1251

TRANSPORTATION RESEARCH RECORD

Transport Supply
Analysis

TRANSPORTATION RESEARCH BOARD
NATIONAL RESEARCH COUNCIL
WASHINGTON, D.C. 1989

Transportation Research Record 1251
Price: $12.00

modes
1 highway transportation
2 public transit

subject areas
12 planning
13 forecasting

TRB Publications Staff

Director of Publications: Nancy A. Ackerman
Senior Editor: Edythe T. Crump
Associate Editors: Naomi C, Kassabian

Ruth S. Pitt

Alison G. Tobias
Production Editor: Kieran P. O’Leary
Graphics Coordinator: Karen L. White
Office Manager: Phyllis D. Barber
Production Assistant: Betty L. Hawkins

Printed in the United States of America

Library of Congress Cataloging-in-Publication Data
National Research Council. Transportation Research Board.

Transport supply analysis.
p. cm.—(Transportation research record, ISSN 0361-1981

9 1251)

“Contains a series of papers sponsored by the Committee on
Transportation Supply Analysis” —Foreword.

ISBN 0-309-05002-2

1. Transportation—Mathematical models. 1. National
Research Council (U.S.). Committee on Transportation Supply
Analysis.
I. Series.
TE7.HS no. 1251
[HE147.7)
388 s—dc20
[388'.015118] 90-35960

CIP

Sponsorship of Transportation Research Record 1251

GROUP 1—TRANSPORTATION SYSTEMS PLANNING AND

ADMINISTRATION

Chairman: Ronald F. Kirby, Metropolitan Washington Council of
Governments

Transportation Data, Economics, and Forecasting Section
Chairman: Edward Weiner, U.S. Department of Transportation

Committee on Transportation Supply Analysis

Chairman: Hani S. Mahmassani, University of Texas at Austin
Yupo Chan, Carlos F. Daganzo, Mark S. Daskin, Randolph Hall,
William C. Jordan, Eric J. Miller, Anna Nagurney, Jossef Perl,
Earl R. Ruiter, K. Nabil A. Safwat, Yosef Sheffi, Mark A.
Turnquist

James A. Scott, Transportation Research Board staff

The organizational units, officers, and members are as of
December 31, 1988.

NOTICE: The Transportation Research Board does not endorse
products or manufacturers. Trade and manufacturers’ names
appear in this Record because they are considered essential to its
object.

Transportation Research Board publications are available by
ordering directly from TRB. They may also be obtained on a
regular basis through organizational or individual affiliation with
TRB; affiliates or library subscribers are eligible for substantial
discounts. For further information, write to the Transportation
Research Board, National Research Council, 2101 Constitution
Avenue, N.W., Washington, D.C. 20418.

Transportation Research Record 1251

Contents

Foreword

Crane Productivity and Ship Delay in Ports
Carlos F. Daganzo

Guidelines and Computational Results for Vector Processing of
Network Assignment Codes on Supercomputers
Kyriacos C. Mouskos and Hani S. Mahmassani

10

Computational Experience with a Simultaneous Transportation
Equilibrium Model Under Varying Parameters
K. Nabil A. Safwat and Mohamad K. Hasan

17

Transportation-Network Design Problem: Application of a Hierarchical
Search Algorithm
Yupo Chan, T. Steven Shen, and Nizar M. Mahaba

24

Efficient Algorithm for Locating a New Transportation Facility in a
Network
Huel-Shen Tsay and Liang-Tay Lin

35

Locomotive Scheduling Under Uncertain Demand
Scott Smith and Yosef Sheffi

45

System-Optimal Trip Scheduling and Routing in Commuting
Networks
Gang-Len Chang, Hani S. Mahmassani, and Michael L. Engquist

54

An Application of Optimal Control Theory to Dynamic User
Equilibrium Traffic Assignment
Byung-Wook Wie

66

Foreword

This Record contains a series of papers sponsored by the Committee on Transportation
Supply Analysis.

Daganzo proposes two approaches to determine the effect of crane operations on ship
service at port terminals, first, a simple approximate approach to calculate the maximum
berth throughput during periods of congestion, and second, the effect of two extreme crane-
operating strategies when the traffic level does not exceed the maximum throughput.

Mouskos and Mahmassani describe the modification of the CRAY-X-MP series to enhance
its vector-processing performance. Specifically, codes for the solution of two network equi-
librium assignment problem formations are vectorized and tested on a CRAY X-MP24 super-
computer. The test results and the significance of the results for research and practice are
also discussed.

Safwat and Hasan expand and improve on the application of STEM (Simultaneous Trans-
portation Equilibrium Model). They report the results of their work to investigate the relative
computational efficiency of the algorithm as a function of demand, performance, and network
parameters for two small example and one large-scale real-world network. The results are
encouraging according to the authors, and application of the STEM approach to large-scale
urban transportation studies is encouraged.

Chan et al. applied the tree-search method to three spatially abstracted networks, coming
up with a hierarchical search algorithm for reducing the network-design problem. The branch-
and-bound and branch-and-backtrack techniques were used in the first two formulations of
the problem, assuming the objective function of least budget and least travel cost, respectively.
These techniques result in a greatly reduced search space as well as functional grouping of
the detailed links into access/egress, line-haul, and by-pass categories.

Tsay and Lin describe methods for selecting the optimal facility location. The authors focus
on the one-center problem. Various methods in current use and their applications are described
and assessed.

Smith and Sheffi discuss the problems faced by railroads in allocating power to trains. The
authors formulate a multicommodity flow problem with convex objective function on a time-
space network. The convex objective allows a minimization of expected cost under uncertainty
by penalizing trip areas likely to have too little power. The author solution heuristic sends
locomotives down shortest paths in the time-space network and attempts to improve inter-
changes of locomotives around cycles. The test results are reported.

Chang et al. discuss a time-space network formulation for the system-optimal assignment
of commuters to departure times and routes subject to specified constraints on acceptable
arrivals. Time is discretized, and congestion is represented using simplified deterministic
queueing stations. A numerical application is presented to illustrate the methodology, indi-
cating a network generator developed for this purpose.

Wie explores the application of optimal control theory to the problem of dynamic traffic
assignment corresponding to use optimization. Two continuous time formulations are con-
sidered, one with fixed demand and the other with elastic demand. As stated by the author,
the paper is concerned with dynamic extensions of the steady-state network equilibrium
model, in particular Beckmann’s equivalent optimization problem, which is a mathematical
programming function.

TRANSPORTATION RESEARCH RECORD 1251

Crane Productivity and Ship Delay in

Ports

Carros F. Dacanzo

This paper studies the effect of crane operations on ship service
at port terminals. It first proposes a simple, approximate approach
to calculate the maximum berth throughput during periods of
congestion. The key assumption is that the workload distribution
(over time) for the ships at berth is the same as the workload
distribution for the ship population as a whole. The validity of
this assumption is tested with simple, exact models for a variety
of scenarios involving different kinds of ships and crane operating
strategies. The paper then examines the effect that two extreme
crane operating strategies have on ship delay, when the traffic
level does not exceed the maximum throughput. This is done for
an idealized situation designed to highlight the impact of crane
operations while admitting closed-form solutions. The average ship
delay can vary considerably with the crane operating strategy.

A port’s efficiency is often measured in terms of its throughput
and typical ship turnaround time (i.e., a ship’s time at berth
plus any delay caused by the port). High turnaround times
are not acceptable in the shipping industry because of the very
large opportunity cost typically associated with ship delay.
However, port construction, maintenance, and equipment are
also very expensive. Thus it is important for ports to set an
appropriate expenditure level, and to allocate their resources
efficiently among their different functions. For example, they
should decide carefully how berth length should be divided
among the various traffic types, and how much cargo handling
equipment should be allocated to each terminal. Although
such decisions often depend on factors that cannot be quan-
tified, rational solutions should be found with an understand-
ing of how the ships’ turnaround time and the port throughput
depend on different resource allocation levels.

The port elements that influence ship turnaround most
directly are berth space and crane availability. Although other
elements have the potential for delaying operations (tugboat
unavailability and land-side congestion, for example) they are
not considered in this paper.

Even though queuing theory has been applied to ports [see,
for example, work by Plumlee, Mettam, Jones and Blunden,
Nicolau, Miller, Koenisberg and Meyers, Daskin and Walton,
and Sabria (/-8), and other references in Sabria’s disserta-
tion], and to the berth system in particular, no models seem
to recognize explicitly the interaction between berth availa-
bility and crane operating strategies. This may be because the
requirements for onshore (un)loading equipment can vary
considerably from ship to ship, and may also be subject to
peculiar restrictions, which complicates matters. Work by
Atkins (9) contains one of the best descriptions of the ship
loading process for modern container ports.

Department of Civil Engineering, University of California, Berkeley,
94720.

The goal of this paper is to develop an understanding of
the impact that different crane scheduling strategies have in
the long run on maximum throughput and ship delay. To
achieve this goal, we will work with a representation of the
world that, although highly idealized, preserves the phenom-
ena of interest. The paper builds on previous work (10,11)
that used the same idealized model to develop crane sched-
uling strategies.

The model in these references assumed that ships were
divided into holds; that each hold had a certain amount of
work that needed to be done (measured in time units of crane
time); that certain holds could be handled without the need
for a shore crane; and that shore cranes could be moved
rapidly. The objective was to assign cranes to holds to reduce
ship delays. Sometimes this meant that a large ship with little
need for cranes would seize the cranes working on another
ship that required more work.

For the most part all the ships were assumed to be already
at berth, but a case in which ships had to queue for berth
space was also discussed. For this purpose it was assumed
that a ship departure always freed enough space for another
ship and that ships were chosen from the queue in order of
arrival. A justification for all of these modeling simplifications
(which are also adopted here) can be found elsewhere (10).

This paper attempts to take these results one step further.
It studies the system’s steady-state performance as a function
of the ship arrival pattern when the aforementioned crane
operating rules are used. It presents simple expressions for
maximum expected throughput as a function of the number
of cranes and total berth length. It also provides ship delay
formulas when ships have to queue for cranes but the berth
space is never in short supply.

The next section gives approximate expressions for the
average number of busy and idle cranes during periods of
congestion. These expressions lead to berth throughput and
crane productivity formulas. The approximation, which is pro-
posed for reasonably efficient crane operations, is tested with
exact expressions for a special case in which all the holds
requiring a crane take the same amount of time to be handled.
(This assumption, which still preserves the main phenomena
we want to model, is also used in later sections.)

The following section applies the results from the previous
one; it compares efficient and inefficient crane scheduling
strategies and examines the trade-off between cranage cost
and maximum productivity.

Next is a study of ship delay for a multipurpose terminal
in which ships are either self-sufficient or require, at most,
two cranes. It is assumed that berth space is never in short
supply [this is reasonable from a port economics standpoint

(8)], but ships may not always get all the cranes they need
immediately on arrival. The final section summarizes the results
and suggests further work.

CRANE PRODUCTIVITY

Averaged over time, the number of busy port cranes is related
to cargo throughput by the relationship:

(cargo throughput)

= (busy cranes) X (crane capacity) 1)

where the crane capacity is the maximum number of cargo
units that a fully used crane can handle per unit time.

It is thus important to be able to predict the number of
busy cranes during periods of congestion. The result can indi-
cate the maximum possible berth throughput.

A Simple Model

We assume that there is an infinite ship queue and that the
berth can hold exactly § ships. The ith ship to enter the berth
is assumed to have H; holds requiring attention. The H, are
mutually independent, identically distributed random varia-
bles with cumulative distribution function, F,,.

At any given time, the number of busy port cranes equals
the minimum of two values: the number of available cranes,
C, and the number of active holds, A (holds still requiring
attention at the time).

If the number of active holds present at a berth at a random
time has the same cumulative distribution function (cdf) as
the number of holds requiring attention for S ships randomly
sampled from the queue, then berth throughput can be cal-
culated simply. The accuracy of this assumption is tested in
the next section. The resulting simple throughput expressions
are derived next.

Because A is distributed like the sum of § independent,
identically distributed random variables with cdf, F,, A is
likely to be well approximated by a normal random variable
and the expected number of busy cranes by the mean of the
truncated normal variable, min {4, C}:

E (busy cranes) = C — o VS U ([C — Sm)/lo V§) (2a)

and similarly

E (idle cranes) = oV/S ¥ ([C — Sm)/oV/S) (2b)

In these equations, m and o? are the mean and variance of
H,, and s (*) represents the integral of the standard normal
cumulative distribution function. This function is given by
¢(*) + (*)P(+), where ®(*) and ¢(*) are the standard normal
cdf and probability density function, respectively [see Clark
(12) for a derivation]. The function () is positive, increasing,
and convex; it approaches 0 as its argument approaches —,
and for large positive arguments (greater than 3) its value
barely exceeds the argument. See Figure 1.

Equation 2b shows that the number of idle cranes depends
on only two parameters: the “average crane surplus,” C —

TRANSPORTATION RESEARCH RECORD 1251

25 7

value
n

Psi

05

0

Argument, x

FIGURE 1 Graph of ¥ (%).

Sm, and the “‘holds at berth variability,” o V/§. Althoughi the
expected number of idle cranes always exceeds the average
crane surplus, these two are close when there is little variability.

Equation 2a can be used in conjunction with Equation 1 to
calculate berth throughput.

An Assessment of Its Accuracy

Equations 2a and 2b are based on the assumption that the
distribution of active holds per ship is the same at berth and
in the queue.

Two factors that work in opposite directions (with an inten-
sity that depends on the specific crane scheduling strategy)
tend to disrupt this equality:

1. A ship’s hold with little work may become inactive before
the ship departs. If this happens often, it will tend to decrease
the number of active holds at berth; and

2. Because, with an efficient strategy, ships with low work-
loads are given priority, the ships with most active holds will
tend to be overrepresented at the berth. This tends to increase
the number of active holds at berth.

The first factor should be most significant when the distri-
bution of (active) hold workloads within a ship is very uneven.
The second factor should be most significant when the work-
load changes drastically across ships.

The scheduling strategy discussed elsewhere (10) tends to
reduce the impact of the first factor and increase the impact
of the second. As mentioned in that reference, the strategy
“tends to hoard at berth the holds that require work.” In the
remainder of this section we derive, for comparison purposes,
exact expressions for two simple cases in which the first factor
does not play a role and the crane allocation strategy proposed
in earlier work (Z0) is used.

It is assumed that all the active holds take exactly the same
amount of time (without loss of generality we take this time
to be one unit) and that only one crane can work on-a hold
at a time. We start our observation with an empty system;
thus, at time ¢t = 0, the first S ships in the queue join the
berth.

Daganzo

The preceding assumption, which is also used for the ship
delay analysis, still preserves the main phenomena that we
try to model; that is, because not all ships require the same
number of cranes, the number of cranes needed by the ships
at berth fluctuates. If at times there is a need for more cranes
than the available number and at other times some cranes are
idle, crane productivity is wasted. Our crane allocation rules
are designed to restrain these fluctuations.

Before starting the analysis, strategy G needs to be described.
For the simple cases studied in this paper (in which holds can
be handled in exactly one time unit, etc.), strategy G reduces
to the following:

Strategy G: Each time a new ship joins the berth reallocate
all the cranes again; assign as many cranes as possible to the
ship with fewest active holds; if some cranes are left, allocate
as many as possible to the ship with second fewest holds;
repeat this process until either no more cranes or no more
ships are left.

The results of the analysis about to be presented indicate
that the approximate and exact formulae are pretty close.
Although the expressions should be tested further (with sim-
ulations geared to verify the importance of the first factor),
the results suggest that Equations 2a and 2b may be good
first-order approximations, useful for planning purposes.

Multipurpose Terminals

Two types of ships are considered in this subsection: type-0
ships that do not require the port’s equipment (H, = 0) and
type-1 ships that require exactly one crane (H, = 1). This
situation could represent a multipurpose terminal. It is studied
first because, with this traffic pattern, one does not require
an involved crane scheduling algorithm. Allocating cranes to
ships on a first berthed, first served, basis (which happens to
be the result of strategy G) results in maximum productivity.

Type-0 ships spend exactly one time unit at berth, but type-
1 ships may spend a little more time; they may have to wait
for a crane if the berth has more type-1 ships than there are
cranes. Thus Factor 2 applies. There will tend to be more
active holds at berth than would be predicted from the queue,
and Equations 2a and 2b should underpredict throughput.

Because all the holds take exactly one time unit to be han-
dled, and because the system starts empty, ships and cranes
move only at integer times (r = 0, 1, 2, .. .). The number
of active holds at berth can change only at these times. In
fact, the whole system can be modeled exactly as a Markov
chain embedded at integer times. The state is the number of
(type-1) ships remaining at berth at the end of one period,
but immediately before the next batch of ships joins the berth.
It is thus possible to derive exact numerical results to compare
them with the approximation.

Let p denote the fraction of type-1 ships. Then, the (i,j)
element of the one-step transition probability matrix, M,

m, is:

3
Il

Pr{(C + j — i) type-1 ships join the berth}; if j =
1,2 nwg S — €

Pr {(C — i) or less type-1 ships join the berth} if
j= 0.

For j > 0 the m; are the binomial probabilities:

S—i

m. = p(C+/—i)(1 _p)(S*C*I')
CH+j—i

Forj=0,my=1— (m; + my + ...+ Mys_¢)

The steady-state probability (row) vector, m, can be obtained
by solving: m = mM, and ensuring that its elements, m;, add
up to 1.

The expected number of cranes in use, K, is

S—C—i
{ 2, min[j + i, C] Pr{j type-1 ships join the berth}]

$~c
i=0

S—i

[s—.Zcﬁimin[j + i, C] p’(l — p)(s.‘—;):l

The expected number of cranes in use also gives the through-
put of type-1 ships. Because the fraction of these ships is p
and because ships join the berth on a first come, first served,
basis, the total ship throughput, P, must be P = Kip.

Example: Assume that S = 3 and C = 2. In this case the
calculations required by the preceding expressions are simple.
We obtain the exact result:

P=3-[p1-p +p)

If the distribution of ships at berth is the same as in the queue,
the number of busy cranes is the minimum of C and a binomial
random variable with § trials and probability of success, p.
For our case, the expectation of such a variable is 3p — p?),
and

P=3-p

As expected, this expression underpredicts the exact one, but
the maximum difference is only about 0.1 when p = 0.6. The
error is much smaller when p is close to 0 or 1; it never exceeds
4 percent. See Figure 2.

The result derived from Equation 2a, which includes a nor-
mal approximation to the binomial, is quite close to this last
expression (for p = %, one obtains P = 2.56 with the last
expression and P = 2.51 with Equation 2a). The normal
approximation would be even better in a case with more berths
and cranes, just when the binomial calculations become
cumbersome.

In general, either approximation should be quite good if p
<< (S, because then cranes are almost never in short supply
and both ship types spend the same time at berth. The approx-
imations should also be quite good when p => (IS, as then
the exact and approximate formulas predict K = C. These
observations are consistent with the example; the worst
underprediction occurs when p = CJS.

35 =
3 Exact
-
o
5 25 Approx.
3
5 2
3
s 15
Q
no1
05
0
0 0.2 0.4 06 08 1

Fraction of type—1 ships, p

FIGURE 2 Comparison of exact and approximate throughput
expressions for S = 3 and C = 2 at a multipurpose terminal.

Single-Purpose Terminals

This subsection explores the accuracy of our simple model in
a more complex situation. It is assumed that all the ships
require at least one crane, but that ships can have a varying
number of active holds. Now the crane scheduling strategy
can make a difference, and strategy G is used. (The impli-
cations of changing the strategy are examined in the Crane
Usage Evaluation section.)

As in the preceding section, the system can be modeled as
a Markov chain. Here the state is a vector composed of the
numbers of ships with 1, 2, 3, . . . active holds that are still
at berth immediately before the next batch of ships joins the
berth. Although the state space is multidimensional, it is finite;
numerical analysis is possible.

We present numerical results for a terminal with 4 cranes.
In the first instance (Case A) we assume that the berth can
hold 3 ships and'that the ships request either 1 or 2 cranes
each. For the second case (B) the berth can hold only 2 ships,
but the ships can request either 1, 2, or 3 cranes.

Case A is characterized by a single parameter: the fraction,
p, of ships that have 2 active holds. Only three possible states
are possible because, at most, 1 ship can be left at berth, and
this ship can only have either 1 or 2 active holds. This makes
the search for the steady-state probability vector (and the
associated measures of performance we seek) rather simple;
the analysis is equally simple for an arbitrary number of ships
and cranes. The process is similar to that outlined in the
preceding section. Thus, only the results are given here.

The productivity in ships handled by the berth per unit time,
P,is

P=3-p[3+p)1+p+2p) 3

Clearly, P cannot exceed 3.

In holds per unit time, the productivity is equal to the average
number of busy cranes, K. Because the average number of holds
per shipis (1 + p), K = P(1 + p). This reduces to

K=4-[0+p)0A-pp/(1+p+2pY 4)

which cannot exceed C = 4. Note that, as expected, if all
ships have 1 hold (p = 0), then P = 3 and K = 3; also as

TRANSPORTATION RESEARCH RECORD 1251

expected, if all ships have 2 holds (p = 1), P = 2 and K =
4. Figure 3 shows graphically how P and K vary with p.

We now test the accuracy of the assumption that states that
the distribution of active holds at berth is equal to the dis-
tribution of active holds for S ships in the queue. We calculate
K assuming that the 3 berthed ships have been randomly taken
from the queue. Then, 4 cranes will be at work unless the 3
ships have exactly 1 hold each. This happens with probability
(1 = p)?, and thus K is approximately given by

K=4-(01-p)y ©)

The maximum difference between Expressions 4 and 5 occurs
when p = 0.53, which results in K = 3.87 and 3.90, respec-
tively, The discrepancy is less than 1 percent. As expected,
Equation § yields larger values than does Equation 4. If one
uses Equation 2a, which also includes a normal approxima-
tion, the result is not very different (3.87 instead of 3.90);
just by chance, it nearly matches the exact value, which is
also 3.87. In any case, it appears that our assumption (about
the distribution of active holds at berth) does not lead to large
inaccuracies for this example.

