indicating the traffic flow 
entering arc a at time t; 
the costate variable to take account of the state 
equation in the minimization of the Hamil­
tonian; 
the time derivative of the costate variable; 
the Lagrange multiplier to take account of the 
flow conservation constraint at the origin node; 
the Lagrange multiplier to take account of the 
nonnegativity of the control variables; 
the performance index for dynamic user equi­
librium traffic assignment with fixed demand; 
the performance index for dynamic user equi­
librium traffic assignment with elastic demand; 
the Hamiltonian; 
travel cost on arc a when it contains the traffic 
volume x. at time t; 
the flow leaving arc a when it contains the 
traffic volume x. at time t; 
the derivative of the travel cost function with 
respect to the state variable; 
the derivative of the exit function with respect 
to the state variable; 
the period of analysis, where T is the fixed 
terminal time; 
the number of trips generating at the origin 
node at time t; 
the inverse of the travel demand function; 
the instantaneous travel cost on arc a at time 
t; 
the instantaneous marginal travel cost on arc 
a at time t; 
the total travel cost on arc a when it contains 
x.; and 
the minimum travel cost between members of 
an origin-destination pair encountered in a static 
user equilibrium problem. 
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