For Case B, the ship workload changes more from ship to
ship, thus one expects the approximation to be less accurate.
Two parameters now define the problem: p, the probability
that a ship has 2 active holds, and g, the probability that the
ship has 3 active holds. Of course, the fraction of ships with
a single active hold is (1 — p — g). The Markov analysis can
still be used. In this case, too, only three possible states can
arise: the berth either is empty or has 1 ship that can have
either 1 or 2 active holds; no other possibilities exist.

The berth productivity (ships per unit time) is found to be:

P=1+11+2pg + q*+ ¢ (6)

This value remains between % and 2; if there are no ships
with 3 holds (¢ = 0), then, as expected, P = 2. The crane
usage, which coincides with the number of holds served per
unit time'is K = P(1 + p + 2g), where the quantity in
parentheses is the expected number of active holds per ship:

K=@0+p+29)Q + 11 + 2pg + ¢* + ¢%) @
45 —r—
4 > p
28 /. K
34\‘
h'd
o 25
S ol
21— -
a
18
1
05
% 02 04 06 08 1

Fraction of 2—hold ships, p.

FIGURE 3 Exact expressions for berth throughput and crane
usage ai a single-purpose terminal with S = 3 and C = 4.

Daganzo

The approximation for K using the distribution of holds in
the queue is:

K=~4-20-q¢1-p-9q) ®)

Note that if (p + g) = 1, Equation 8 yields K = 4, but
consideration shows that it should be a little smaller: whenever
5 active holds are at berth, 1 ship with 1 active hold must
remain for the next period. If the next ship requests only 2
cranes, 1 crane will have to be idle. Thus K cannot be 4 except
when either ¢ = 1 or p = 1. Then all the ships are identical,
and 5 active holds can never be at berth; in that case the
approximation is exact.

Equation 7 is consistent with these observations. The max-
imum difference between the exact and approximate expres-
sions over all possible values of p and g occurs when p = .72
and ¢ = .28. Then the exact value is 3.80, and the approxi-
mation is 4.00 (a 5.26 percent error). In most other instances
the overprediction is less severe. The average (root mean
square) error over all possible values of p and ¢ is slightly
less than 3 percent.

This error is not very large (given the rather large workload
variability exhibited by this example), suggesting that Equa-
tions 2a and 2b may be reasonable predictors in actual situ-
ations. Still to be tested, however, is the extent to which
Factor 1 counterbalances (and perhaps overcorrects) this error.

CRANE USAGE EVALUATION

The results from the section on crane productivity are now
demonstrated. The section immediately following investigates
the importance of an efficient crane allocation scheme and
the subsequent section, the trade-off between cranage cost
and maximum productivity.

Effect of a Bad Crane Allocation Method

In this subsection we explore the changes to productivity for
the single-purpose terminal scenario of the preceding subsec-
tion, when a “bad” crane allocation method (strategy B) is
used. This strategy, which is also described in an earlier work
(10), is almost the exact opposite of strategy G. For the ideal-
ized scenarios in this paper, the strategy is easy to describe:

At every integer time (¢t = 0, 1, 2 . . .), reallocate all the
cranes (one at a time) to the ship with most active unattended
holds.

As before, the system can be studied as a Markov chain,
and the results are as follows:

P=3-p>(3+2p+2p>)/(1+p+3p*+p*+p% 9
for case A, and
P=14+(1-¢»Q1 + 2pqg + g% (10)
for Case B.

Equations 3 and 9 are rather close. They differ the most in
the range from p = 0.4 to 0.8, when the difference is on the

order of 0.02 to 0.025. Thus for Case A, the specific crane
allocation strategy used does not seem to matter much. The

situations where the wrong crane choice influences produc-
tivity do not arise often enough. When p = 0.5, the cranes
are idle 3.9 percent of the time with the good scheme but only
5.1 percent with the bad one.

For Case B we perform the same comparison when the
average number of active holds per ship is 2. At one extreme,
all the ships have 2 active holds (p = 1), and at the other
extreme, half the ships have 1 hold and half, 3 holds (p = 0
and g = 0.5). When p = 1, both strategies are equal (clearly),
and as one moves toward the other extreme the bad strategy
deteriorates: 3.5 cranes are busy on average with the efficient
strategy, but only 3.2 with the bad strategy. Thisis a 10 percent
difference in productivity.

These comparisons illustrate the productivity increases that
can be obtained with efficient operation. The increases are
not enormous, but when ships are very different from one
another, they can be significant. Even in these cases, however,
the percentage changes in productivity are only a few per-
centage points larger than the errors in Equations 2a and 2b.
This suggests that these expressions should be quite robust
and applicable even if the scheduling strategy only vaguely
resembles strategy G.

Although it may seem like a contradiction, increases in
productivity comparable with the errors in Equation 2 should
not be dismissed. A 5 percent increase in productivity would
be highly desirable at a port, but a 5 percent error in our
ability to predict it does not invalidate a preliminary planning
tool (in fact, in the planning stages a 5 percent prediction
error may be quite satisfactory).

The next subsection explores the trade-off between crane
cost and productivity.

Optimum Number of Cranes

Clearly, there are some benefits associated with a high max-
imum productivity. If maximum productivity is increased, say,
by purchasing more cranes, the terminal can attract more
business and generate more revenue. Maximum productivity
also increases with § (see Equation 2a). Thus, it is possible
to use Equation 2a to determine the most cost-effective com-
bination of berth capacity and number of cranes to achieve a
certain productivity goal.

Equations 2a and 2b can also be used to determine the
equipment needs for a given berth capacity. Let o denote the
yearly marginal profit associated with one unit of productivity,
and let us measure the productivity by the average number
of busy cranes as given by Equation 2a. Let B denote the
yearly cost associated with owning one crane. This cost does
not include any operating costs, which should have been fac-
tored into «. Thus, the total yearly profit associated with
owning C cranes is:

Profit = a{C — o V§ ¥ ([C — Sm]lo V§)} - BC

This is a concave function of C, which will have a unique
maximum at the point where the derivative vanishes: the root
of the equation,

(1 — Bla) = D{C — Sm)/(c V/S)} (11)

where ®(+) stands for the standard normal cdf. Equation 11
has a solution if B < «. The best number of cranes to have
is the nearest positive integer to this solution. In reality one
should never have 8 > « because this would mean that the
profits obtained by continuous operation of a crane are not
enough to offset its fixed cost: the terminal should not oper-
ate.

The calculations suggested in this subsection assume that
the marginal profit associated with an extra productivity unit
is constant. This is a coarse approximation that may be valid
for long-term planning (when it is planned to use the terminal
capacity nearly to its fullest), but not always. If, as is more
common, to provide a good level of service to its users, the
terminal is not used to its fullest, then the most significant
benefit derived from the availability of more cranes is a reduc-
tion in ship delay; and ship delay is not linear with the number
of cranes.

The next section derives ship delay expressions that can be
used to address these questions.

SHIP DELAY

This section explores the relationship between ship delay and
crane operations. As before, this is done by means of idealized
models that can be solved analytically. It 1s assumed that ship
arrivals to the terminal are stationary and random, and that
while the terminal may not have enough cranes from time to
time to serve all the ships at berth, the berth is long enough
so that ship queuing is extremely rare. This should be the
case at well-run ports and will help to separate the effects of
crane operations on delay from those of berth availability.

The Model

Ships fall into two categories: type-0 ships that need no cranes
and type-1 ships that need cranes. The service times of type-
0 ships are arbitrary. Type-1 ships can be one- or two-hatched;
that is, they may have either one or two active holds, which
require exactly one time unit of a crane’s attention.

Because the berth is almost never congested, it will be
assumed that it never is; for all practical purposes, its length
is infinity. This implies that the type-0 ships never interact
with the type-1 ships and that the operations of both can be
studied separately. Of course, to make sure that the infinite
berth length assumption is reasonable, one will have to check
a posteriori that the total number of type-0 and type-1 ships
at berth is very unlikely to exceed the maximum possible
number.

The two crane scheduling strategies already presented will
be compared. Strategy G (good) gives priority to the ships
with one active hold and strategy B (bad), to the ships with
two holds.

For both ship types we seek the expectation and the vari-
ance of the number of ships at berth. The expectations give
an indication of the cost of delay; and together with the var-
iance they yield insight into the maximum number of ships
that are likely to be present simultaneously at the berth.

TRANSPORTATION RESEARCH RECORD 1251

Results

Let us focus our attention on the type-1 ships and imagine
that all ships have exactly two holds; that is, one-hatched ships
have another (empty) hold. Let Q denote the total number
of holds at berth that are still active. This does not include
any holds that have already been handled, even if the ship
still is at berth. We define Q = Q, + O,, where Q, denotes
the number of holds belonging to one-hatched ships and O,
to two-hatched ships.

The total number of type-1 ships, N,, in the system can be
obtained as a function of Q, and Q,. This is because with
strategy G all the active holds on two-hatched ships are spread
across as few ships as possible. Thus,

N, =0 + (Q2/2)+ (12)

where the last term in this equation is rounded to the nearest
integer, if (), is odd. With strategy G, ships with one hold
have priority. Thus, Q; can be visualized as the number of
customers (holds) in a queuing system with C servers with
deterministic (unit) service times. A simple model for Q,,
however, is not readily available (it would seem to require
priority queues). To avoid this complication, we express N,
as a function of Q, and Q. Because Q = @, + Q,, we can
write:

N, = [(Q + Q)2]* (13a)

or approximately,
N =(Q + Q)2 (13b)

This expression is more useful because the total number of
holds can be modeled as a queuing system with C servers
where the customers are the holds on all ships; some arrive
in batches of two.

Queuing systems with many servers and a variety of arrival
and service processes have been extensively studied. Here we
use Newell’s approximate formulas (13) because of their sim-
plicity and generality. They apply to arrival processes that
can be approximated by a diffusion process (e.g., with inde-
pendent increments, compound Poisson).

A similar type of argument can be made for strategy B.
Because now two-hatched ships have priority, O, (and not
Q,) is easily predicted. Thus it is now advantageous to express
Equation 12 as a function of Q and Q, as follows:

Ny = [Q - (@2 (14)
Newell’s Queuing Expressions

For our deterministic service time queuing system (assuming
that the customer arrival process follows a stationary process
that can be approximated by a diffusion process), Newell’s
(13) approximate expressions simplify. Let A denote the aver-
age customer arrival rate and o2, the variance of the number
of arrivals in one time unit (this value equals A for a Poisson
process). These two parameters characterize the arrival proc-
ess. Then the expected number of customers in the system

Daganzo

(being and waiting to be served) is a function of A, ¢?, and
the following dimensionless constant, pw.:

p = (C — N/o (15)

This constant represents how far the system is from being
saturated. If it is negative, the system is oversaturated; a
steady-state solution does not exist and the queue would grow
steadily with time. If w is close to zero but positive, the system
has a steady state in which there usually is a queue; and if
is greater than 2, queues arise only rarely. The probability
that all the servers are busy is:

Pr{busy} = ¢(u)Ay (1) (16)

where (*) is the function appearing in Equations 2a and 2b.
The expected number of customers in the system is

E{no. customers}
=N+ ofp®(— p) +eW/Cpy @) A7)

which for uncongested systems (p >2) can be approximated
by

E{no. customers} = A + ¢ ¢(p)

Note that as w approaches infinity, the expected number of
customers approaches X. This is the result that is obtained for
the infinite channel queue, and it is a lower bound to the
actual number. Figure 4 displays the quantity in braces in
Equation 17 and the probability that all servers are busy; both
plotted against w.

Expected Number of Ships and Expected Delay

To calculate E(Q) and E(Q,) (or E(Q,)) for strategy B, one
needs to determine the mean and variance of the pertinent
hold arrival process. Let a, and a, represent the arrival rates
for one- and two-hatched ships, respectively, and o, and o,

25
Eqg. 16
2 —
Eq. 17

1.5

value

5 \-..'
e

0 05 1 15 2

Parameter, "mu".

FIGURE 4 Graphs for quick evaluation of Equations 16
and 17.

the corresponding variances per unit time. If ships are tramps
(they do not follow a schedule), one would expect these var-
iances to be close to the arrival rates. The arrival rates for
holds (total, and on one- and two-hatched ships) are (a, +
2 a,), a,, and 2a,.

One can then use Equations 15 and 17 with these arrival
rates and the corresponding variances. These are either (o,
+ 4a,), 04, or 40,. The coefficient 4 appears in these expres-
sions because some holds arrive in batches of two.

Equations 15 and 16 can be used to calculate the probability
that the system is busy, p,, and the probability that the system
is busy with all the cranes attending priority holds: p, for
strategy G (where priority ships have only one hold) and p,
for strategy B. Clearly, p, > py,p.-

The expected number of ships at berth is given by the
expectation of Equations 13a or 14. These are not linear func-
tions of the Qs, but the equations need only to be rounded
up when the system has an odd number of active holds belong-
ing to two-hatched ships. For strategy G this can happen only
when there is a queue, and then only about half the time.
Thus the expectations of Equations 13a and 13b differ only
by pg,; but Equation 13b is linear. Thus:

E(N)) = (E(Q) + E(Q)) + po)/2 (18)

For strategy B, an odd number of active holds belonging to
two hatched ships can arise only if the system has an odd
number of cranes, and then only for about half the time when
the system is saturated with these types of ships. Thus:

E(N)) = (2E(Q) — E(Q,) + p,)/2 if Cis odd (19a)
= (2E(Q) — E(Q,)2 if C is even (19b)

The average ship time in port is obtained by dividing these
expressions by the average ship arrival rate:

E{time in port} = E(N,)/(a, + a,) (20)

Example

To illustrate these expressions, assume that C = 4 and that
ship arrivals are Poisson with @, = 1 and a, = 0.5. Then the
total hold arrival rate is (1 + 2(0.5)) = 2, and the combined
o?is (1 + 4(0.5)) = 3. Thus, p = 2/\V/3, p, = 0.17, E(Q)
= 2.39, E(Q,) = 1.0, and E(Q,) = 1.07. The average number
of ships with the good strategy is about 1.78 and with the bad
strategy, 1.86. The average ship time in port is 1.19 time units
for strategy G and 1.24 for strategy B. If cranes were never
in short supply, these numbers would be 1. Thus, one can
think of the excess (0.19 and 0.24 time units) as the delay
caused by crane shortages; switching strategies can reduce
this delay by about 25 percent (0.06 time units). If the delays
are longer, choosing the best crane allocation strategy should
be more important. With 3 cranes, for example, the average
number of ships in the system is 2.25 with strategy G and 2.52
with strategy B. The corresponding times in port are 1.5 and
1.68 time units; the difference between the strategies still
amounts to about 25 percent of the ship delay, but the dif-
ference is now larger in absolute value.

Discussion

The results in the preceding section assumed that the berth
is so long that ships never have to queue for berthing space
and that the ship arrival process has independent increments.
To check that ships do not have to queue for berthing space,
one can calculate the mean and variance of the total number
of ships at berth and verify that both are small enough. For
type-0 ships, the mean and variance, E(N,) and var (N,), can
be obtained with the formulas for an infinite server system
[see Newell (13)]. Earlier, formulas were given for the mean
number of type-1 ships, E(N,), but not for its variance. If O,
and Q were independent (they should be positively corre-
lated), Equation 13b would indicate that:

var(N,) = (var(Q) + var(Q,))/4

where var(Q) and var(Q,) are given by a formula, which is
similar to Equation 17 but is not given here. If O and O, were
perfectly correlated, the variance would instead be:

var(N,) = [(var(Q@))*? + (var(Q,))"*|/4

The actual value should be between these limits, which should
then be added to var(N,) to obtain the variance for the total
number of ships. Although an exact value is not given here,
the calculations may indicate whether the available berth space
is likely to suffice; great accuracy is not always needed for
this purpose. If some of the ships are liners, the assumption
of an arrival process with independent increments does not
hold. Some graphical simulations can be done. For example,
if all the ships are liners, two cumulative plots of the number
of cranes demanded by one- and two- hatched ships versus
time (as per their schedules) can be constructed. These graphs
will help determine when each hold gets served with algorithm
G and the departure time of each ship. This yields the desired
information. If only some of the ships are liners (and liners
have priority), one can use the preceding process to determine
how many free cranes there are on average after serving the
liners. If this number does not fluctuate with time very much
(the liner schedules could be fairly regular), one could use
this average (instead of C) with the expressions in the earlier
section to obtain a first estimate of tramp delay. Clearly, there
are many situations where the queuing formulas presented in
this section do not apply. Nonetheless, the results give an
indication of the kind of delay savings that can be attained
by efficient crane scheduling.

CONCLUSION

This paper represents an initial attempt at understanding crane
operations at ports by means of simple analytical formulas.
It provides some approximate expressions for the average
number of busy cranes during congested periods (a measure
directly related to the maximum terminal throughput) and for
ship delay.

The maximum terminal throughput depends on several fac-
tors: the berth capacity (in ships), the number of cranes, the
amount of work per hold and its variability within and across

TRANSPORTATION RESEARCH RECORD 1251

ships, and the crane operating strategy. The crane operating
strategy influences throughput considerably less than the other
factors. In all the cases examined, throughput does not change
by more than about 10 percent when one switches from an
inefficient to an efficient strategy. This indicates that detailed
models of crane operations are not needed to obtain rough
productivity estimates.

A simple formuia, which is proposed for efficient crane
operations, was tested against exact expressions for some spe-
cial cases. The errors were on the order of just a few percent.
Although further testing is needed, this suggests that such a
formula may be useful for quick response economic and plan-
ning purposes, in instances where detailed simulations are not
possible.

The paper also illustrates how the maximum productivity
expressions can be used for evaluating the effectiveness of
various terminal configurations. As an example, it calculates
the optimum number of cranes when the berth capacity is
fixed and ihe cost of additional cranes is countcrbalanced by
corresponding productivity increases.

The paper also studies the impact of crane scheduling on
ship delay for a berth that has a finite number of cranes but
is ample enough to hold all ships; ships arrive at random so
some of them may have to wait for a crane if too many are
already at berth. The paper examines idealized situations that
can be modeled analytically, and yet are rich enough to be
sensitive to the crane allocation strategy. For a given strategy,
the expected delay depends on only three parameters: the
number of cranes and the average and standard deviation of
the number of arrivals in the time that it takes to serve one
hold. For the examples studied, representing lightly congested
conditions, the expected delay was reduced by about 25 per-
cent when switching from an inefficient to an efficient crane
scheduling strategy.

The results in this paper represent only an initial effort
toward providing crane usage analytic models. It definitely
would be desirable to validate the approximate productivity
equations under a wider set of conditions, and to extend the
queuing models to situations where berth space is not quite
so plentiful.

ACKNOWLEDGMENT

This research was supported in part by a grant from American
President Lines to the Institute of Transportation Studies,
University of California, Berkeley.

REFERENCES

1. C. H. Plumlee. Optimum Size Scaport. ASCE Journal of the
Waterways and Harbors Division, Vol. 92, 1966, pp. 1-24.

2. J. D. Mettam. Forecasting Delays to Ships in Port. Dack and
Harbour Authority, Vol. 47, 1967, pp. 380-382.

3. J. H. Jones and W. R. Blunden. Ship Turn-Around at the Port
of Bangkok. ASCE Journal of the Waterways and Harbors Divi-
sion, Vol. 94, 1968, pp. 135-148.

4. S, N. Nicolau. Berth Planning by Evaluation of Congestion and
Cost. ASCE Journal of the Waterways and Harbors Division, Vol.
95 (WW3), 1969, pp. 419-425.

Daganzo

5. A. J. Miller. Queueing at a Single-Berth Shipping Terminal. ASCE
Journal of the Waterways, Harbors and Coastal Division, Vol. 97
(WW1), 1971, pp. 43-55.

6. E. Koenisberg and D. A. Meyers. An Interacting Cyclic Queue
Model of Fleet Operations. Logistics and Transportation Review,
Vol. 16, No. 1, 1980, pp. 59-71.

7. M. S. Daskin and C. H. Walton. An Approximate Analytical
Model of Supertanker Lightering Operations. Transportation
Research, Vol. 17B, 1983, pp. 201-219.

8. F. Sabria. Analysis of Potential Improvements in Port Operations.
Ph.D. thesis. Department of Civil Engineering, University of
California, Berkeley, 1986.

10.

11.

12.

13.

. W. H. Atkins. Modern Marine Terminal Operations and Man-

agement. Port of Oakland, Oakland, Calif., 1983.

C. F. Daganzo. The Crane Scheduling Problem. Transportation
Research, Vol. 23B, No. 3, June 1989, pp. 159-176.

R. Peterkofsky and C. F. Daganzo. A Branch and Bound Method
for the Crane Scheduling Problem. Transportation Research, in
press.

C. E. Clark. The Greatest of a Finite Set of Random Variables.
Operations Research, Vol. 9, 1961, pp. 145-162.

G. F. Newell. Approximate Stochastic Behavior of n-Server Ser-
vice Systems with Large n. Lecture Notes in Economics and Math-
ematical Systems 87. Springer-Verlag, New York, 1973.

10

TRANSPORTATION RESEARCH RECORD 1251

Guidelines and Computational
Results for Vector Processing of
Network Assignment Codes on

Supercomputers

Kyriacos C. Mouskos AND HaNT S. MAHMASSANI

Supercomputers derive their computational performance from faster
processors as well as innovations in their architecture. To take
advantage of the vector processing capabilities of supercomputers,
such as the CRAY X-MP series, it is necessary to modify the code
to enhance its vector processing performance. These modifications
can range from simple localized recoding of existing mainframe
codes to devising new algorithms with the hardware’s architecture
in mind. In this paper, codes for the solution of two network
equilibrium assignment problem formulations (Frank-Waolfe algo-
rithm for the single-class user equilibrium problem and the di-
agonalization algorithm for multiple user classes with asymmetric
interactions) are vectorized and tested on a CRAY X-MP/24 super-
computer. Only local vectorization by limited recoding of existing
programs is performed. Guidelines are given for this purpose, and
their application to the assignment codes is illustrated. The com-
putational tests performed indicate an improvement in execution
time of about 70 to 80 percent of the modified code relative to its
unvectorized performance on the CRAY supercomputer. Execu-
tion of the vectorized code on the CRAY is about 22 times faster
than the execution of the unmodified code on a mainframe com-
puter. The significance of the results for research and practice is
also discussed.

The network traffic assignment problem arises in connection
with many transportation planning activities, including the
analysis of the cost-effectiveness of capital improvement proj-
ects and the evaluation of operational planning strategies in
traffic networks. Two decades of research have resulted in
efficient and widely available algorithms for this problem,
particularly for the case of a single class of users and no
interactions across links. Such programs are routinely exe-
cuted on microcomputers, though only for moderately sized
networks. A review and textbook presentation can be found
elsewhere (7). For more complicated and realistic cases, espe-
cially those involving multiple user classes and asymmetric
link interactions (1-5), existing algorithms are much more
demanding computationally, especially for large-scale sys-
tems. Network assignment procedures are also critical for
solving the network design problem, which is an np-hard prob-
lem that cannot generally be solved optimally using current
computational techniques.

Supercomputers offer at least an order of magnitude
improvement over conventional mainframes in terms of speed
and memory capabilities, and they greatly enhance our ability

Department of Civil Engineering, University of Texas at Austin,
Austin 78712.

to solve large problems under more realistic assumptions.
Supercomputers derive their high performance not only from
inherently faster silicon chips, whose performance is fast
approaching its quantum-mechanical limits, but also from their
radically different architectures that reflect different degrees
of parallelism (6,7). The CRAY X-MP series of supercom-
puters, which is used in the present study, appears to have
gained the widest acceptance and accessibility in the American
academic community. Its architecture provides a dimension
of parallelism by using vector or matrix operations of an algo-
rithm (vectorization). More detailed description of the hard-
ware aspects of the CRAY X-MP that are relevant to appli-
cations programmers can be found in papers by Zenios and
Mulvey (7) and Chen (8).

Compilers are generally available for the CRAY supercom-
puter to ‘“‘vectorize” a particular code by identifying those
independent portions that can be executed in parallel and
sequencing the processing and task allocation accordingly.
However, there are many inherently parallel activities that
may have been programmed in ways intended for conven-
tional scalar processing but that actually inhibit the vectori-
zation capabilities of the compiler. It is therefore generally
possible to take fuller advantage of the capabilities of the
supercomputer’s architecture by modifying, or vectorizing,
the code. Three levels of vectorization can be distinguished

):

1. Local software vectorization, where the program is re-
examined in its parts and subroutines, and redesigned only
locally, without program-wide repercussions;

2. Global software vectorization, affecting the whole im-
plementation of the algorithm and the design of the data
structures; and

3. Overall algorithm vectorization, where the solution al-
gorithm itself is conceived to take advantage of the machine
architecture.

Recently, Zenios and Mulvey (7) provided an example of
the kinds of local modifications needed to vectorize codes for
the solution of nonlinear network programs and reported related
computational experience on the CRAY X-MP/24. In addi-
tion to illustrating the potential of supercomputers for solving
large-scale network optimization problems, their results high-
lighted the need to modify the codes to achieve better vec-

Mouskos and Mahmassani

torization. The present paper presents similar information for
codes to solve the traffic network equilibrium assignment
problem. The principal objective is to assess the computa-
tional improvements that can be achieved by local vectori-
zation of network traffic assignment codes, for the single-class
and the two-class (with asymmetric interactions) user equi-
librium problems. The computational experiments are per-
formed on the CRAY X-MP/24 supercomputer. The results
have important implications for practice in terms of the size
and complexity of the problems that can be addressed and,
more important, for the future development of solution
approaches to the network design problem.

The next section presents general guidelines for the local
vectorization of FORTRAN codes. Following a brief descrip-
tion of the algorithms, the application of these principles to
the single-class user equilibrium assignment codes, and the
corresponding computational improvements are described.
Results for the two-class problem are presented next, followed
by concluding comments.

CODE VECTORIZATION GUIDELINES

To develop vectorizable programs and properly exploit the
supercomputer capabilities, some appreciation of the machine’s
architecture and characteristics is helpful (7,8). The CRAY
X-MP consists of separate dedicated functional units for vec-
tor floating point operations, vector integer operations, and
scalar integer operations, respectively. It contains eight vector
and eight scalar registers where vectors and scalars, respec-
tively, are held before and after being processed on their way
from and back to the memory. Vectors are processed in a
pipeline fashion; after an initial startup period the first result
appears, followed by the other results, one every cycle. The
Cray FORTRAN (CFT) compiler produces a code that con-
tains vector instructions to drive the high-speed vector and
floating point functional units and the eight vector registers
in their specified operation. The compiler, to be on the safe
side, does not attempt vectorization when it suspects certain
dependencies within DO loops, even if the corresponding
operations are inherently vectorizable. Another important
feature of the CRAY X-MP is the abundance of memory and
availability of a very high speed, large solid-state device. As
such, many of the techniques typically used to reduce and
carefully manage storage in programs developed for main-
frame computers may actually inhibit vectorization and degrade
performance on the supercomputer.

The first step in the local vectorization of a program initially
developed for scalar processing is to perform a time require-
ments analysis to determine the time-intensive parts of the
code. These should then become the primary targets of the
recoding effort. A combination of code modifications and
compiler directives can then be employed. This process is
iterative and can be continued until the programmer is sat-
isfied that no further meaningful improvement can be achieved.
Beyond this level, additional improvements would have to be
sought by higher-level vectorization, as described earlier.

The primary programming constructs that should be tar-
geted in vectorization efforts are DO loops, where the major-
ity of computer time expense is incurred. As already noted,
the CRAY X-MP compiler automatically tries to vectorize
the loops where applicable. When trying to determine whether

11

or not to vectorize a particular DO loop, the CFT compiler
checks for the existence of any dependencies within the loop.
Statements that should be avoided within the DO loops,
according to the UT CHPC User Services Group (9), include
CALL statements; I/O statements; branches to statements not
in the loop; statement numbers with references from outside
the loop; references to character variables, arrays, or func-
tional IF statements that may not execute because of the
effects of previous IF statements; ELSE IF statements.

The guidelines presented next were followed in vectorizing
the network assignment codes, based on suggestions in the
publications of the UT CHPC User Services (9) and the San
Diego Supercomputer Center (10):

1. Data dependencies should be eliminated; a loop will not
vectorize if, for example, an array is referencing values
dependent on computations in lower portions of the array in
an incrementing loop. The computations cannot be pipelined.

2. Subscript ambiguities should be eliminated; try to elim-
inate the dependency of a subscript on a previous calculation
by including the operation in the array.

3. In the case of nested loops, the one with the largest
range should be assigned as the innermost loop; this would
contribute the most to the overall effectiveness of the code
because the inner loop is the only one that is vectorized.

4, Conditionals should be eliminated; IF THEN ELSE
statements can be replaced by conditional vector merge pro-
cedures. Simple IF statements are vectorizable but might inhibit
vectorization if their references lead to some of the afore-
mentioned dependencies.

5. The loops should be unrolled to a certain depth, thereby
eliminating checking for termination conditions and enforcing
chaining and functional unit overlap.

6. Vectorizable loops should be separated from unvecto-
rizable loops—in particular, separate loops that contain CALL
statements or I/O statements or any of the statements men-
tioned previously that are independent of the other compu-
tations within the loop.

Before describing the application of these rules to the net-
work assigment codes considered in the study, the basic steps
of the algorithms for the single-class user equilibrium and the
multiclass user equilibrium with asymmetric costs problems
are presented.

REVIEW OF THE NETWORK EQUILIBRIUM
ALGORITHMS

Given a known matrix of origin-destination flows, a network
of directed links connecting nodes, and link performance func-
tions that describe the dependence of link costs on the cor-
responding link flows, the single-class user equilibrium algo-
rithm solves for the flows onto the individual links of the
network so as to achieve certain equilibrium conditions whereby
no driver can improve her travel time by unilaterally switching
routes. Exact solution algorithms for the single-class user
equilibrium problem are based on Beckman’s equivalent
mathematical programming formulation (/1), which can be
solved by any of several nonlinear optimization techniques.
The most widely used algorithm for its solution is based on
the Frank-Wolfe or convex combinations method. This algo-

12

rithm is well documented, and a detailed presentation can be
found in a paper by Sheffi (1). A brief overview is presented
here.

The algorithm consists of an iterative procedure that, at
each iteration, first finds a search direction by solving a linear-
ized approximation, then solves for the optimal move size
along that direction. The efficiency of the algorithm derives
from the fact that the direction-finding step is equivalent to
performing an all-or-nothing assignment. The latter requires
the repeated application of a shortest path routine, which is
the principal computationally demanding element of the code.
An additional source of computational cost is the line search
to find the optimal move size along a particular direction and
the computation of the relatively complicated nonlinear travel
cost (link performance) functions. Letting ¢,(.) denote the link
performance function for link a, the principal steps of the
algorithm can be summarized as follows:

STEP 0: TInitialization. Perform all-or-nothing assignment
based on the free flow travel times ¢, = ¢,(0), Va; This yeilds
the set of link flows {X}. Set counter n = 1.

STEP 1: Update. Set £ = £,(X7), Va.

STEP 2: Direction finding. Perform all-or-nothing assign-
ment based on {f2}. This yiclds a set of (auxiliary) link flows
{yat-

STEP 3. Linesecarch. Find optimal move size a,, that solves:

X+o(ya—Xa)

min f t, (w) dw

0

subject to 0 = o, = 1.

STEP 4: Move. Set X2*! = X" + «, (y? — X%), Va.

STEP 5: Convergence test. If a convergence criterion is
met, STOP (the current solution is the set of equilibrium link
flows); otherwise, set n = n + 1 and GO TO STEP 1.

The preceding algorithmic steps are implemented in the
computer code as follows. The input of the characteristics of
the network, the O-D matrix, link characteristics, and con-
vergence measures, are included in TRAFASN. The initial-
ization STEP 0 takes place in subroutine UE, where all the
main steps of the algorithm are controlled. Following the
initialization of all the paths to zero flows, subroutine AON
is called to initialize the flows on the links to zero. Then the
travel times on the links are computed, initially with zero
flows. All travel time computations are performed by calling
a separate function called COSTFN. Given these travel times,
subroutine SHPATH is called, as many times as the number
of origins, to identify the shortest path for each O-D pair.
Then the flow for each O-D pair is allocated on the links that
make up each shortest path. The calculation of the travel times
and the allocation of the flows to the links (all-or-nothing
assignment) correspond to STEP 1 and STEP 2 of the algo-
rithm, respectively. STEP 3 is controlled by subroutine
BISECT, where the move size is determined by a line search
using the bisection method. This move size is used in updating
the flows (STEP 4), followed by the convergence test
(STEP 5), calculated in subroutine UE. The output of the
program is controlled by subroutine DUMP.

The two-class user equilibrium problem arises when two
classes of users (e.g., cars and trucks) share the use of the

TRANSPORTATION RESEARCH RECORD 1251

physical right-of-way on the highway facilities. The travel times
(costs) experienced by one class of users depend not only on
the flow of elements belonging to that class but also on the
flow of the other class. When the respective effects of the
flow of one class on the travel time of the other are not
symmetric (e.g., the effect of one additional truck on the cars’
average travel time is greater than the effect of an additional
car on the trucks’ travel time), the resulting user equilibrium
problem does not have an equivalent mathematical program-
ming formulation. One of the most commonly used algorithms
for its solution is a direct algorithm called the diagonalization
algorithm. A discussion of other approaches is given in the
review paper by Friesz (12).

In the solution of the two-class user equilibrium problem,
a separate copy of the physical network is created for each
class of users, as described in Mahmassani et al. (4). The
interactions between classes sharing the same physical links
are then represented through the performance (cost) func-
tions associated with each link in the individual network cop-
ies. In the general case, these functions would specity the
dependence of a link’s travel cost on flows on any other link.
In the two-class case, the specification of the cost functions
reflects the desired dependence between user classes as inter-
actions among links.

At cach iteration, the diagonalization algorithm requires
the solution of a single-class user equilibrium problem as a
subprobiem. The latter arises because at the nth iteration, all
cross-link effects are fixed at their levels from the (n — 1)th
iteration, and the cost on any given link is allowed to respond
only to its own corresponding flow. This subproblem is solved
using the Frank-Wolfe algorithm. Because each iteration of
the diagonalization algorithm requires several iterations of
the Frank-Wolfe algorithm to solve the diagonalized sub-
problem, it is more computationally demanding than the sin-
gle-class algorithm. In addition, because there are as many
origin-destination trip matrices as there are classes of users,
greater use must be made of the shortest path and the all-or-
nothing assignment procedures. Furthermore, the travel cost
functions are more complicated, increasing the computational
burden for the move size finding.

Nevertheless, the computer code for the diagonalization
algorithm, especially for its streamlined versions (/,5), does
not differ significantly from the single-class code. It is com-
posed of the same subroutines, with some modifications to
take into account the division of the traffic into trucks and
passenger cars. The previously listed subroutines and func-
tions are renamed in this case, in the respective order in which
they were previously mentioned, as UETRDIA, UED, AON-
UED, TRCOST, SHPUED, BISUED, and DUMPUED. For
this reason, the modifications performed to vectorize the sin-
gle-class code are directly beneficial to the diagonlization code.
In the next section, these modifications are described for the
single-class code, along with computational results with the
vectorized code on two networks used in previous numerical
experiments (4,5).

COMPUTATIONAL RESULTS FOR SINGLE-
CLASS UE CODE

Mouskos and Mahmassani

the improvements achievable by different types of modifi-
cations. Most of the testing accompanying the various indi-
vidual changes was performed on a medium-sized network
with 182 O-D pairs, 128 nodes, and 336 links. A similar net-
work was used extensively in earlier experiments with stream-
lined versions of the diagonalization algorithm (4,5). A max-
imum of 500 iterations of the algorithm were allowed before
the code was terminated for any test run with this network.
All runs were performed on the CRAY X-MP/24 using two
available Fortran compilers: the CFT 1.15 and the CFT77
v2.0. The CFT 1.15 is written in CRAY assembly language,
the CFT77 in Pascal. The CFT77 has superior scalar perfor-
mance and implements array syntax (arrays handled as enti-
ties) and automatic arrays (storage allocated at run time). In
many cases, it has closer FORTRAN syntax error handling
and vectorizes some loops that the CFT 1.15 would not. The
CFT 1.15 generates scalar and conditional vector loops and
chooses between the two at run time, whereas the CFT77
generates only vector code and computes the vector length
at run time.

Following the steps described earlier, the performance of
the code was first assessed without the vectorizing capabilities
of the CFT compilers, and a time analysis was performed to
determine the most computationally intensive elements of the
program. The results are shown in Table 1. The total time to
execute was 15.679 sec, using the CFT 1.15 compiler and 14.99
sec using the other compiler (with vectorization blocked in
both cases). This compares with 79 sec on a CYBER CDC
170/750 mainframe or about five times more than the super-
computer without any vectorization.

Next, the program was executed by removing the prohi-
bition of vectorization. The results, shown in Table 2 for both
compilers, indicate that the execution times for some of the
routines were reduced considerably, though not uniformly.
A total reduction of 28 percent was achieved by the vectorized
compilation using the CFT 1.15 compiler, and of 32 percent
using the other compiler, without any program modification.
The shortest path routine vectorized quite well, exhibiting a
reduction of about 60 percent. The reductions for functions
COSTEFN and FINT were much more modest, however, less
than 5 percent, thereby pointing our efforts toward seeking
to improve them.

TABLE 1 EXECUTION TIMES AND PERCENTAGE OF
TOTAL EFFORT FOR EACH SUBROUTINE WHEN
VECTORIZATION IS BLOCKED (MAXBLOCK = 1) IN
COMPILER FOR THE SINGLE CLASS UE CODE ON
NETWORK 1

CFT 1.15 CFT77v2.0
EXECUTION EXECUTION
TIME TIME

SUBROUTINE (Seconds) (%) (Seconds) (%)
AON 2.195 (14.00) 2.559 (17.07)
BISECT 3.065 (19.55) 2412 (16.09)
COSTFN 5.928 (37.81) 6.115 40.79)
DUMP 0.222 (1.41) 0.202 (1.35)
FINT 0.507 (3.24) 0.521 (3.47)
SHPATH 3.330 (21.24) 2.827 (18.86)
TRAFASN 0.051 (0.32) 0.050 (0.33)
UE 0.381 (2.43) 0.304 (2.03)

Total Execution Time ~ 15.679 (100) 14.990 (100)

13

TABLE 2 EXECUTION TIMES (IN SECONDS) AND
PERCENTAGE OF TOTAL EFFORT WITH
VECTORIZATION USING BOTH CFT COMPILERS FOR
THE SINGLE CLASS UE CODE ON NETWORK 1

CFT 1.15 CFT77v 2.0
EXECUTION
TIME EXECUTION
SUBROUTINE (Seconds) (%) TIME (%)
AON 1.430 (12.68) 0.917 (8.99)
BISECT 1.813 (16.08) 1.517 (14.87)
COSTFN 5.694 (50.50) 5.785 (56.72)
DUMP 0.215 (1.91) 0.201 (1.97)
FINT 0.485 (4.30) 0.487 (4.78)
SHPATH 1.391 (12.33) 1.055 (10.34)
TRAFASN 0.050 (0.44) 0.048 0.47)
UE 0.198 (1.75) 0.191 (1.87)
Total Execution Time 11.275 (100) 10.199 (100)

To achieve such improvements, one needs to eliminate data
dependencies that inhibit vectorization, as discussed earlier.
One strategy in this case is to include the travel cost functions
within the BISECT routine instead of repeatedly calling a
separate function (COSTFN). Calling functions or subrou-
tines in a loop may inhibit vectorization. This change led to
a reduction of 1.274 sec (or 11.3 percent) using the CFT 1.15
compiler. However, it was suspected that a further data
dependency existed in the loop for computing the link per-
formance functions that inhibited vectorization. These func-
tions have the following general form:

to (Xo) = tos (1 + BX/C]),

where ¢, is the travel time on link a under free flow conditions,
C, is a parameter generally interpreted as the capacity of link
a, and and vy are link-specific parameters. The data depen-
dency in the manner in which the computation of these func-
tions was originally coded arises from the separate calculations
of the parameters A1 and B1, as shown in Figure 1. The
expressions for these parameters were therefore included
directly in the travel time equation. The foregoing changes
are shown in Figure 1 as an example of the kind of local code
modifications that can dramatically improve the vector per-
formance of FORTRAN codes. The execution time summary
following these changes is reported in Table 3 for both com-
pilers. There was a dramatic drop in execution time to 5.568
sec (or a 51 percent improvement over the unmodified code)
for the CFT 1.15 compiler, and to 4.061 (60 percent reduction)
for the other, primarily because of a drop in BISECT, con-
firming the prior existence of a dependency that had inhibited
the vectorization of the loop.

Given the preceding results, similar changes were made
wherever the functions COSTFN and FINT were called. A
further step was to specify the 1/C(N) in the travel cost equa-
tions a variable C1(X), calculated early in the program, so
that X/C(N) was transformed to X * C1(N), which eliminates
the repetitive division. A division is computationally more
demanding than a multiplication on the CRAY. The execu-
tion time summary after these and other minor changes is
shown in Table 4 for both compilers. The total execution times
dropped by about 57 percent and 68 percent relative to the
unmodified but compiler vectorized code for the CFT 1.15
and CFT v2.0 compilers, respectively, and by about 69 percent
and 78 percent relative to the unmodified and noncompiler

14

original loop in bisect:

DO 30 N=1, NARC

X = FL(N) + AMD*(NFL{N)-FL(N))

Al = ALP (TYP(N))

B1 = BET(TYP(N))

CST = COSTFN (L(N), C(N), V(N), X, A1, B1)
30 D =D + CST*(NFL(N) - FL(N))

1st Change: Removing the call function COSTFN

DO 30 N=1, NARC

X = FL(N} + AMD* (NFL(N) -FL(N}))

Al = ALP (TYP(N))

B1 = BET(TYP(N))

CST = L(NYV(N)

IF(C(N). NE.O) CST = CST*(1 + A1*(X/C(N))**B1)
30 D =D + CST*(NFL(N) - FL{N))

2nd Change: Incorporating expressions for Al and Bl
directly in the cost (CST) calculation

DO 30 N=1,NARC

X = FL{N) + AMD* (NFL(N) - FL{N))

CST = L(NJ/V(N)* (1+ ALP(TYP(N))*(X/C(N))**BET(TYP(N)))
30 D = D + CST*(NFL(N) - FL(N))

FIGURE 1 Changes to subroutine BISECT to eliminate data
dependencies.

TABLE 3 EXECUTION TIME SUMMARY FOLLOWING
MODIFICATION OF BISECT AS SHOWN IN FIGURE 1,
USING BOTH COMPILERS FOR THE SINGLE CLASS UE
CODE ON NETWORK 1

CFT 1.15 CFT77v 2.0
EXECUTION
TIME EXECUTION
SUBROUTINE (Seconds) (%) TIME (%)
AON 1.433 (25.73) 0.931 (22.93)
BISECT 1.328 (23.85) 0.654 (16.09)
COSTFN 0.477 (8.56) 0.494 (12.15)
DUMP 0.211 (3.79) 0.203 (4.99)
FINT 0.475 (8.53) 0.488 (12.02)
SHPATH 1.411 (25.34) 1.061 (26.12)
TRAFASN 0.050 (0.90) 0.047 (1.17)
UE 0.184 (3.30) 0.184 (4.52)
Total Execution Time ~ 5.568 (100) 4.061 (100)

TABLE 4 EXECUTION TIME SUMMARY FOLLOWING
ALL MODIFICATIONS TO THE SINGLE CLASS UE CODE,
USING BOTH COMPILERS, FOR NETWORK 1

CFT 1.15 CFT77 v 2.0
EXECUTION
TIME EXECUTION
SUBROUTINE (Seconds) (%) TIME (%)
AON 1.357 (27.99) 0.847 (25.66)
BISECT 1.313 (27.07) 0.641 (19.43)
DUMP 0.204 (4.21) 0.206 (6.23)
SHPATH 1.392 (28.71) 1.056 (31.99)
TRAFASN 0.050 (1.04) 0.048 (1.47)
UE 0.533 (10.99) 0.505 (15.23)
Total Execution Time ~ 4.849 (160) 3.301 (100)

TRANSPORTATION RESEARCH RECORD 1251

vectorized case. The ratio of CDC mainframe to vectorized
performance thus becomes of the order of 25 times, compared
with about 5 times without any vectorization. This highlights
the need for and potential of relatively simple local code
modifications to take better advantage of supercomputing
capabilities. It is of course possible to improve further on the
code’s performance; however, the point was reached where
the marginal improvements due to additional changes did not
justify further effort.

Additional tests of the final vectorized code were performed
on a large network of 700 nodes and 1,956 links, confirming
the magnitude of the improvement achieved by local vecto-
rization relative to the execution of the unmodified code on
the supercomputer and to the CDC mainframe.

COMPUTATIONAL RESULTS FOR
DIAGONALIZATION CODE

As explained earlier, the diagonalization program for multiple
user classes with asymmetric interactions is very similar to the
single-class code. Thus the modifications implemented for the
former closely parallel those described in the previous section
for the latter. These changes primarily affected the compu-
tation of the link performance functions, which are more com-
plicated in the case of multiple user classes, and the BISUED
subroutine (the equivalent of the BISECT subroutine for the
single-class code). Additional details can be found in the report
by Mahmassani et al. (13).

The performance of the vectorized diagonalization code
was tested on a relatively large network, with two classes of
vehicles operating on it. The interactions between vehicle
classes are represented in the link performance functions, as
described by Mahmassani and Mouskos (4,5). The network
consists of 364 O-D pairs, 1,400 nodes, and 3,912 links. A
total of 25 iterations were allowed before the code was ter-
minated for all test runs. For this network, time analyses were
performed for (a) original code with no compiler vectoriza-
tion, (b) original code with compiler vectorization, and
(c) modified code with compiler vectorization. The corre-
sponding execution time analyses are summarized in Tables
5, 6, and 7, respectively, for both CFT compilers.

Comparing the results of Tables 5 and 6, compiler vecto-
rization without code modification leads to an improvement
from 23 sec to about 13.5 sec (i.e., a 41.5 percent reduction)

TABLE 5 EXECUTION TIME SUMMARY FOR THE
UNMODIFIED DIAGONALIZATION CODE WITH
VECTORIZATION BLOCKED

CFT 1.15 CFT77v 2.0
EXECUTION EXECUTION
TIME TIME
SUBROUTINE (Seconds) (%) (Seconds) (%)
AONED 1.192 5.17) 0.949 (4.89)
BISUED 5.726 (24.84) 27195 (14.40)
DUMPUED 0.434 (1.88) 0.257 (1.32)
SHPUED 10.033 (43.52) 8.429 (43.41)
TRCOST 4.608 (19.99) 5.945 (30.41)
UED 0.245 (1.06) 0.239 (1.23)
UETRDIA 0.815 (3.54) 0802 (4.13)
Total Execution Time ~ 23.053 (100) 19.414 (100)

Mouskos and Mahmassani

TABLE 6 EXECUTION TIME SUMMARY FOR THE
UNMODIFIED DIAGONALIZATION CODE WITH
VECTORIZATION USING BOTH CFT COMPILERS

CFT 1.15 CFT77v 2.0
EXECUTION EXECUTION
TIME TIME
SUBROUTINE (Seconds) (%) (Seconds) (%)
AONED 0.661 (4.90) 0.448 (3.45)
BISUED 2.856 (21.17) 1.983 (15.25)
DUMPUED 0.201 (1.49) 0.136 (1.04)
SHPUED 4.389 (32.54) 3712 (28.56)
TRCOST 4.440 (32.91) 5.865 (45.13)
UED 0.125 (0.93) 0.084 (0.64)
UETRDIA 0.816 (6.05) 0.770 (5.92)
Total Execution Time 13.489 (100) 12.998 (100)

TABLE 7 EXECUTION TIME SUMMARY FOR THE
MODIFIED DIAGONALIZATION CODE WITH COMPILER
VECTORIZATION

CFT 1.15 CFT77v 2.0
EXECUTION EXECUTION
TIME TIME
SUBROUTINE (Seconds) (%) (Seconds) (%)
AONED 0.423 (6.26) 0.299 (5.18)
BISUED 0.861 (12.74) 0.795 (13.76)
DUMPUED 0.217 (3.21) 0.187 (3.24)
SHPUED 4,326 (63.99) 3.647 (63.11)
UED 0.125 (1.85) 0.084 (1.45)
UETRDIA 0.808 (11.95) 0.766 (13.26)
Total Execution Time 6.759 (100) 5.779 (100)

for the CFT 1.15 compiler and a 33 percent reduction for the
other compiler. This time is cut by about half after the code
is modified, as shown by Table 7, for a total reduction of
about 70 percent, corresponding to a nonvectorized to vec-
torized improvement ratio in excess of 300 percent, for both
compilers. As a reference, the code executed in 126 sec on
the CDC mainframe, so the vectorized code on the CRAY
performed 22 times better than the unmodified code on the
mainframe.

CONCLUDING COMMENTS

The results presented in this paper provide an indication of
the magnitude of the reductions in execution time of network
assignment codes on the CRAY X-MP/24 supercomputer that
can be achieved by the vectorization of the codes, and relative
to mainframe computers. For both the single-class user equi-
librium and the two-class user equilibrium problem with asym-
metric interactions, considerable improvement was achieved
following local vectorization by limited modifications to the
codes: about 80 percent and 70 percent, respectively, over
the unvectorized execution. Our experience confirms the
effectiveness of the recommendations followed to optimize
these two FORTRAN codes, mainly trying to avoid depen-
dencies within the DO LOOPS. Inserting in line the travel
cost functions proved very helpful in both cases. The unmo-
dified codes ran about S times faster on the CRAY X-MP
without compiler vectorization, and between about 7 and 10
times faster with compiler vectorization, than on the CDC
mainframe. However, after the modifications, execution on
the CRAY was about 22 times faster than on the mainframe.

15

Of course, generalization of these conclusions requires addi-
tional experiments on networks with different configurations
and sizes. It is expected that the relative improvement due to
the modifications would depend on the extent to which the
shortest path routine is called in a particular problem.

It is therefore important to realize that off-the-shelf codes
for network analysis originally developed to maximize effi-
ciency on mainframes are not likely to run very efficiently on
supercomputers with vector processing capabilities. The results
given here demonstrate that relatively simple local modifi-
cations can have significant impacts on the vector performance
of such codes. The generally applicable guidelines followed
in our vectorization of these codes are easy to implement and
have been shown to be quite effective.

In this study, no attempt was made to go beyond the local
level of code vectorization. It is quite possible that additional
improvements can be achieved by using more efficient data
structures, or different algorithms, for the overall problem or
any of its parts, specifically conceived or selected for their
potential for efficient vector performance. Interesting chal-
lenges lie ahead along those lines as solution procedures are
revised and devised to take advantage of increasingly available
innovative hardware. For instance, local modifications in the
shortest path routine did not yield significant improvements,
suggesting that additional reduction may require more global
attempts.

Having established the foregoing results, it is important to
ask what their implications might be for research and practice.
Should researchers and practitioners attempt to perform all
assignment runs on supercomputers? The answer is of course
that most everyday applications of traffic assignment models,
especially of the fixed-demand single-class variety, will and
should continue their migration to microcomputers. The capa-
bilities offered by supercomputers mean that one can address
very large-scale problems, and afford greater detail in network
representation and, more important, greater realism in the
underlying assumptions. For instance, problems with multiple
user classes and asymmetric interactions are notoriously de-
manding computationally; supercomputers offer an attractive
computing environment in which to solve such problems and
not be discouraged from performing sensitivity analyses. In
addition, supercomputer capabilitics may lead to break-
throughs in two subjects of current interest to researchers and
of great potential practical significance: dynamic assignment
problems and the network design problem. Both problems
give rise to serious computational hurdles that have consid-
erably slowed progress on their substantive aspects and on
their solution in practical applications.

The network design problem belongs to the category of np-
hard problems. A particular variant of practical interest arises
in connection with the selection of truck-related improve-
ments, described by Mahmassani et al. (4,14), that can be
stated as follows: Given a network with known O-D matrices
for each category of network users and a number of links n,
the problem is to propose various improvements to the links
50 as to improve operating conditions and service levels offered
by the network. If k improvement options are available for
each link, the problem’s combinatorial complexity rises to k".
Because the calculation of the travel costs associated with a
particular combination of improvements requires the appli-
cation of a traffic assignment procedure (to find either a user
equilibrium solution or a system optimum solution), improve-

16

ments in the execution of traffic assignment codes have impor-
tant implications for the size of practical network design prob-
lems that can be solved. The encouraging results obtained in
this study allow some optimism toward vectorizing transpor-
tation network design codes, of which the network equilib-
rium assignment is a component, and attempting their exe-
cution on the CRAY. Furthermore, it would be useful to go
beyond local code vectorization to consider global restruc-
turing of the code to achieve greater levels of computational
efficiency.

ACKNOWLEDGMENTS

Principal funding for the study on which this paper is based
came from a grant from Cray Research Inc. Computing
resources for this work were provided by the University of
Texas System Center for High Performance Computing
(CHPC). The assistance and cooperation of CHPC staff in
the course of this study are appreciated. In particular, the
contribution of Spiros Vellas to the vectorization of the codes
is gratefully acknowledged. The single-class network equilib-
rium assignment code used in this study is a modified version
of a code initially provided by Fred Mannering, presently at
the University of Washington, who modified the program
originally supplied by Stella Dafermos at Brown University.
The authors of course are solely responsible for the content
of this paper.

REFERENCES

1. Y. Sheffi. Urban Transportation Networks. Prentice-Hall, Engle-
wood Cliffs, N.J., 1985.

2. S. C. Dafermos. Relaxation Algorithms for the General Asym-
metric Traffic Equilibrium Problem. Transportation Science, Vol.
16, No. 2, 1982, pp. 231-240.

10.

11.

12.

13.

14.

TRANSPORTATION RESEARCH RECORD 1251

. A. B. Nagurney. Computational Comparison of Algorithms for
General Traffic Equilibrium Problems with Fixed and Elastic
Demands. Transportation Research, Vol. 20B, No. 1, 1986,
pp. 78-84.

. H. S. Mahmassani, K. C. Mouskos, and C. M. Walton. Appli-
cation and Testing of the Diagonalization Algorithm for the Eval-
uation of Truck-Related Highway Improvements. In Transpor-
tation Research Record 1120, TRB, National Research Council,
Washington, D.C., 1987, pp. 24--32.

. H. S. Mahmassani and K. C. Mouskos. Somc Numecrical Results
on the Diagonalization Network Assignment Algorithm with
Asymmetric Interactions Between Cars and Trucks. Transpor-
tation Research, Vol. 22B, 1988, pp. 275-290.

. B. L. Buzbee and D. H. Sharp. Perspectives on Supercomputing.
Science, Vol. 227, 1985, pp. 591-597.

. S. A. Zenios and J. M. Mulvey. Nonlinear Network Programming
on Vector Computers: A Study on the CRAY X-MP. Operations
Research, Vol. 34, No. 5, 1986, pp. 667-682.

. S. S. Chen. Large-Scale and High-Speed Multiprocessor System
for Scientific Applications. High Speed Computation. NATO ASI
Series F, Vol. 7. Springer-Verlag, Berlin, West Germany, 1983.

. CRAY FORTRAN Optimazation and Performance Analysis.

Center for High Performance Computing (UT CHPC) User Ser-

vices, University of Texas at Austin, 1987.

User Guide. Chapter 12: Optimizing Your FORTRAN Code.

San Diego Supercomputer Center, San Diego, Calif., June 1987.

M. J. Beckman, C. B. McGuire, and C. B. Winston. Studies in

the Economics of Transportation. Yale University Press,

New Haven, Conn., 1956.

T. L. Friesz. Transportation Network Equilibrium, Designed

Aggregation: Key Developments and Research Opportunities.

Transportation Research, Vol. 19A, No. 5/6, 1985, pp. 413-427.

H. S. Mahmassani, R. Jayakrishnan, K. C. Mouskos, and

R. Herman. Network Traffic Simulation and Assignment: Super-

computer Applications. Research Report CRAY-SIM-1988-F.

Center for Transportation Research, University of Texas at Aus-

tin, 1988.

H. S. Mahmassani, C. M. Walton, K. Mouskos, J. J. Massimi,

and I. Levinton. A Methodology for the Assessment of Truck

Lane Needs in the Texas Highway Network. Research Report

356-3F. Center for Transportation Research, University of Texas

at Austin, 1985.

TRANSPORTATION RESEARCH RECORD 1251

17

Computational Experience with a
Simultaneous Transportation
Equilibrium Model Under Varying

Parameters

K. NaABIL A. SAFWAT AND MoHAMAD K. HAsAN

Safwat and Magnanti have developed a combined trip generation,
trip distribution, modal split, and traffic assignment model that
can predict demand and performance levels on large-scale trans-
portation networks simultaneously—that is, a simultaneous trans-
portation equilibriom model (STEM). Safwat and Brademeyer
have developed a globally convergent algorithm for predicting
equilibrium on the STEM. The objective of this paper is to inves-
tigate the relative computational efficiency of the algorithm as a
function of demand, performance, and network parameters for
two small, sample networks and one large-scale, real-world net-
work. The algorithm was found indeed to be sensitive to the values
of several variables and constants of the model. Many of the results
were as expected and could be generalized. As the values of demand
parameters increase, the algorithm tends to take more iterations,
on the average, to arrive at a given accuracy level. Beyond max-
imum ‘“practically feasible’’ values, however, the algorithm may
require a considerable computational effort to satisfy a given tight
level of accuracy. Network configuration may have a considerably
greater influence on convergence rate than network size. These
results should further encourage application of the STEM approach
to large-scale urban transportation studies.

Safwat and Magnanti (/) have developed a combined trip
generation, trip distribution, modal split, and traffic assign-
ment model that can predict demand and performance levels
on large-scale transportation networks simultaneously—that
is, a simultaneous transportation equilibrium model (STEM).
The model achieves a practical compromise between behav-
ioral and computational aspects of modeling the equilibrium
problem. It is formulated as an equivalent convex optimiza-
tion problem, yet it is behaviorally richer than other models
that can be cast as equivalent convex programs. Although the
model is not as behaviorally rich as the most general equilib-
rium models, it has computational advantages. It can be solved
with a globally convergent algorithms [see Safwat and Bra-
demeyer (2) for proof of convergence of the logit distribution
of trips (LDT), algorithm under milder assumptions com-
pared with the strict “norm” conditions required for conver-
gence of existing algorithms for general asymmetric models],
that is also computationally efficient for large-scale networks
[see Safwat and Walton (3) for computational experience with
an application of the STEM model to the urban transportation
network of Austin, Texas]. It is not clear, however, how the
computational efficiency of the LDT algorithm would be influ-

Department of Urban & Regional Planning, Texas A&M University,
College Station 77843.

enced by variations in demand, performance, and network
characteristics of the STEM model for different applications.

The objective of this paper is to investigate the relative
computational efficiency of the LDT algorithm as a function
of demand, performance, and network parameters for selected
example networks as well as the large-scale Austin network.
This sensitivity analysis should provide useful guidelines for
future applications of the approach.

In the following section a brief summary of the STEM
model and the LDT algorithm is presented. The next section
includes the sensitivity analysis procedures, results, and inter-
pretations. The final section contains the summary and major
conclusions.

A STEM METHODOLOGY

Following is a brief description of a STEM model and the
LDT algorithm that predicts equilibrium on the STEM model
by solving an equivalent convex program (ECP). For a detailed
description of the methodology, the reader may refer to
work of Safwat and Magnanti (). Proof of convergence of
the LDT algorithm may be found in work by Safwat and
Brademeyer (2).

A STEM Model

In this subsection, a STEM model that describes users’ travel
behavior in response to system’s performance on a transpor-
tation network is presented as follows:

G =aS +E foraliel (1)

S, =max{0,ln >, exp(— 0 U, + A)}
j e Di
foralliel)
T, = Giexp(— 0 U, + A) 2>, exp (— 6 U, + A
k e Dj

for all ij ¢ R 3)

= U,if H, >0 g
C, {2 U,~,~]if H: ~0 forallp e Py allije R “4)
€ = QZA d, CAF,) forallpeP,allijeR &)

18

In this model, the demand variables are

G, = the number of trips generated from origin i,

T, = the number of trips distributed from origin / to des-
tination j,

H, = the number of trips traveling via path p from any

given origin i to any given destination j, and
F, = the number of trips using link a.

The performance variables are

S, = an accessibility variable that measures the expected
maximum utility of travel on the transport system as
perceived from origin i;

U, = the average minimum ‘“‘perceived” cost of travel from
itoj;

C, = the average cost of travel via path p from any given
i to any given j; and

C, = the average cost of travel on link a expressed as a

function of the number of trips (F,) on that link.
The rest of the quantities are

E

. = a composite measure of the effect that the socio-
economic variables, which are exogenous to the trans-
port system, have on trip generation from origin ;
a composite measure of the effect that the socio-
economic variables, which are exogenous to the trans-
portation system, have on trip attraction at destina-
tion J;

a parameter that measures the additional number of
trips that would be generated from any given origin
i if the expected maximum utility of travel, as per-
ceived by travelers at i, increased by unity;

a parameter that measures the sensitivity of the utility
of travel between any given origin-destination pair ij
as a result of changes in the system’s performance
between that given O-D pair;

1
-

and the defined sets are

A

R
Il

@
Il

if link a belongs to path p
otherwise;

I = set of origins,

R = set of destinations,

P, = set of simple paths from i to j, and

D, = set of destinations accessible from origin i.

&

The basic assumptions of this STEM model may be sum-
marized as follows:

1. Trip generation (G)) is given by any general function as
long as it is linearly dependent on the system’s performance
through an accessibility measure () based on the random
utility theory of travel behavior (i.e., the expected maximum
utility of travel).

2. Trip distribution (7)) is given by a logit model where
each measured utility function includes the average minimum
perceived travel cost (U,) as a linear variable.

3. Modal split and trip assignment are simultaneously user
optimized. Notice that the STEM framework allows for the
modal split to be given by a logit model or (together with trip
assignment) to be system optimized [see Safwat (4)].

TRANSPORTATION RESEARCH RECORD 1251
LDT Algorithm

The LDT algorithm belongs essentially to the class of feasible
direction methods. At any given iteration r, the method involves
two main steps. The first step determines a direction for
improvement (d"). The second step determines an optimum
step size (A*) along that direction. The current solution x" is
then updated, that is, x’*! = x” + A* d’, and the process is
repeated until a convergence criterion is met. Feasible direc-
tion algorithms differ mainly in the way feasible directions
are determined and may not always converge to the optimum
solution.

The feasible direction d”, in the LDT algorithm, is deter-
mined as follows:

Step 1. Update link cost by calculating C?, = C,(F?) for
alla e A. Set i = 1 in an ordered set of origin /.
Step 2. Find the shortest path tree from i to all j ¢ D,. Let

”r he the cogt of th hart ;
be the cost of the suorlest path from i to j.

Step 3. Find d" = Y — X" where the vector X" = (5", 77,
Fr) and the vector Y’ = (L7, O, V) are given by

Ly =max{0,In X exp(— 0, U; + A)} foralliel

je Di

Q5= (i + E)exp(—

8,U; + A) D (- 0,Ur + A,) ijeR
keDj

&
|

_{er/ lfp:p*EPij forallng,/,ljSR

0 otherwise,

forallas A

Vi= > 2 8,B

ifeR pe Py

Then the feasible direction at iteration r is the vector d-
with the following components:

d7 = Lt — §¢ foralliel
dy = Q5 — T forall jj ¢ R
.=V, — F’ forallae A

Safwat and Brademeyer (2) proved that the LDT algorithm
is globally convergent under the same mild assumptions as
with the STEM model.

SENSITIVITY ANALYSIS PROCEDURES AND
RESULTS

Several major factors may influence the convergence rate of
the LDT algorithm:

Trip generation parameter (o),
Minimum trip generation (E)),
Trip distribution parameter (0),
Attractiveness measure (A;),
Link performance function (C,),
Network configuration,
Network size,

Convergence criterion, and
Accuracy level.

E RO ke n D

Safwat and Hasan

It is very clear that the combinations of values for these
factors are enormous; hence, we have to be selective and more
focused, particularly when initial experimental results revealed
that the LDT algorithm is indeed sensitive to the selected
values. This required a systematic approach and additional
care in the ‘“‘selection process.”

Two small example networks and one large, real-world net-
work were used in the analysis. The first small example net-
work (Network 1) was obtained from work by Nguyen and
Dupuis (5) and the second (Network 2), from the work of
Nagurney (6); both were proposed for testing algorithms for
the asymmetric traffic assignment problem. Network 1 con-
sists of 19 links, 13 nodes, 4 origin-destination pairs, and 2
origins (see Figure 1); and Network 2 consists of 36 links, 22
nodes, 12 origin-destination pairs, and 4 origins (see Figure
2). Tables 1 and 2 include the “‘observed”” interzonal demand
volumes on Networks 1 and 2, respectively. Note that these

19

networks are, however, different from the “original” ones in
terms of their demand and link performance functions.

The trip generation parameter E, was selected as the
“observed” trip generation. Two values of the attractiveness
measure A; were tested.

1. A, equals the natural logarithm of the observed trip
distribution from i to j (this is a reasonable estimate that is
based on theoretical grounds), and

2. A, equals five times the value in item 1.

Two link performance functions were considered: linear
and the usual BPR (i.e., Bureau of Public Roads) 4th power
function. These are

Cost** 1: C, = ¢,, [1 + b (F,/CAP,)] and
Cost*™ 4: C, = 1, [1 + b (F,/CAP,)"|

FIGURE 1 Network 1.

(0) G1)
© @ =

FIGURE 2 Network 2.

20

TABLE 1 TRIP DISTRIBUTION MATRIX FOR
NETWORK 1

3 4
1 400 800
2 600 200

TABLE 2 TRIP DISTRIBUTION

MATRIX FOR NETWORK 2
5 8 7 8
1 __ 235 230 220
2 240 __ 235 225
3 230 220 235

4 235 225 240

where ¢,, is the free-flow travel time on link a, b is the link
congestion parameter, and CAP, is the practical capacity of
link a. These “parameters” were selected at “reasonable”
values for all links of a given network such that the average
volume-to-capacity ratio on the network at equilibrium is
approximately 0.6 (i.e., f,, = 1 and b = 1.15 for both
networks, and CAP, = 700 for Network 1 and 400 for
Network 2).

The third network (i.e., the large-scale urban transporta-
tion network of Austin, Texas) consists of 7,096 links, 2,137
nodes, 19,213 origin-destination pairs, and 520 origins. The
network was used earlier by Safwat and Walton (3), and no
changes were made in its demand or performance functions.
The average volume-to-capacity ratio on the Austin network
was approximately 0.2; this is quite conceivable because the
network includes existing, committed, and proposed improve-
ments for the year 2000.

The analysis focused on the two major travel demand
parameters a and 9. For the two example networks, possible
values of these two parameters were considered at two dif-
ferent values of the other one. That is, the values of o varied
between 0.001 and 50 while values for 6 were set at 0.05 and
0.12, and the values of 6 varied between 0.01 and 0.9 while
values of o were set at 0.001 and 10. For the Austin network,
the values of a varied between 1 and 50 while the value of 6
was set at 0.05, and the values of 8 ranged between .05 and
0.14 while the value of a was set at 1. The ranges of values
were selected to capture “significant” variability in the com-
putational efficiency of the algorithm, as reflected by the num-
ber of iterations required to arrive at a prescribed accuracy
level based on a given convergence criterion. In some cases,
however, there were “practically maximum” values of the
parameters beyond which the algorithm could not arrive at
the prescribed accuracy level (which was selected to be tight)
in thousands of iterations.

TRANSPORTATION RESEARCH RECORD 1251

Two convergence criteria and two accuracy levels were
included in the analysis. Notice that at any iteration in the
LDT algorithm the following equation holds true for all jj €
R [see Safwat and Magnanti (1)]:

s Grexp(—0U; + A))exp(0Cy)
- 2 (-8UL+A4)

ke Di

where

C;=18{[S; - In(aS;+ E)
+InT; - A] + U forallije R

It is obvious that at equilibrium 6 C7 = 0 for all ij € R;
hence, two convergence criteria may be specified as follows:

1. Stop whenever — &, <8 C; < + ¢, foralljj e R or
2. Stop whenever TERMS = VD, (8 C;)* < g,

where ¢, €, > 0 are small accuracy levels (selected at 0.05
and 0.1 in our analysis) and TERMS is the Total Equilibrium
Root Mean Squares error.

The convergence rate of the LDT algorithm was measured
in terms of the number of iterations required to achieve a
given level of accuracy. This is a proxy measure for the CPU
time as it was more or less constant for each iteration. In
particular, for the example networks, the CPU time for input
and initial solution was 0.09 sec and, per iteration, 0.01 sec
on a VAX 8650 minicomputer that was used for analysis. For
the Austin network the CPU times were about 190 and 170,
respectively.

Because the emphasis in analysis is on the demand param-
eters a and 0, values of other factors were selected on the
basis of their respective influence on the effect of changes in
these two parameters on the convergence rate of the algo-
rithm. For instance, to select the appropriate value for the
attractiveness measure A, Figure 3 shows the effect of 6 on
the number of iterations to arrive at a prespecified accuracy
level (which was selected at ¢, = 0.05 as determined by the
sensitivity analysis procedure itself, as is explained later) for
the two different values of the attractiveness measure A, already

3000
| ATR=LOG(TD)

25004 -~ ATR=5sLOG(TD)
2000 - s
1500 i

1000 - ’

’ — -
500 / e \ /

o T T T T T T T T
01 02 03 04 05 06 07 0.8

THETA

FIGURE 3 Effect of theta on convergence rate (Network 1,
Cost** 4, alpha = 0.001, epsilon = 0.05).

NO. OF ITERATIONS
\\

Safwat and Hasan

indicated. In Figure 3, the parameter o was set at a small
value of 0.001 to reduce its influence on results to a minimum;
the usual BPR 4th power link cost function (Cost** 4) was
selected because it is more realistic than the linear cost func-
tion (Cost** 1); and Network 1 was used because its config-
uration was found to have more influence on the results than
Network 2 (see Figure 4).

The graphs in Figure 3 show very clearly that using five
times the value of a “reasonable estimate” for A; caused the
number of iterations to increase considerably for all values of
6; the increase becomes more significant as § increases. On
the basis of these results, the attractiveness measure for the
remainder of the analysis was set at its more “reasonable”
value—that is

A; = In (“observed” trips from i to j)

To select a convergence criterion, Figure 5 shows the sen-
sitivity of results with respect to the two proposed criteria.
As expected, the second criterion (i.e., TERMS) was always
met before the first, “stricter” one, and the patterns of con-
vergence are similar. This is so because &, = 0.1 implies
achieving an average value of &; = 0.05, whereas the first
criterion allows a maximum value of 0.05 on each individual

3000

—— NETWORK 1
25004 —--- NETWORK 2

N
(o]
[@]
o
'

1500+

1000 4

NO. OF ITERATIONS

500

0 T F=—""1 1

T L i
o ol 0.’5 Q.b‘ Q.‘o 0.6 0.1 0?2 o2 A0 MWD
THETA

FIGURE 4 Effect of theta on convergence rate (Cost** 4,
alpha = 0.001, epsilon = 0.05).

3000
—— EPSILON=.05

25004 " - TERMS=1 /

N
Q
(@]
o
1

1500+)

10004

NO. OF ITERATIONS

500

- L
0.1 02 03

T
0.4 05 0.6 07 08
THETA

FIGURE 5 Effect of theta on convergence rate for epsilon =
0.05 and TERMS = 0.1 (Network 1, Cost** 4, alpha = 0.001).

21

link. The first criterion was used in the remainder of the
analysis to achieve more accurate results. As for the accuracy
level, Figure 6 shows the results for two different values of
g, (i.e., 0.05 and 0.1). Again the results were as expected in
terms of the magnitudes and shapes of the two curves in the
figure. The value of 0.05 was used throughout the analysis to
obtain more accurate results.

The effect of network configuration and size. is shown in
Figure 4 for the two example networks. Surprisingly, the
“larger” Network 2 always converged considerably more quickly
regardless of the change in the parameter 6, whereas the
“smaller”” Network 1 revealed relatively slower convergence
rates, particularly at higher values of 6. It seems that Network
2 has a significantly “simpler” configuration than Network 1
in terms of layout, traffic circulation, and travel demand data
(see Figures 1 and 2). These results indicate that network
configuration may be a significant factor that could override
the effect of network size.

The convergence rates of the algorithm with respect to
changes in 6 are shown in Figures 7, 8, 9, and 10. For the
example networks, Figures 7 and 8 show that regardless of
the value of o and network configuration, the number of
iterations would on the average increase as 6 increases, as
would be expected, because larger values of 6 imply higher

3000
—— EPSILON=.05

2500_ i EPS|LON=1

N
o
o
o
1

1500 S

1000 /

NO. OF ITERATIONS

500 A '

- - -

0 T —m—— T T T T T
0.1 0.2 03 04 05 06 07 08

THETA

FIGURE 6 Effect of theta on convergence rate for epsilon =
0.05 and epsilon = 0.1 (Network 1, Cost** 4, alpha = 0.001).

3000
—— ALPHA=.001

25004 -~ ALPHA=10

N
[=}
(=]
o
1

/

1500+ /

/

1000 -

500- e oY _;7/

o _174 T T B .. L} T T

01 02 03 04 05 06 07 08
THETA

FIGURE 7 Effect of theta on convergence rate (Network 1,
Cost** 4, epsilon = 0.05).

NO. OF ITERATIONS

22

S0

—— ALPHA=.001

-~ ALPHA=10

NO. OF ITERATIONS

0-—

THETA

T L T i] L] T
0.1 02 03 04 05 06 07 038

FIGURE 8 Effect of theta on convergence rate (Network 2,

Cost** 4, epsilon = 0.05).

3000

—— COST##4
2500~~~ COST#»1

2000

15004

1000+

NO. OF ITERATIONS

500

//

S

T T T i I ! T
01 02 03 04 05 06 07 038

THETA

FIGURE 9 Effect of theta on convergence rate (Network 1,

alpha = 0.001, epsilon = 0.05).

275

25.04
—— ALPHA= 1.0
22,54
20.04
17.54

15.04

NO. OF ITERATIONS

12.54

]

10.0 T T
© q
SN

1 T T
o® @ A0

M) 92
THETA

Q

.’\‘\

J
oo O

T
) S
5% X

FIGURE 10 Effect of theta on convergence rate (Austin

network, epsilon = 0.05).

TRANSPORTATION RESEARCH RECORD 1251

sensitivity of travel demands to changes in the system’s per-
formance. The rate of increase, however, may depend on
network configuration and, more important, the shape of the
link performance function; as the cost function becomes steeper,
Figure 9 shows that, again as expected, the rate of conver-
gence becomes nonlinearly slower.

Figure 10 shows that for the Austin network the results are
monotonic and confirm the same trend. The relatively [aster
convergence on the Austin network may be due to the fact
that it is far less congested than the two example networks.
Also, network configuration may have been a significant fac-
tor that superseded the effect of network size, which does not
seem to be a significant factor.

The results for the effect of the demand parameter a on
convergence rate are shown in Figures 11 through 14. Figure
11 shows the effect of a for two different values of 6 (0.05
and 0.12). It is very clear that the decrease in the value for
0 has dampened the effect of a on convergence rate. This
behavior is in conformity with our intuition. A similar trend
was observed for different cost functions (see Figure 12) and
network configuration (see Figures 13 and 14). In Figure 12,
then BPR 4th power function adversely influenced the rate
of convergence nonlinearly, whereas the linear cost function

700
—— THETA=.12
6004---- THETA=.05
500
400 -
300+

200

NO. OF ITERATIONS

1004

0

ALPHA

FIGURE I1 Effect of alpha on convergence rate (Network 1,
Cost** 4, epsilon = 0.05).

250
—— COST#*4
~==- COST#**1
2 200+
2 /
< 1504 /
[+ 4
= 74
= S
’d
8 1004 /
o
Zz 50+ /
[EE=2 . o e e g S
0 v : - 2 J
10 20 30 40 50

ALPHA

FIGURE 12 Eftect of alpha on convergence rate (Network 1,
theta = 0.05, epsilon = 0.05).

Safwat and Hasan

250
—— NETWORK 1
---- NETWORK 2
(7] 200‘
z
Qe
<
< 150-
W -
=
& 100+
=]
Z 504 .
s G P L T b
_-—;':-:--—")W“"
0 T T T T T
10 20 30 40 50

ALPHA

FIGURE 13 Effect of alpha on convergence rate (Cost** 4,
theta = 0.05, epsilon = 0.05).

16
—— THETA=0.05

154 S
wn
5 /
O g
'_
i /\
= 13- / \
Lo
S 154 / \\ P
S -
2 / N
11-
10 T T T T
10 20 30 40 50
ALPHA

FIGURE 14 Effect of alpha on convergence rate (Austin
network, epsilon = 0.05).

had virtually no effect. Figure 13, consistent with Figure 4,
shows that configuration of Network 2 appears to be “sim-
pler” than that of Network 1. The results of the Austin net-
work shown in Figure 14 are also consistent with those of the
example networks.

SUMMARY AND CONCLUSIONS

The objective of this paper was to investigate the computa-
tional efficiency of the LDT algorithm for predicting equilib-
rium on a simultaneous transportation equilibrium model
(STEM) as influenced by several demand and performance
parameters of the STEM model as well as network charac-
teristics. The sensitivity analysis considered several major fac-
tors, including demand parameters (a, 6, E; and A;), per-
formance functions (linear and 4th power), convergence
criterion, accuracy level, and network configuration and size.
The focus, however, was on the two major demand param-
eters «, 0.

The main conclusions of this paper may be summarized as
follows:

23

1. The effect of each of the two major parameters o, 6 on
convergence rate was found to be, as expected, sensitive to
the values of the other one in addition to the values of other
major variables and constants of the STEM model and the
network configuration and size.

2. In general, as the value of the parameter increases, the
number of iterations to arrive at a prespecified accuracy level
will tend to increase as expected. The effect of 8 seems to be
more significant than that of a. The combined effect of both
parameters is considerably greater than that of the individual
parameters separately.

3. There are maximum “practically feasible” values of o,
6 beyond which the algorithm may take a considerable com-
putational effort to satisfy a given tight level of accuracy.
These maximum values may differ from one application to
another. The possible reason for the existence of such prac-
tically “upper bounds” on the values of parameters may be
related to the flatness of the objective function of the equiv-
alent convex program that is being solved by the LDT algo-
rithm, particularly when the network is less congested.

4. Network configuration may have considerable effects on
the convergence rate whereas network size may not.

These results, especially those of the Austin network, fur-
ther encourage the application of the STEM approach to real-
world urban transportation studies. Actual calibration of
demand and performance parameters will certainly provide
additional insights into the practicality of the proposed method.

ACKNOWLEDGMENTS

The authors would like to express their deep appreciation to
Hani Mahmassani, Chairman of TRB Committee on Trans-
portation Supply Analysis, and three anonymous referees for
their invaluable comments on an earlier version of this paper.

This work is supported by a research grant from the National
Science Foundation.

REFERENCES

1. K. N. A. Safwat and T. L. Magnanti. A Combined Trip Gener-
ation, Trip Distribution, Modal Split and Traffic Assignment Model.
Transportation Science, Vol. 22, No. 1, Feb. 1988, pp. 14-30.

2. K. N. A. Safwat and B. Brademeyer. Proof of Global Convergence
of an Efficient Algorithm for Predicting Trip Generation, Trip
Distribution, Modal Split and Traffic Assignment Simultancously
on Large-scale Networks. International Journal of Computer
and Mathematics with Applications, Vol. 16, No. 4, 1988, pp.
269-2717.

3. K. N. A. Safwat and C. M. Walton. Computational Experience
with an Application of a Simultaneous Transportation Equilibrium
Model to Urban Travel in Austin, Texas. Transportation Research
B, Vol. 22B, No. 6, Dec. 1988, pp. 457-467.

4. K. N. A. Safwat. A Simultaneous Transportation Equilibrium
Model: A Unified Consistent Methodology for Transportation
Planning. Ph.D. dissertation. Department of Civil Engineering,
Massachusetts Institute of Technology, Cambridge, 1982.

5. S. Nguyen and C. Dupuis. An Efficient Method for Computing
Traffic Equilibria in Networks with Asymmetric Transportation
Costs. Transportation Science, Vol. 18, No. 2, 1984, pp. 185-202.

6. A. Nagurney. Comparative Tests of Multimodal Traffic Equilib-
rium Methods. Transportation Research B, Vol. 18B, 1984, pp.
469-485.

24

TRANSPORTATION RESEARCH RECORD 1251

Transportation-Network Design
Problem: Application of a Hierarchical

Search Algorithm

Yuro CHAN, T. STEVEN SHEN, AND NI1zAR M. MAHABA

Two variants of a network design problem are solved by appli-
cation of the tree search method. The first formulation aims to
reduce a specified vehicle-minutes of traffic congestion at the least
possible budget expenditure, and the second minimizes traffic
congestion for a given budget. Both involve system-optimizing traffic
assignment models with multipath flows. The solution method con-
sists of network abstraction, tree search, and network disaggre-
gation—collectively referred to as the ‘‘hierarchical search algo-
rithm.”’ It is shown that such an algorithm reduces the search
space by reducing the number of nodes and links and providing
a tighter bound during the tree search. It also groups detailed
links according to the function they perform—whether it be access/
egress, line-haul, bypass, or internal circulation. However, the
algorithm yields only a suboptimal solution, the quality of which
is measured by an error function. The metropolitan network of
Taipei, Taiwan, Republic of China, is used as a case study to verify
some of the algorithmic properties, confirming its role in real-
world applications. Finally, the performance of the algorithm,
which is based on network abstraction, is favorably compared with
a network-extraction network-design model.

Theoretical advances in the last two decades have significantly
improved our understanding of network traffic flow. Numer-
ous equilibration models have been put forth under both
system-optimizing and user-optimizing assumptions. In spite
of advances in computational hardware and software, how-
ever, the network-design problem is an NP-hard problem that
defies efficient solution techniques (). This is a particularly
acute problem in practice, where the size of networks can
easily go into hundreds of nodes and links (as in our case
study later). No practical solution algorithms exist today to
tackle such problems satisfactorily. Difficulties still arise, for
example, in solving the network design problem exactly, because
it is computationally demanding to solve a user-optimized flow
pattern at each step of a system-optimizing search process in
the presence of Braess’s paradox.

There have been several attempts to address this NP-hard
problem by reducing the size of the network, which tends to
cut the computational requirement exponentially. For exam-
ple, network extraction techniques have been practiced for a
long, long time to cut down the size of a network design
problem. The approach calls for removing “insignificant™ nodes
and links from a network, leaving only the “‘important” topo-
logical features (2,3). However, in spite of carefully designed
controlled experiments conducted during the past 20 years

Y. Chan, Department of Operational Sciences, School of Engineering
(ENS), Air Force Institute of Technology, Wright-Patterson, Ohio
45433-6583. T. S. Shen, Rarton-Aschman Associates, 1133 15th Street,
N.W., Washington, D.C. 20005. N. M. Mahaba, 25 Hamadan Street,
Giza, Egypt.

(2,4), such procedures are still heuristic in nature, often resulting
in unpredictable accuracies.

In lieu of extraction, network abstraction has been exam-
ined as an alternative to cut down on dimensionality (5,6).
In this approach, nodes and links are aggregated together to
reduce network size. Partial success has been reported in
placing error bounds on a limited class of transportation prob-
lems, typically variants of the classical Hitchcock transpor-
tation/assignment model (7,8).

Continuous equilibrium network design formulations have
also been proposed. Instead of discrete node-arc represen-
tation, improvement variables are continuous (9). Some com-
putational gains have been reported, even for user-
optimizing traffic assignments.

The preceding aggregation efforts, although improving our
ability to solve larger problems, are not quite enough—as
pointed out already (/0). Recent attempts have been made
to obtain approximate solutions to both discrete and contin-
uous network design problems. Wong (Z), for example, revis-
ited Scott’s seminal work on discrete network design heuristics
and placed worst-case analyses on the computational proce-
dure. Suwansirikul et al. (I7), on the other hand, suggested
a heuristic for finding an approximate solution to the contin-
uous user-optimizing network design model.

To summarize, much work remains to be done in the classic
problem of network design. An obvious void is in the abstrac-
tion of a realistic transportation network (instead of the Hitch-
cock assignment problem) and in the placement of error bounds
on the corresponding network design problem as we disag-
gregate back to the original problem.

Here a network design problem is formulated as a hierar-
chical mathematical program. The original network is abstracted
into an aggregate network, thus reducing the number of nodes
and links in the process (5,12). A tree search is then per-
formed in the aggregate network, which serves as a proxy for
the detailed network (3,13). The resulting network invest-
ment strategy is then disaggregated back to the original, detailed
network for implementation (I4), with a statement on the
quality of the approximate solution.

PROBLEM FORMULATION
We state here the first of two network design problems, in
which a lowest budget expenditure objective function is for-

mulated as follows:

Minimize B = 2, b,y, = b7y (1)

Chan et al.

where b, is the budget expenditure for the rth project (per-
formed on link i,j) and

_) 1if project ¢ is implemented @)
Yt =10 otherwise

Congestion cannot be allowed to exceed a certain level E,:
E(y) = E, €)

where E(y), in vehicle-minutes, is the result of a system-

optimizing traffic assignment. Thus the model is more suited

for system-control applications than for evaluation purposes,

and y,’s are best interpreted as traffic control strategies to

effect an overall improvement of arecawide traffic congestion.
By way of definition

E(y) = min % ; EZRM (fiCey) — Af(c)yylxd 4)

is the total congestion after link improvements with the node-
arc incidence matrix:

— iftp =k
Ex{;,’— zx’;]’= {v"’ ifp =1 (5)
! / 0 otherwise

and the link-flow ““bundling” equation

x; = 2 x (6)
i

where

RH = the set of links en route from origin k to destination

b
f; = a convex travel cost function of nonnegative link

flow x,, constrained by a limiting capacity ¢;;

Af,; = the improvement in link ij consisting of either travel
cost reduction or capacity expansion or both;

x4 = nonnegative integer, standing for the flow from ori-
gin k to destination / in link (i,j);

y; = the same as y, where ¢ is specified for link j; and

v¥ = the origin-destination demand.

Although an alternate formulation will be offered in sequel,
recapitulated below are the basic assumptions in our network
design models throughout this paper:

1. Travel demand is fixed for each origin-destination
(O-D) pair and
2. System-optimizing equilibration procedure is employed.

Through network abstraction (5,15-17), we wish to sim-
plify the preceding optimization by reducing the number of
links and nodes. One collapses v into VXL through zonal
aggregation where

S =y)
ke K
le L

In other words, adjacent zones k are grouped into aggregate
zone K and likewise / into L. Finally, the links (i,j)s are

25

aggregated into composite links (/,J)’s with the corresponding
travel times, F,,, at flow volumes x; and X, respectively:

fij (xij) — FIJ (Xy) V(L)) (8)

We can now rewrite the preceding network design for-
mulation (Expressions 1 through 8) by replacing every symbol
with a capitalized, underlined letter, or Greek letter, con-
verting it from the detailed space to the aggregate space:

Objective function: B — Bwith b, — B,)

System travel cost function: E(y) — E (Y) (10)

Traffic flow: x—X (11)

The tree search is now carried out in the abstracted network
instead of the detailed one, resulting in an optimal solution
consisting of link improvements {AF,}, rather than {Af}.
Finally, a disaggregation method has to be employed to con-
vert each of these link improvements back to the detailed
network:
AR, — {Af) YU (12)

The state of the art in network aggregation, particularly in
the context of network design, is still quite rudimentary, as
alluded to earlier. In the words of Zipkin (7):

[E]ven with computational experience and good software, we
do not envision universally appropriate procedures for aggre-
gation. Rather, modellers will have to combine . . . techniques
and judgement to suit the problem at hand.

Below, we show a network abstraction procedure that satisfies
our specifications outlined by Equations 7 through 12 for a
typical transportation network design problem.

NETWORK AGGREGATION ALGORITHM

As mentioned, a network abstraction procedure typically starts
with zonal aggregation. In transportation analysis, the group-
ing of contiguous nodes k and / together is more often than
not decided exogenously, mainly by political, geographical,
and other considerations. This is distinctly different from sci-
entifically motivated “error-bound” procedures that require
that “topologically similar”’ nodes be aggregated together (7) —
a process that may require “regrouping” a posteriori for the
express purpose of tightening error bounds.

Although zonal aggregation can be accomplished quite readily
here via Equation 7, link aggregation needs some explanation.
According to Chan (5,15,16), link aggregation can be per-
formed in three phases after an initial traffic assignment is
made in the detailed network.

Phase 1. Categorization

The links aligned along the minimum paths between each
detailed O-D pair, R,,, are categorized first according to
groupings, as illustrated in Figure 1. We identify two general
classes of flow paths: (a) interzonal flow paths, such as that
from node 2 to 7, which goes through aggregate zones I, II,

26

and III, and (b) intrazonal flow paths, such as that from
node 2 to 3 where the entire path is contained in aggregate
zone [.

The categorization of links in a path is then broken down
into aggregate link classifications according to where the flow
path is coming from and where it is leading. For example, in
Figure 1, the flow path 2—7 is broken down in the following

FIGURE 1 Example network.

TABLE 1 LINK AGGREGATION

TRANSPORTATION RESEARCH RECORD 1251

manner: The first category contains detailed links that carry
the egress flow from aggregate zone I to II, which we denote
as E'M, Referring to Figure 1 again, it is found that links (2,1)
and (1,3) are the detailed egress links that fall into this cat-
egory. As a result, the set E' I contains (2,1) and (1,3) as
elements. The second category contains detailed links that
carry the line-haul traffic from aggregate zone I to zone II:
L', Tt corresponds to detailed link (3,5). Similarly, the bypass
link from I to IIT—!B™—contains (5,4). The line-haul link
LT contains (4,7), and, finally, the access link A" '™is made
up of node 7 only. The reader may notice that each column
in the summary Table 1 corresponds to an aggregate link
F¥, each identified by IJ and aggregate link type a such as
line-haul, access, and so on. In the case of a bypass link, an
additional superscript specifies the zone in which the line-haul
traffic passes through, XFV.

In the entries of Table 1, the links on each path from origin
k to destination / are partitioned into groups |a,| according
to whether they serve a line-haul, access/egress, or intraflow
function:

lax] < {(L1)}e 13)

As suggested earlier, an intraflow is the traffic that originates
and terminates within an aggregate zone. An example can be
found in aggregate zone II between nodes 4 and 6. Unlike
interzonal flows, aggregate links that carry intraflows in zone
I are simply identified by F,.

s TII AT IT _ FPaT Tir
Y]. AL =2 Yz. A 4 Y3. A B 1
b,=2 b,=2.5 by=1
- (LI LI R II0 QIDID ILI I 11 I Al 111
v2 4y £ 46 #13 §, =18 £ 50
2 1*f1 3 35 5 4
2 6. 3 :
v2 651 fp 1+ 4713 £ o7
v2 721 £, #4213 f, =18 fo =9 f, =15 £.,=0
2 1*f1 3 3.5 5 4 47 7
v2 8. £, 4f, 13 F, =18 £ =8 £ =if f, . #F =10
2 1*f1 3 35 54 47 79 *fo 3
68) . i
Vo 84 =8 fy 715 £, g+ =10
itk wines BE0 BLILgs 1 Mgy BT 1L QDI TIRT ILg 11 Dl 211 Mg nre
I i
46 _]
v4 6 By =0 Fy o8
V6 4:1 f f, =0

Link times III=1 1/:2 'iu=1 1/2

Chan et al,

Phase 2. Summation

In this phase, the travel times of a serial string of links belong-
ing to the same aggregate link grouping |a,| are summed.
Referencing Figure 1 again as an example, in the E'" grouping
and for flows between 2 and 7, we find links (2,1) and (1,3)
with travel times f, , = 8 and f, ; = 5, respectively. The
summation phase calls for the addition of these two elements,
producing the aggregate link time F§, = 13, which is tabulated
in Table 1. In general, detailed link times f;; in the chain from
detailed zone k to zone / are summed to become F4;:

foy = 2 f; (14)

Phase 3. Weighting

Up to the last step of our aggregation procedure, we have in
general several aggregate-time quantities F4, under each
aggregate link F¥ (or F¥), as illustrated in Table 1. Our final
objective, as the reader may expect, is to derive a single link
time for each aggregate link F¥. This is accomplished by com-
puting the weighted average (or convex combination) of chains
in parallel, where the detailed O-D flows are used as weights
(normalized by the total flow volume on the aggregate link).
The weighted average becomes the required link travel time
E.
Take the example of the F¢’s under A" ™ in Table 1. There
is one trip on F4 ,, one trip on F4 4, and one trip on F¢ g,
resulting in a total of three trips on the aggregate link A" .
Weighting F3 ,, Fa , and F2 gequally by ', ¥4, and %, respec-
tively, we obtain 6%, which is the link time for A M.
In general,

wi = 7 (15)

and |a| = the set of O-Ds that use aggregate link F¥ (or
KF;J)‘

Finally, the portion of internal circulation mixed with line-
haul traffic in an aggregate zone is to be assigned uniformly
to all the access/egress and bypass links of the zone concerned.
We denote this type of internal links I, where the subscript
K denotes the aggregate zone in which the link can be found.
The portion of internal circulation flowing on exclusive right-
of-way (ROW) links, on the other hand, should be modeled
as a separate intra-ROW link. We denote this type of internal
links ig. For example, shown in Table 1 is one internal trip
from 4 to 6, using link (4, 6) in i;;. Likewise, the other internal
trip from 6 to 4 uses link (6, 4) in [;;. The link aggregation
procedure described above yields I;; = 1% and i; = 1%. For
clarity, readers may wish to consult Figure 1 as they go through
Table 1.

Aside from computational advantages, the aggregation pro-
cedure presented here has obvious functional advantages. The
categorization of the detailed links in each aggregate zone

27

into line-haul, access/egress, bypass, and internal circulation
groups facilitates transportation analysis, as we can now con-
veniently refer to a generic class of detailed links by the par-
ticular function they perform (15). Thus a transportation plan-
ner can specify his/her improvement strategy in terms of the
function performed by each aggregate link. For example, if
egress from zone I to zone Il is to be improved, E'" is specified
as a candidate project.

While the example illustrates only single-path assignments,
it is clear that the multipath assignment case represents a
simple extension. Instead of weights w¢, defined for each
O-D entry v¥, it is now generalized to w{, (q), representing
the O-D flows v¥(g) ““fanning out” into the gth path. Thus
the example can be carried forward without loss of generality
18).

AGGREGATE TREE SEARCH

Once a network is abstracted, the hierarchical search algo-
rithm finds the optimal network design through a tree search
procedure. A branch-and-bound algorithm will be used to
search for the best link improvements to the abstracted net-
work. To fix ideas, the algorithm here follows the classic tree
search logic for binary variables, using the simple logic of
“branching from the minimal lower bound.” Other variants
of the tree search—such as branch-and-backtrack—can be
built upon the basic concepts here (19) and will be illustrated
in sequel.

Bounding Rule

Every time a branch is made on the search tree, we evaluate
the vehicle-minutes of travel resulting from improving a link
or several links corresponding to the odd numbered node to
the left and even numbered node to the right, respectively
(see Figure 2). At each of these nodes one can write the
following inequality (or bounds) for system-optimizing traffic
assignments that are supposed to be performed:

Ee < Er < E° (16)

where

E° = vehicle-minutes of travel congestion before link
shortening;

E" = “arithmetic update” on travel congestion assuming
flows do not shift paths after link improvement (hence
only those that used the link benefit from travel-time
reduction); and

E* = travel congestion if there is a shift of flow paths.

If we use the same set of symbols, but underline them to
denote the corresponding bounds in the aggregate search tree,
we can write:

E° < B < E-. 17)

Now we will trace out the relationship between the E’s in
the aggregate network and the E’s in the detailed network.
Given that each aggregate network is derived on the basis of
a fixed group of detailed links and some outdated detailed

28

Inactive

Inactive

Inactive

FIGURE 2 Aggregate branch-and-bound tree.

flow pattern further up the tree, one can show that at a par-
ticular node of the tree search (proof of this set of inequalities
is shown in the Appendix):
E" = FE* and (18)
E = E" (19)
where = reads “is likely to be greater than or equal to.”

Combining inequalities 16 through 19, the complete bounding
relation can be written as

Eo:Eu>En>Ec2En>Ec (20)
Hence
E=E (1)

which says that, compared with the detailed assignment made
at each node i of the aggregate tree, the aggregate system-
optimizing travel congestion for the same node cannot be
better. In other words, E is the upper bound for E.
Applying this bound to extend the “‘feasibility exclusion
rule” of tree search, one can gain some efficiency at the bounded
nodes by observing that as long as E" is less than or equal to
the maximally tolerable congestion E,, we do not need to
perform any traffic reassignment or “calibrate” the aggregate
network against the detailed one. (Calibration is defined as
performing a traffic assignment on the current detailed net-
work and performing the network abstraction procedure again.
More is said about calibration in the following section.) On

TRANSPORTATION RESEARCH RECORD 1251

Tt
OPTIMUM, S=1 neEblEs

S=7.15%

the other hand, if E” > E, at node i, we examine the aggregate
network and carry out postoptimality procedures to obtain
E¢. Either of the following cases may happen at a node i:

>

E=EZEL

1. If >, we calibrate by doing a detailed traffic assignment
to obtain E,.
2. If =, we keep on branching from this bounded node i.

Exclusion takes place only when the detailed reassignment
indicates that E, > E,,.

The exclusion criterion just described would guarantee a
comprehensive search space in our aggregate tree search pro-
cedure, because we do not prune our tree by exclusion pre-
maturely. A bounded node is excluded only if the detailed
assignment indicates that no feasible solution can be obtained
no matter what values the “free” variables pick up.

Equivalence Between Search in the Aggregate and
Disaggregate Networks

The problem of disaggregation arises when one wants to trans-
late network improvements in the aggregate network back to
the detailed. Ideally speaking, one wishes to have the same
network design as a detailed analysis, even though the analysis
was actually performed in the aggregate search tree.

If, in the process of investigating congestion reduction in
the aggregate search tree, we decided on shortening the travel

Chan et al.

time on link F¥ by AF,, it gets translated to a corresponding
set of detailed links {Af},:

AFa — {&f;}, (22)

To evaluate Af,s, we examine {F4}, the set of parallel chains
defined in Equations 13 and 14. Because of our convex-
combination definitions in aggregation, the amount of link
shortening in each of the chain F¢, is the same:

AFs, = AF, (23)

A series of link times [f,], may be contained in Fg,, according
to Equation 14. This set of linear algebraic equations is there-
fore to be solved to obtain Afj:

Z Afij = AFZ/

if & lagl

Ya, Ykl (24)

It should be pointed out that the solutions of this set of
equations are by no means unique. More often than not, they
are indeterminate. Mathematical techniques alone are not
able to resolve this problem satisfactorily. But irrespective of
the arbitrary judgments made in solving Equation 24, the
aggregate results of investment decisions are similar, as is
shown below.

An essential part of making investment decisions in the
aggregate space is to establish the equivalency between the
aggregate and detailed networks. In other words, we wish to
show the invariance properties both in the static networks and
as we perform the search dynamically.

If the shortest paths do not shift, it can be shown that the
total vehicle minutes of travel are conserved:

V"’FZ,
2V.E =2V, kl—elﬂv— via Equation 15
= 2 E Yald kt
a kiela
=> » ¥ ¥ E via Equation 14
a kiela| ij € lagl
- Vel f,

a Kkielal i & lagl

=§;¢U (25)

A similar invariance relationship is maintained in project
disaggregation. The equivalence of congestion reduction can
be written as

VAE, = > wAE,

ki € |a|

2 vi AFy,

ki € |a|

E 1 2 Af;

ki e fa| ij e lagl

D Vi Af, (26)

e lal ij & Tagd

via Equation 13

Although the discussions have been concentrating on dis-
aggregation, the same invariance relationship can be devel-
oped for aggregation. Instead of specifying an aggregate link

29

for improvement one can specify a set of detailed links, which
are collapsed into the aggregate space prior to tree search.
While one can guarantee E° = E° by prohibiting path changes
in the aggregate network, the invariance properties described
above may not be guaranteed as one performs the tree search,
which by its very nature causes path shifts. If too many path
shifts occur, the weights used in network aggregation change
according to Equation 15. This means that the original aggre-
gate network may no longer be an accurate representation of
the detailed. Under these circumstances, a calibration of the
aggregate network is required, where a detailed traffic assign-
ment is performed upon which a new abstract network is built.
The following heuristics should serve as guidelines for
deciding when to calibrate at a node of the aggregate tree:

1. Using the project disaggregation rule, one can define
the set of detailed links to be shortened and the amount for
each aggregate investment project AF,,. Inspect (rather than
actually compute) the routing matrices of the detailed network
to estimate the number of detailed links that would cause flow
shift; call this number e. (The postoptimality procedure of
Murchland (20), for example, allows for a quick inspection
of whether the shortening of a link introduces any flow shift.)
If the flow shift is “‘significant,” calibrate; otherwise, proceed
with reassignment in the aggregate network.

2. Record the number of odd-numbered nodes in the aggre-
gate tree that have been generated without calibration. This
number, b, together with an estimate of the average number
of detailed links that could cause path shifts at each odd-
numbered node, e, gives a measure of the inaccuracy. If the
inaccuracy exceeds a tolerance limit, calibrate; otherwise,
proceed.

3. If the aggregate reassignment indicates a shift of flow
but the detailed indicates otherwise, record the number of
aggregate O-D flow path shifts, d. Together with b and e, d
constitutes a measure of the inaccuracy of the aggregate tree
search. Again, if the inaccuracy exceeds the tolerance limit,
calibrate; otherwise, proceed.

To sum up the preceding three guidelines, we can define
an error function at each node k of the aggregate tree as

s, = be +d 27

The quality of a solution can be measured by the cumulative
inaccuracies from the root node of the tree. The inaccuracy
introduced by skipping calibration at a few odd-numbered
nodes where detailed flows have been rerouted cannot be
nullified by a calibration performed at the end of these “skips.”
We have to measure the inaccuracy of the solution by sum-
ming all the error functions at all calibration points skipped
along the path, from the “root” of the tree to the solution at
odd-numbered node K, where the quality of the solution, S,
is to be measured.

8= 3 & (28)

k e (1=K)

One can normalize S by the total number of detailed links
\ and the number of nonzero entries in the aggregate O-D
matrix, P:

S

s =
N+ P

29)

30

Such a percentage gives a rough estimate on the fraction of
the total links and O-D pairs that have been affected by the
path changes.

Following the same line of argument, the budget expend-
iture defined for an aggregate project changes as calibration
takes place. The reason for this change is that the set of
detailed links contained within the aggregate link changes
over time as a consequence of path changes. Aggregate proj-
ect costs, therefore, have to be redetermined at each calibra-
tion procedure by summing the costs of the current set of
corresponding detailed projects. The point to be noted, how-
ever, is that this cost redefinition does not interfere with
the additivity (hence, the monotonicity) of the budget
function B,.

Unfortunately, one cannot guarantee optimality in the
aggregate search procedure-—as the reader may have con-
cluded already. Depending on how often we calibrate (i.e.,
regrouping the detailed links to a different aggregate link),
the result of the optimization routine would conceivably be
different. Even when calibration is performed at each node,
the final detailed project selection would still depend on the
order in which the 0 — 1 decision variables Y, are introduced
into the tree. The reason for that relationship is that the
disaggregation of aggregate link improvement to the detailed
level would depend on the current grouping of detailed links
to aggregate links, and the grouping is again a function of the
order in which Y;’s are introduced.

Branch-and-Bound Algorithm
We are now ready to formalize the tree-search algorithm.

Step 0. Perform network aggregation at the root node r =
1. Define for this node Y = (0), and label it with objectives
function B = B, = 0.

Step 1. Bound: Out of the set of active nodes, find the
node ! with the smallest objective function B, (i.e., the lower
bound 7). Node [is the bounded node. If r # 1, set r =
F+ 2.

Step 2. If an active node j has E; = E,, a reassignment is
performed at the detailed level, yielding a new system cost
E,. Compute the error function s;, which indicates the need
for calibration. Then set upper bound U = B,. Put node j on
an inactive status. All active, feasible nodes with B, = U are
dominated and declared inactive. If there are no more active
nodes, terminate the algorithm. The optimal solution B} =
U has been found.

Step 3. Branch. Branch from the bounded node [, creating
node r + 1 to the right and » + 2 to the left. Set a free
variable Y, = 0 on the right branch and Y, = 1 on the left
branch. At node r + 1, an arithmetic update is performed,
with the free variables setto 1. If E, , ; > E_, obtain F, , ,.
IfE ,, > E, node r + 1 has been fathomed and termed
inactive. Otherwise, set B, = B,. At node r + 2, compute
B, ., = B"Y, ., Go back to Step 1.

NUMERICAL EXAMPLE

Take the base network shown in Figure 1, which has a total

. Y . - .
congestion cost of E° 232 vehicle-minutes in both the aggre-

gate and detailed networks. We will define three aggregate

TRANSPORTATION RESEARCH RECORD 1251

projects, which improve the line-haul, access, and bypass
functions rendered by the network, respectively:

byAL'™ = 2minutes
by AAI ot

by AUB'I = | minute.

Project 1—shorten LT

Project2—shorten A™ = 4minutes, and

Project 3—shorten "'B1 I

The costs for Projects 1, 2, and 3 are estimated from their
detailed counterparts as 2, 5, and 1 units, respectively. The
objective of tree search is to find the lowest-budget network
improvement plan, with the tolerable congestion level E, set
at 222 vehicle-minutes.

In Figure 2, we perform the branch-and-bound tree-search
algorithm step by step, as illustrated:

e Initialization: At node 1, Y, = (0,0,0) at budget level
B =0, and E, = E° = 232. We branch to nodes 2 and 3,
corresponding to Y; = 0 and 1, respectively.

® Nodes 2 and 3: Node 2 is the bounded node, with a lower
budget B, = B, = 0 (compared with a B, of 2 at node 3).
At node 2, variable Y is fixed at zero value, leaving only Y,
and Y; free. An arithmetic update is performed at node 2,
with the free variable set to 1: E, = E, — V,AF, —
V,AF, =232 — 2 x 4 — 2 x 1 =222 = E? We branch
from node 2 to nodes 4 and 5.

® Nodes 4 and 5. At the bounded node 4, an arithmetic
update is performed: Ef = E, — V,AF, =232 — 2 x 1 =
230 > E, . According to the logic described in the bounding
rule portion of the aggregate tree search section, the true
state of the system has to be assessed. A reassignment is made
on the aggregate network, resultingin £, = E%. This prompts
another reassignment on the detailed network corresponding
to Afs , = 1, resulting in E, = E, > E,. We exclude further
branching from node 4. Between terminal nodes 3 and 5, node
3 is the bounded node because it carries a lower B of 2. A
reassignment at node 3 yields E; = 224 = E;, with an error
function’s, = b -e = 1 X 0 = 0. We branch to nodes 6 and
T

® Nodes 6 and 7: Between 5, 6, and 7, node 6 is the bounded
node. An arithmetic update yields E2 = E;, — V,AF, = 224
— 2 =222 = E, . Further branching is to be performed from
this node.

@ Nodes 8 and 9: Bounded node 8 carries E, = 224 =
E; > E,. We exclude further branching from this node after
checking that E, = E; = 224 > E,,.

Out of the three terminal nodes (5, 7 and 9), node 5 is the
bounded one because it carries the least budget. The reas-
signed system cost E; = E¢ = 220. The flows that formerly
traversed B!l are now rerouted using A'™ and E" ™ as
bypass links. In the detailed network Es = E%? = 213. The
error functionss = b-e+d=1x0+1=1.

® Termination: Node 5 is a feasible node with a budget
objective function of 2.5; Bs = 2.5 would be an upper bound
to help reject further branching from any nodes with B’s
higher than 2.5. By this rule, nodes 7 and 9 are rejected. The
optimum of improving L'" [or link (3,5)] by 2 min is found.
The error function measures

S= > s5=1

te (1—=5)

or a percentage error of §' = 1/(10 + 4) = 7.15 percent.

31

Chan et al.

CASE STUDY where p; is the volume/capacity ratio or

We further illustrate the hierarchical search algorithm through Xy

a case study of the 1978 network from Taipei metzopolitan Pi = ¢y (33)

area, Taiwan, Republic of China, consisting of 49 zones (see
Figure 3). To show the versatility of aggregate tree search,
the following network design formulation, rather than the one
used in the numerical example, is used:

> (fy — My x4 (30)

minimize E(y) = min),
ki ij e Rkl

subject to the node-arc incidence relationship of Equation 5
and the budget constraint
B’y =B (31)

Essentially, this is the inverse of the formulation in Equations

Typical capacities (c) range from 1,250 to 3,400 passenger-
car-equivalents per hour in the study area, covering local
streets through superhighways; 4 is a calibration constant with
typical values of .4, .5, and .6.

The network aggregation algorithm reduces the number of
zones from 49 to 14 (see Figure 3), nodes from 155 to 76, and
links from 568 to 222. It follows exactly the same procedure
as the previous example except that a multipath assignment
is used as described earlier.

Three line-haul link-improvement projects were identified.

Project 1: ALVY X! = 5 min at a cost of 2 units,

1 through 6, wherein the best congestion reduction is to be
achieved within the budget allowance. In Equation 30, the
travel time function f; assumes the form

1

Project 3: ALXxV1

A total budget of four units is imposed.

— o 1 — hpy (32) Branch-and-backtrack is used in the tree search rather than
fi = 15 1 - py branch-and-bound. For simplicity, the tree search was con-
40
39
=== Superhighway
wwrws Arterial
37 = Streets
2
I)
o 41 ™ : 36
o ~N
~ ~
-/ 5
,-/42 Y
i \ 7 49
\ @ !\ 30 3
\
\ £ 3 2
\ 584> 4
: I
\ 22] 19°)3 5
N 4 { 8
N 21 z ,
R - \7 Aggregate zone Detailed zone
~ X A5 4 - 1 1,2,5,6,7,49
S, e % £ 11 3,4,32,33
= | 111 8,9,10,11
16 07] v 12,17,18,25,26
v 13,14,15,16
\ - VI 19,20,21
45 \ D et VII 22,23,24
VIII 27,28,29
09 108 IX 37,38,39,40
X 30,31,34
XI 35,36
a8 % X1I 41,42,43,44
48 XIIT 45,46
47 XIV 47,48
0 zone centroid
(] node

FIGURE 3 Taipei metropolitan network.

Project 2: ALXYV = 5Y min at a cost of 1.5 units, and

8!, min at a cost of 2.5 units.

32

ducted entirely in the aggregate network without calibration.
Instead of branching from the lowesi bound, the branch-and-
backtrack method keeps on branching from the latest active
node (19):

e r =]: Initialize at ¥, = (0,0,0), with E, = 6.6919 x
10¢ vehicle-minutes. Branch to nodes 2 and 3, corresponding
to Y, = 1 and O, respectively. Because B, = b, = 2 < B,
node 2 is declared active. On the other hand, as B, = b, +
b; = 4 = B, node 3 is a feasible solution. The reassignment
performed at node 3 yields £, = 6.5112 X 10° vehicle-min-
utes, which is a better level of system congestion than E,. Set
U = E; and declare node 3 as inactive. Branch from node 2.

@ r = 3: Nodes 4 and 5 are obtained corresponding to Y,
= 1 and 0. Because B, = b; + b, = 3.5 < B, node 4 is
active. Similarly, node 5 is also active because Bs = b, + b,
= 4.5 > B.

e r = 5: Branch from node 5 to nodes 6 and 7. Because
Be = b, + by = 4.5 > B, declare node 6 to be inactive. On
the other hand, B, = b, = 2 < B, node 7 is feasible. Traffic
assignment shows that E;, = 6.6386 X 10° > U. Node 7 is
declared inactive; node 4 is the only place where branching
can take place.

e r = 7: Branch from node 4 to 8§ and 9. As B, = b, +
b, + b; = 6 > B, node 8 is declared inactive. B, = b, + b,
=4 =PBand £, = U = 6.5712 x 10° = E*. We stop
branching because the optimum has been found, correspond-
ing to improving LY X!l and LXIVV,

For actual implementation purposes, we disaggregate
LVIXIinto the parallel chains of (144, 59) and (23, 58) and
LX™VV_into parallel chains of (108, 107) and (109, 15). From
Equation 14:

Aﬁ%z« = Afiaa so = 5, and
AF%s w5 =ADfns =35

yielding the obvious answer of a travel time reduction of 5
min for both detailed links (144,59) and (23,58). Likewise,

AFA%S 13 = Af]()g 107 — 55 and

AF% s = Afige 15 = 5.5;
which means a reduction of 5.5 min for both (108,107) and
(109,15).

This case study illustrates the practical value of the hier-
archical search algorithm in solving realistic size network
problems. The city of Taipei, with its population of 2.4 mil-
lion, was analyzed using a FORTRAN 1V traffic assignment
code on IBM 0S8/360. In spite of the use of this relatively
outdated machine, the multipath assignment in the detailed
network took less than 5 min to cover all the computational
trials, yielding an adopted & value of 0.6 in Equation 32. The
network design tree search on the aggregate network was also
simple enough to be conducted by hand as already shown. It
is estimated that an eightfold savings of computational
requirement was achieved. Most of this is the result of net-
work abstraction, which reduces the number of links/nodes,
hence expediting traffic assignment and tree search in an
exponential manner. Because no calibration was performed,

TRANSPORTATION RESEARCH RECORD 1251

however, there is no measurement on the quality of the
approximate solution.

COMPARISON OF NETWORK ABSTRACTION
WITH NETWORK EXTRACTION

To assess further the afore-described abstraction algorithm in
network design applications, a comparison is made with the
previously mentioned network extraction algorithm of
Haghani and Daskin (3). A common square-grid network of
25 nodes and 40 links as shown in Chan (5) is analyzed, in
which a kth best path traffic assignment (27) is performed.

In this controlled experiment, the second network design
formulation (Equations 30 and 31) is used, wherein the budget
constraint allows for the implementation of only one of the
two candidate projects. The first project reduces the cost of
two detailed links from 15 to 10 and from 10 to 5 min of travel
time, respectively. The second project reduces one single
detailed link by three separate amounts: 15 to 9 (Case A),
15 to 8 (Case B), and 15 to 5 (Case C). Results of this exper-
iment are shown in Table 2.

The results show that investment decisions made on both
the abstracted network and the extracted network agree to a
large extent with those on the detailed network. Two of the
three link improvement decisions are the same between the
detailed analysis and each aggregate algorithm. The abstrac-
tion algorithm performs better in estimating both the total
congestion (in vehicle-minutes) and the congestion reduction
of Project 1. The extraction algorithm, on the other hand,
yields identical congestion reduction as in the detailed analysis
for Project 2.

Although this constitutes only a limited experimentation,
a few observations can be made.

1. Because of the “invariance” property of abstraction,
traffic assignment in the abstracted network appears to yield
a total system congestion closer to the detailed network than
to the extracted network.

2. Depending on the candidate links for network improve-
ment, the congestion reduction effect may be estimated to be
different by the two aggregation schemes. In the case of a

TABLE 2 ABSTRACTION AND EXTRACTION
COMPARED

Detailed Abstracted Extracted
Network Network Network
Total congestion
(vehicle-min) 2,385 2,178 2.125

Congestion reduction

for project 1 (vehicle-min) 145 134 130
Congestion reduction

for project 2 (vehicle-min)

Case A 138 94 138
Case B 161 109 161
Case C 230 157 230

Selected project
(vehicle-min)

Case A 1 1 2
Case B 2 1 2
Case C 2 2 2

“The two figures are not the same due to path shifts in the abstracted
network. By definition, figures are identical without reassignment.

Chan et al.

relatively insignificant candidate link, abstraction yields better
results. For a major link, on the other hand, extraction algo-
rithm works better. This shows that abstraction is a more
“balanced” aggregation algorithm in which the properties of
all links—both major and minor—are included in the aggre-
gate network, whereas extraction tends to favor major links
to the minor ones, inasmuch as the algorithm explicitly retains
major links and discards minor ones.

3. Owing to their different premises, one should not expect
the abstraction algorithm to yield identical results as extrac-
tion, although there should be some similarity between anal-
yses performed on the aggregated networks and the detailed
networks, irrespective of the aggregation method.

CONCLUSION

In this paper, we applied a hierarchical search algorithm to
solve network design problems for three spatially abstracted
networks. The branch-and-bound and branch-and-backtrack
techniques, respectively, were used in the first two formula-
tions of the problem, assuming the objective function of least
budget and least travel cost, respectively. These techniques
result in a greatly reduced search space, as well as a functional
grouping of the detailed links into access/egress, line-haul,
and bypass categories. The latter allows network improve-
ment projects to be specified in terms of the corresponding
aggregate links that are identified by the function they per-
form.

The hierarchical search algorithm—combining network
abstraction with tree search—was also shown to possess
tighter bounding criteria than tree search alone, thus accel-
erating computational efficiency. Equivalency was established
between the aggregate space and the detailed space, including
certain invariance properties, such as conservation of vehicle-
minutes of travel between the abstracted and detailed net-
works. The inaccuracy introduced by the approximate opti-
mization procedure was measured by an “‘error function,”
showing the solution’s percentage divergence from the global
optimum. Aside from a numerical example, a case study was
taken from the metropolitan area of Taipei, Taiwan, Republic
of China, to illustrate the usefulness of the algorithm. For
example, the case study shows that computational require-
ment is reduced by a factor of 8 (22).

To the writers’ best knowledge, and in their opinion, the
hierarchical search algorithm is the first “scientific’” attempt
to establish equivalency between abstracted and detailed net-
work design decisions. The only required system behavior is
monotonicity of two figures of merit as the tree search is being
conducted; in our formulation, these are cumulative project
expenditure and system congestion level. As such, it is an
extremely flexible technique to take care of this class of NP-
hard problems. For example, it is conceivable that elastic
demands can be tackled as long as monotonicity is maintained
in the figures of merit chosen.

The abstracted network is, in essence, a convex combina-
tion of the link and node attributes of the original network.
This convexity property is exploited to the fullest in estab-
lishing the equivalency already mentioned, including the con-
servation of system travel between the abstracted and detailed
networks during aggregation and disaggregation. Should no

33

path shift at all during the search, strict equivalency is guar-
anteed. The network design methodology becomes approxi-
mate when paths do shift as a result of reassignment or net-
work improvement, and the divergence from global optimum
in this case is then measured by an error function (in per-
centages), as alluded to earlier.

The abstraction method was compared with extraction on
the third and last network in our research. It was found that
both yield investment strategies approximating the detailed
network design model, although there is little correlation
between the two aggregation approaches. Because of its invar-
iance property, abstraction appears to estimate the total sys-
tem congestion (in vehicle-minutes) more accurately. There
is little distinction between the two, however, in estimating
the specific congestion-reduction associated with link
improvements.

Although the preceding findings represent modest progress,
much work remains to be done in the hierarchical search
algorithm. Among them are the following:

1. Further computational experience can be gained by
relating the “error function” to the sequence with which link
improvement projects are introduced into the search tree and
the frequency of calibration. The objective is to find a strategy
that minimizes the error in aggregate search.

2. Another set of experiments can be performed to clarify
the trade-off between the level of abstraction and the inac-
curacy introduced into the solution. The objective is to know
the ““appropriate” level of aggregation for a given problem.

3. “Branching from the minimal lower bound or the latest
active node” is used throughout this paper. Although it served
to introduce the hierarchical search algorithm, more efficient
tree searches along the line of work by Chan (19) can be used
to gain even better computational efficiency through the use
of double bounds.

4. In spite of the insights gained in our experiments, addi-
tional tests can obviously be conducted to compare the per-
formance of an abstraction approach with the extraction
approach in network design.

It will be useful eventually to generalize the algorithm to
perform user-optimizing network designs, in addition to the
system-optimizing ones performed here—although this is by
no means a straightforward extension inasmuch as monoto-
nicity properties are no longer guaranteed in the tree search
due to Braess’s Paradox.

ACKNOWLEDGMENTS

The authors acknowledge the support of the U.S. Department
of Transportation, U.S. Department of Defense, General
Motors, and the Chinese Technical-Service Council. They are
grateful to the many colleagues and friends, including M. L.
Manheim, J. H. Stafford, T. L. Loung, and many others at
the Air Force Institute of Technology, Massachusetts Institute
of Technology, and National Taiwan University, who were
of aid. T. S. Shen’s contribution toward this paper was per-
formed while he was working in Tapei, Taiwan (22). Natu-
rally, the individual authors, rather than their affiliations, are
solely responsible for the statements made here.

34

APPENDIX: Proof that the System Cost in an
Aggregate Search, E, is the Upper Bound for the
Corresponding Statistic, E, in the Detailed Space

There are two possible consequences of shortening an aggre-
gate link at node k of the tree search: either a path shift occurs
or it does not—that is

E, = Ejor
E, = E.

To show the inequality between E, and E,, one has four
possible pairwise relationships to consider.

1, E* - E™
2. Er — E5
3. E° — Em; and
4, Ec — E-.

Our objective is to show that in all four cases, £ = E.

Case 1. When there are no path shifts, shortening the aggre-
gate link will, by virtue of Equation 26, yield the same vehicle-
minute reduction as shortening the corresponding set of detailed
links; hence E" = E™.

Case 2. This follows from the result of the first case. Because
E" = E" and E" > E° from Equation 16, it follows that
Er > E°

Case 3. A detailed link may get categorized under more
than one aggregate link, as can be seen in Equation 13 and
in Table 1 for f, ,. Disaggregation of an aggregate link
improvement into the detailed network at a node of the aggre-
gate tree means that each improved detailed link (i, j) benefits
diverse O-Ds (including intra flows) that use (i, j) according
to Equation 30, even though no path shifts occur by definition.
For the aggregate link, on the other hand, functional restric-
tions are placed in the flow paths given that each aggregate
link is derived on the basis of some outdated flow pattern
further up the tree following Equations 13 through 15. Even
though paths shift in the abstracted network owing to the link
improvement, the limited amount of flexibility in the outdated
network does not allow as great a vehicle-minutes of travel
reduction as the corresponding arithmetic update in the detailed
network where each and every unit of reduction is accounted
for. This means that the aggregate travel congestion is likely
to be greater than or equal to that of the detailed after link
improvement as illustrated in node 5 of Figure 2.

EF = EF,

Cuse 4. This case follows when one combines the result of
the preceding finding with Equation 16 (or E” > E*). There-
fore

E° > E-,

Conclusion: In all cases, £ = E.

REFERENCES

1. R. Wong. Worst-Case Analysis of Network Design Problem Heu-
ristics. SIAM Journal, Vol. 1, No. 1, 1980.

TRANSPORTATION RESEARCH RECORD 1251

2. Y. Chan, K. Follansbee, M. Manheim, and J. Mumford. Aggre-
gation in Transportation Nelworks: An Application of Hierar-
chical Structure. Research Report R68-47. Department of Civil
Engineering, Massachusetts Institute of Technology, Cambridge,
1968.

3. A. Haghani and M. Daskin. Network-Design Application of an
Extraction Algorithm for Network Aggregation. In Transporta-
tion Research Record 944, TRB, National Research Council,
Washington, D.C., 1984, pp. 37-60.

4. P. Bovy and G. Jansen. Network Aggregation Effects upon Equi-
librium Assignment Outcomes: An Empirical Investigation.
Transportation Science, Vol, 17, No. 3, 1983, pp. 240-261.

5. Y. Chan, A Method to Simplify Network Representation in
Transportation Planning. Transportation Research, Vol. 10, 1976,
pp. 179-191.

6. R. Eash, K. Chou, Y. Lee, and D. Boyce. Equilibrium Traffic
Assignment on an Aggregated Highway Network for Sketch Plan-
ning. In Transportation Research Record 944, TRB, National
Research Council, Washington, D.C., 1984, pp. 30-37.

7. P. Zipkin. Bounds for Aggregating Nodes in Network Problems.
Mathematical Programming, Vol. 19, 1980, pp. 155-177.

8. J. R. Evans. The Multi-Commodity Assignment Problem—A
Network Aggregation Heuristic. Computers and Mathematics with
Applications, Vol. 7, No. 2, 1981, pp. 187-194.

9. M. Abdulaal and L.. LeBlanc. Continuous Equilibrium Network
Design Models. Transportation Research, Vol. 13B, 1979, pp.
19-32.

10.” T, Friesz. Transportation Network Equilibrium, Design and
Aggregation: Key Developments and Research Opportunities.
Transportation Research A, Vol. 19A, No. 516, 1985, pp.
413-427.

11. C. Suwansirikul, T. Friesz, and R. Tobin. Equilibrium Decom-
posed Optimization: A Heuristic for the Continuous Equilibrium
Network-Design Problem. Transportation Science, Vol. 21, No.
4, 1987.

12. R. Barton and D. Hearn. Network Aggregation in Transporta-
tion Planning. U.S. Department of Transportation, Mathe-
matica, Princeton, N.J., 1979,

13. Y. Chan. Optimal Travel Time Reduction in a Transport Net-
work: An Application of Network Aggregation and Branch-and-
Bound Techniques. Research Report R69-39. Department of Civil
Engineering, Massachusetts Institute of Technology, Cambridge,
(Clearinghouse AD 693-095), 1969,

14. G. Dantzig, S. Maier, and Z. Lansdowne. The Application of
Decomposition to Transportation Network Analysis. Report DOT-
TSC-OS8T-76-26. U.S. Department of Transportation, Washing-
ton, D.C., 1978.

15. Y. Chan. A Comparative Analysis of Network Aggregation
Approaches. Presented at the National Joint Meeting of the
Operations Research Society of America and the Institute of
Management Science, San Francisco, 1977.

16. F. Ou and Y, Chan. An Aggregate Representation of Areawide
Urban Networks. Proc., 11th Annual Pitsburgh Conference on
Modelling and Simulation, University of Pittsburgh, 1980, pp.
1115-1119.

17. Y. Chan and F. Ou. Equilibration Procedure to Forecast Area-
wide Travel. Transportation Engineering, Vol. 112, No. 6, 1986,
pp. 557-575.

18. N. M. Mahaba. Network Aggregation. Paper for OPER 7.67—
Network and Combinatorial Optimization, Department of Oper-
ational Sciences, Air Force Institute of Technology, Wright-
Patterson, Ohio. 1988.

19. Y. Chan. The Transportation Network Investment Problem: A
Synthesis of Tree-Search Solution Algorithms. Transportation
Research Record 1074, TRB, National Research Council, Wash-
ington, D.C., 1986, pp. 32-40.

20. J. D. Murchland. A Fixed Matrix Method for All Shortest Dis-
tances in a Directed Graph and for the Inverse Problem. Doctoral
thesis. University of Karlsruhe, West Germany, 1970.

21. M. Pollack. Solutions of the kth Best Route— A Review. Journal
of Mathematical Analysis and Applications, Vol. 3, 1961, p. 547.

22. T. S. Shen. Application of Traffic Assignment and Network
Aggregation in an Urban Area. Master’s thesis. National Taiwan
University, Taipei, Taiwan, Republic of China, 1981.

TRANSPORTATION RESEARCH RECORD 1251

35

Efficient Algorithm for Locating a
New Transportation Facility in a

Network

HueL-SHEN TsAy AND LiaNG-TAY LIN

The single-location problem is to locate a new transportation facil-
ity in a network that can serve all customers at the minimum
distance or cost. There are four types of single-location problems.
The absolute 1-center problem is considered in this paper. By
definition, in that problem, the customers are on any vertex and
the center may be a vertex or a point on an edge. There are two
previous methods for finding the absolute 1-center: (a) the Hakimi
method (1965) and (b) the Minieka method (1981). They consid-
ered all possible links of a network to determine the best candidate
point. Later, Larson and Odoni proposed a shortcut to reduce the
number of links needed for calculation. In this paper, a new short-
cut with a stricter bound is first proposed to find the absolute 1-
center directly. The Larson and Odoni shortcut is then introduced
and integrated with the Minieka method to form a combined method.
Finally, a new method is developed to find the absolute 1-center
based on a spanning tree that is obtained from that of the vertex
to all shortest distances. The number of iterations needed to per-
form the analysis is in proportion to the number of vertices instead
of edges for any given network. To make a consistent comparison,
four different methods have been programmed and tested with
several networks. The results show that the new method or the
new shortcut is fast and powerful in finding the absolute 1-center
location. They provide the same solutions and belong to polynomial
time-bounded algorithms. Therefore, we recommend use of the
new method or shortcut for locating a new facility if the absolute
1-center problem is considered in a network.

In selecting the optimal facility, location plays a vital role in
the fields of transportation, communications, and distribution
management. Applications may include transit stops, fire sta-
tions, warehouses or plant locations, post offices, schools, and
public buildings. A major concern in location models is to
find the optimal placement of facilities on a network so the
cost of locating, operating, and providing service is mini-
mized. Here, the cost of serving customers can be defined as
the cost incurred between customers and the assigned depot;
it refers to the transportation cost that is primarily due to the
distance traveled to and from the depot location. Therefore,
the back-and-forth distance between two nodes is an impor-
tant component in determining the location of new facilities.

Generally speaking, network location research can be cat-
egorized into two types: single-depot location and multiple-
depot locations. The sirigle-depot location problem considers
locating only one depot in the network, either to minimize
loss or to maximize benefit or to provide good service to
customers. This facility and its customers may be located at
the vertex (node) or anywhere along two vertices. The mul-
tiple-depot location problem, on the other hand, finds loca-

Graduate School of Transportation and Communication Management
Science, National Cheng Kung University, Taiwan, Republic of China.

tions for more than one depot to serve all customers with an
objective of minimizing total related cost, minimizing the
maximum travel distance, or providing the best service.

Because locating a new transportation facility in a given
network is our main consideration, it is necessary to know
the differences between various types of single-location prob-
lems. There are four major types of single-location problems
shown in Table 1. From Table 1, the vertex also represents
nodes, and each link or edge has an infinite number of possible
point locations. The vertex 1-center and general 1-center loca-
tion problems have been solved and programmed through
efficient methods (Z,2). These are all polynomial, time-bounded
algorithms.

The absolute 1-center problem is defined as a point located
such that the maximum distance from this facility to any node
is minimized. This new location can be anywhere on a link
(edge) or at a node (vertex). Basically, it is a problem of one
point serving multiple nodes. One application of the absolute
1-center problem, for example, locates a fire station in a rural
community in a manner that minimizes the maximum response
time from the station to any farmhouse. It was first presented
by Hakimi (3,4). The literature on network location problems
has grown rapidly since the appearance of Hakimi’s paper
(5). The Hakimi method, for each link, constructs upper
envelopes continuously to compute the intersecting points
from all nodes in the network. From all feasible intersecting
points, we choose the best local minimum for the correspond-
ing link. Once all links have been examined, the best among
all such local minima is selected as the absolute 1-center of a
given network. Its solution is more difficult and complex than
that of either the vertex 1-center or general 1-center problem.
In this paper, four methods for solving the absolute 1-center
problem are extensively discussed and compared.

The general absolute 1-center location problem is, among
four types of single-location problems, the most difficult to
solve. This is a problem of one point serving an infinite num-
ber of customer points on each link. Recently, some algo-
rithms have been developed and proved to be effective (7,2,6).
Because the absolute 1-center is our focus, the general abso-
lute 1-center location problem is not discussed here.

LARSON AND ODONI SHORTCUT

Because the Hakimi method requires the examination of each
link before the best absolute center in a network is chosen,
the number of calculations grows rapidly and sometimes
becomes unacceptably large as the number of links increases.

36

TRANSPORTATION RESEARCH RECORD 1251

TABLE 1 FOUR TYPES OF SINGLE LOCATION PROBLEMS

Type Facility Customer
Location Locations
Vertex 1-center Vertex Vertex
General 1-center Vertex Link*
Absolute 1-center Link* Vertex
General Absolute 1-center Link* Link*

* Represents infinite possible points located on each link or edge.

Some links, in fact, cannot further improve the optimal solu-
tions. Larson and Odoni proposed a shortcut to reduce the
computational effort required to obtain the absolute 1-center
(7). That shortcut takes advantage of the fact that it is simple
to find the optimal solution of a vertex 1-center problem in
a given network. This solution is then treated as the upper
bound value to identify those links that actually cannot improve
the final result. This shortcut is represented by the following
equation:

m(r,a) + m(s,b) — l(r,s)
2

< m(i*) (1)

where

m(r,a) = the distance required for node r to serve the far-
thest node g in the network;
m(s,b) = the distance required for node s to serve the far-
thest node b in the network;
I(r,s) = link distance between nodes r and s; and
m(i*) = the optimal solution of vertex 1-center.

It implies that the Hakimi method can be applied to those
links that do not violate Equation 1. So, for a link (r,s) that
satisfies Equation 2:

m(r,a) + mgs',b) — Urs) _ m(i*) @)

The local 1-center of this link (r,s) cannot further improve
the vertex 1-center solution m(i*). The fact is that the max-
imum distance associated with the vertex 1-center must be
greater than or equal to the corresponding distance for the
absolute 1-center (7). In other words, if Equation 2 is satis-
fied, the link (r,s) need not be examined further. Through
such a test, considerable computational effort will be reduced.
But the number of computations that can actually be saved
depends on the network configuration. It is difficult to predict
a specific number of reductions if the shortcut is applied.
However, this shortcut shows its ability to eliminate several
unnecessary calculations.

A NEW SHORTCUT

A new shortcut is proposed in this section. Nodes a and b are
assumed to be the farthest nodes that can be reached by nodes

r and s shown on Figure la. Then, we have

ra = m(r,a)

sb = m(s,b)

There exists one point p on the path r-a that makes pa =
m(i*). Similarly, there is another point g on sb with the prop-
erty of gb = m(i*). Equation 1 can be rearranged in the
following form:

m(r,a) — m(i*) + m(s,b) — m(i*) — lr,s) <0 3)
> <

Then, based upon the preceding definitions, we have
D+ sq — l(rs) =0 4)

It means that any link in the network satisfying Equation 4
may be able to improve the final solution of the absolute
1-center. Only such a link will be considered in making further
calculations. From Figure 1b, x and y are defined as:

x| xr +

iy +

ra = xs + sa , x ¢ link (r,5)} (5)
sb = yr + rb , y ¢ link (r,s)} (6)

Let x" and y' have this relationship:

xX'r=2%r+r1p
y's = 255 + 59

As far as A rsa (Figure 1b) is concerned, the distance from x
passing through node r to node a should be equal to the
distance traveling from x through nodes s to a. Suppose x is
the absolute 1-center of a given network; path x-r-a will have
the longest distance. This value can be further decreased if
the absolute 1-center is not located on x. There are two pos-
sibilities. The first way considers the center located on the
left-hand side of x. In such circumstances, the best location
obviously belongs to node r. The distance from node r to the
farthest node a is m(i*) plus rp, ra = m(i*) + rp. Itis greater
than or at most equal to m(i*) and may not be the best choice.
Another possibility is to move the center to the right-hand
side of x. The distance from x’ to a becomes m(i*) if only rp
distance units are shifted from x to x’. Furthermore, once the
length of link (7,s) is larger than x'r (i.e., I(r,s) = 2xr + rp,

Tsay and Lin 37
b a
P q
r 3
(a)
b a

—

x'r‘=2;r:+r‘_p
y's = 2ys + 5q

X X'
yl

(b)

FIGURE 1 (a) Graphic representation of service from link (r,s). (b) Graphic
representation of different service range for link (r,s).

the service distance from x' to node a will be less than or
equal to m(i*). It is also necessary to make /(7,5) = 2ys + sq
to have the same property. Besides, x' must lie in the left
side of y' to guarantee that the shortest distance from x’ to
node a or from y’ to node b is smaller than m(i*). Thus,

I(r,s)=2xr +rp + 2ys + 59 @)
I(r,s) Zz[m(r,a) i I(rz.s) i1 m(r,a)] + m(r,a) — m(i*)
+2[’"(S’b) s l(rz’s) e m(s,b)] + m(s,b) — m(i*)

I(r,s) = I(r,s) + m(s,a) — m(i*) + r,s) + m(r,b) — m(i*)

m(s,a) + m(r,b) + l(r,s)
2

= m(i*) ®)

m(r,b) = the distance from node r to the farthest node b
(for s) and

m(s,a) = the distance from node s to the farthest node a
(for r).

Any link that violates Equation 8 cannot improve the final
solution of absolute 1-center and will not be further
considered.

Because

m(r,a) < m(s,a) + I(r,s)

m(s,b) = m(r,b) + I(r,s)

m(r,a) + m(s,b) — l(r,s)
2

» ’b ! 2]
- mis,a) + mg’)+ ins) m@*) (9)

It is noted that the proposed shortcut has a more strict bound
than the Larson and Odoni shortcut does based on Equa-

38

tion 9. If the proposed shortcut given in Equation 8 is con-
sidered, then the local 1-center of link (r,s) is located on the

middle point of x'y’. Its location has DI distance units from
node r.

DI

x'r + 12[l(r,s) — x'r = y's]

l(r,s) + m(s,a) — m(i*) + [I(r,s)

— 2l(r,s) — m(s,a)

— m(r,b) + 2m(i*)]

12[l(r,s) + m(s,a) — m(r,b)] (10)

1l

The service distance of this local 1-center to the farthest node
18

SS = m(i*) — 12[l(r,4s) — x'r — y's]

m(i*y = 12[l(r,s) — 2l(r,s) — m(s,a)

— m(r,b) + 2m(i*)]
12[m(s,a) + m(s,b) + I(r,s)] (11)

Based on the preceding discussion, the proposed shortcut can
be performed as follows. First, for any link in the network,
we check whether it satisfies Equation 8. If the answer is yes,
then Equations 10 and 11 will be applied to find the local
1-center of that link. Otherwise, the link need not be further
considered. After all links have been examined, the location
and service distance of absolute 1-center for the given network
can easily be determined. The foregoing procedure is rather
simple and makes it easy to obtain the final solution without
using elaborate computations. Comparisons of this new short-
cut with other methods are given later.

MINIEKA METHOD

A polynomial time algorithm for finding the absolute 1-center
of a network was proposed by Minieka (8). This algorithm is
combinatorial in nature and requires only knowledge of the
shortest path distances between all pairs of nodes. Concep-
tually, it is different from the Hakimi method. Consider p on
a link (r,s) as one point on the link (r,s) that is p units from
r and I(r,s) — p units from s, where 0 = p = [(r,s). Those
nodes that are best reached from p by traveling through node
r are set in node set R. Similarly, others best reached through
node s belong to set S. On the basis of this definition, the
Minieka method for finding p*, the local 1-center on a link
(r,s), follows these steps:

Step 1: Obtain the shortest matrix between all nodes through
any efficient algorithm.

Step 2: Place all nodes in R, and arrange the sequence of
nodes according to the order of their distance from node r,
with the most distant node first. Compare the maximum dis-
tance from node r to all other nodes of the network with the
link length I(r,s) and then store the higher value as the first
point-to-node distance.

Step 3: Remove from R and place into S the node that is
currcntly most distant from node r.

Step 4: Compare the distance from node s to the node that
has the maximum distance in R with the largest value of the

TRANSPORTATION RESEARCH RECORD 1251

current set S. If this new distance is smaller than the existing
maximum distance, go to Step 3; otherwise go to Step 5.

Step 5: Calculate the maximum distance needed from both
sets R and S, using the equation

MD = [d(r,z;) + d(s,z;) + I(r,s)]/2 (12)

where

MD

the current maximum distance needed to serve
customers in the both sets R and S;
= maximum distance from node r to node z; in the
current set R;
d(s,z,) = maximum distance from node s to node z, in the
current set S; and
I(r,s) = actual link distance between nodes r and s.

d(r,z;)

Step 6: Compute the p* by subtracting d(r,z,) from MD.

Step 7: Go to Step 3 until all other nodes have been exam-
ined and moved to set S. Compare the length of link (r,s)
with the maximum distance from S, and then store the higher
value as a MD with p* equal to the length of link (r,s).

Step 8: Choose the smallest MD and its related p* value
among all candidates. This is the local 1-center of link (r,s).

The foregoing procedure can be used for finding the local
1-center of link (r,s). Obviously, it is also applicable to all
other links. Thus, the local centers of other links are found
through the same steps. After all links have been examined,
the best absolute 1-center of the network is determined simply
by choosing the minimum among all local 1-center candidates.
This method performs the preceding steps easily and can be
used to solve large network problems. Its computational effort
mainly lies in obtaining the all-to-all shortest-distance matrix.
Therefore, this is a polynomial time-bounded algorithm and
is easy to program.

A COMBINED METHOD

Although the Minieka method is efficient in computing the
local 1-center on a link, it still requires much effort to examine
all links of a given network if no bounding technique is applied.
For the Larson and Odoni shortcut, considerable reduction
in computational effort can be achieved by omitting many
unnecessary links before searching for the absolute 1-center.
After the shortcut is applied, however, the inefficient Hakimi
method is used to find local centers for those critical links
that do not violate Equation 1. Therefore, it becomes feasible
to combine the Minicka method with the Larson and Odoni
shortcut to reduce further the number of calculations and
computer time. The basic idea of this combination is simply
to consider the Larson and Odoni shortcut first in deleting
links that cannot improve the solution. Then only those links
satisfying Equation 1 are examined and calculated to deter-
mine their local centers using the Minieka method. It is expected
that the computational effort will be reduced through this
combined method. The steps of this combined method are
summarized next.

Step 1: Obtain the shortest distance matrix between all
nodes.

Step 2: Apply the Larson and Odoni shortcut to delete
those links that satisfy Equation 2.

Tsay and Lin

Step 3: Use the Minieka method to find the local 1-center
for each critical link and store it as a candidate.

Step 4: Repeat Step 3 until all critical links have been
examined.

This combined method takes advantages of the most effi-
cient parts of the Minieka method and the Larson and Odoni
shortcut. Tests of a newly developed computer program show
that the program works well and reduces some computer time.
These tests are discussed more extensively later.

A NEW METHOD

In this section, a new method for finding the absolute 1-center
is proposed. The solution is obtained from a spanning tree
based on the vertex’s one-to-all shortest distances. It first
considers the longest and second longest distances of the span-
ning tree from each node in a network (9,10). For each such
tree, the local 1-center is found. Then the minimum of local
centers is selected as the absolute 1-center for the entire net-
work. Because the new method finds the local 1-center from
the spanning tree of each node, the maximum number of
iterations needed to perform the computation is in proportion
to the number of nodes, instead of links, for the given net-
work. In other words, conceptually, the new method can reduce
computer time more than the previous method if larger net-
works are considered. The steps included in this new method
are as follows:

Step 1: Obtain the shortest path for each vertex to all other
nodes.

(a) I

39

Step 2: Find the farthest node i and second longest distance
node j to form the nonoverlap distance x(,j) according to the
minimum spanning tree of each node from Step 1.

Step 3: Determine the service distance of local 1-center for
each node and store it as a candidate:

1/2[max x(i,j)] (13)

Step 4: Repeat Steps 2 to 3 until all nodes have been
examined.

Step 5: Choose the minimum value among all candidates.
This is the absolute 1-center for the given network.

It is easy to perform the preceding steps by using the graphic
method manually. Steps 2 and 3 need to be modified, how-
ever, if the new method is to be programmed. After several
tests, it is found that the local 1-center of the designated node
may not always be located on the path that includes the longest
and second longest distances rooted at each node. More ver-
ifying steps must be added to obtain a better solution of the
local 1-center. The best way to perform this analysis is to
check all connecting links from that node. This can be observed
in Figure 2a. Suppose node I, with the longest path I-A and
the second longest path I-B, is under consideration. The piv-
otal local 1-center of node 7 is located on M with MI distance
from node /. Link (/, K)) represents one connecting links orig-
inating from node 1. The service distance SS of the initial local
1-center based on the previous steps equals ¥2(JA + IB). If
the shortest distances from node K to nodes A and B satisfy
Equation 14,

Max [D(K,A),D(K,B)] = GL < SS (14)

(b)

B

FIGURE 2 (a) The farthest node A and second longest distance
node B for node I and one of connecting links (1,K). (b) Checking
steps for connecting links rooted from node 1.

40

where

D(K,A) = the shortest distance from nodes K to A;
D(K,B) = the shortest distance from nodes K to B; and
GL = higher value of D(K,A) and D(K,B),

then it is possible for the local 1-center to be located on the
connecting link (/,K) instead of the original shortest path.
What would be the most desired location of local 1-center for
node I? Before performing more analyses, we denote W as
the nodes that are different from nodes I, K, A, and B but
satisfy the following two conditions.

D(K,W) = GL
D(I,W) + D(,K) = GL

where

D(K,W) = the shortest distance from nodes K to W;
D(I,W) = the shortest distance from nodes / to W; and
D(I,K) = the shortest distance from nodes / to K.

Let Z be the node that has the largest value among all D({,W).
The new local 1-center stays on link (/,K) if Equation 15 is
met.

D(,Z) + D(I,K) = GL (15)

Otherwise, the local 1-center remains at the node K. The
service distance and location of local 1-center for node I become
SS and p*, respectively.

SS,

12[D(1,Z) + D(I,K) + GL] (16)

*

D SS, — D(1,Z) 17)
After obtaining the new SS,, if SS, is smaller than SS, then
SS, will substitute SS as the new service distance of local
1-center. The location of this local 1-center is located on the
connecting link (/,K) with p* distance units from node I.
Otherwise, the SS value still represents the service distance
of local 1-center. After all connecting links have been exam-
ined, the smallest value among all SS is chosen. The smallest
value and its corresponding location p* are considered the
local 1-center of node 1.

To put the preceding discussion into sequential steps, we
substitute the following Steps la through 5a for Steps 2 and
3 and add Steps 6a to 8a for checking connecting links. Before
describing these steps, let c¢(i,j) be the shortest distance from
nodes i to j and b(i,j) = A be the nearest node number on
the shortest path from node i to all other nodes j; g(i,j) rep-
resents the largest value among all ¢(i,f), and A(i,j') denotes
the second largest value in the all remaining c(i,j). B gives
the node letter j that has the second longest distance from
node i. Besides, N(i) shows the node letter i currently under
consideration.

Step la: List all ¢(i,j) and b(i,j) = A for node i;

Step 2a: Find the largest value g(i,j) among c(i,j) and its
nearest node letter A from node i to all other nodes;

Step 3a: Determine the second largest value among
remaining c(i,j) that the nearest node number is not A and
denote it as A(i,j') and b(i,j') = B;

Step 4a: Calculate Q(¢) through the following equation:

o) = 80+ i) 5

TRANSPORTATION RESEARCH RECORD 1251

Step Sa: If [Q(i) — A(i,j')] is less than or equal to c(i,A4),
then Q(i) is the local 1-center distance for node i. Determine
the suitable location p* for Q(i/) and go to Step 6a. If
[Q() = h(i,j'] > c(i,A), go back to Step 4;

Step 6a: Check one connecting link from node i to node
k:

GL = Max[D(k,A),D(k,B)]
If GL = Q(i), go to Step 7a; otherwise, go to Step 8a;

Step 7a: Find z that satisfies the following two conditions
and has the largest value:

D(i,z) + D(i,k) = GL and D(k,z) = GL
If there is no z available, go to Step 8a.
Q'(i) = 12[D(i,z) + D(i,k) + GL]

If Q'(i) < Q(), then Qi) = Q'(i), p* = Q') — D(,z).
Go to Step 8a.

Step 8a: Check other connecting links originating from node
i. If all links have been examined, go to Step 4; otherwise,
go to Step 6a.

EXAMPLE

Find the absolute 1-center of the network shown in Figure 3
using the new method. This example requires that the shortest
distance from each node to all vertices be calculated in the
first step. Then, the spanning tree of the designated node
based on the shortest distance from each node to all vertices
is calculated in the second step. The spanning tree of the
designated node based on the shortest distance is then obtained.
Figure 4 shows the spanning tree of node 7. After several
checking steps, the initial local 1-center becomes the center
of node 7. From this figure, it can be seen that the distance
between nodes 5 and 10 is 155. Thus, the initial local 1-center
for node 7 equals 77.5 units, according to Equation 13. This
center will be located on link (7,8) at a distance of 0.5 units
from node 7. Similarly, the initial local 1-center of node 6 can
be easily obtained from Figure Sa. This initial local 1-center
has 62.5 distance units and stays on link (6,10) with a distance

FIGURE 3 Distance and configuration of given network.

X: Location of
local 1-center

FIGURE 4 Spanning tree of node 7 and its location of local 1-center.

x : location of
initial local

1-center

x : location of local
1-center

FIGURE 5 (a) Initial local 1-center of node 6 with 62.5 units service distance. (b)
Location of local 1-center for node 6 with 58 units.

42

of 2.5 units from node 6. It is not the best solution for node
6. In fact, the local 1-center of node 6 is located on link (6,8)
with 58 distance units from node 6 to serve all other nodes
by applying Steps 6a to 8a to examine each connecting link
rooted from node 6. Its final location can be seen from Figure
5b. This location and service distance also represents the abso-
lute 1-center for the given network. Therefore, from this
example, it is important to examine all connecting links
of any designated node before its local l-center is finally
determined.

Another way of searching the local 1-center of each node
is simply to apply the given Steps 1a to 8a. A complete com-
putational procedure for node 7 is shown on Table 2 based
on these steps. Definitions of all variables in the table are
referred to this section. Table 3 gives the computational result
of local 1-center for node 6. This case provides the user a
better solution after checking each connecting link originated
from node 6. It is noted that the results obtained from Ta-
ble 3 are the same as those shown in Figure 5b.

TRANSPORTATION RESEARCH RECORD 1251

COMPARISON OF FOUR METHODS

Thus far, four different methods for finding the absolute
1-center have been discussed: the new shortcut, the Minieka
method, the combined method, and the new method. As far
as computer time and computational complexity are con-
cerned, it is necessary to understand the capabilities and lim-
itations of these four methods. One analytic strategy is to
apply four methods to the same given network. To make such
a comparison, nine networks with different numbers of nodes
and links are selected. In these networks, an absolute 1-center
will be sought such that the maximum service distance from
this center to all nodes is minimized. The absolute 1-center
can be located anywhere on a link or at a node.

Four computer programs have been developed separately
for the four methods. Each program reads the same network
input file and prints the output in an identical format. Each
program was run on a PC/AT with a math coprocessor
80287-10. For each network, the final distance and location

TABLE 2 COMPUTATION OF LOCAL 1-CENTER FOR NODE 7 BY APPLYING

STEPS 1a TO 8a

Q(7) - h(7,5) = 77.5 - 77

0.5 < c(7,8) = 27, 0.K.
The 1initial local 1-center of node 7 is located on link

and 0.5 distance units from node 7.

Check each connecting link

(1) link (7,4), k = 4

GL = max[D{4,10) = 87, D(4,5) = 68] = 87 ¢ Q(7)
(2) link (7,9), k = 9
GL = max[D(9,10) = 86, D(9,5) = 95] = 95 £ Q(7)

No connecting links can provide a better solution,

1-center of node 7 is still located on link (7,8)

distance units from node 7.

Node i Node j
N(7)=7 1 2 3 4 6 7 8 9 10 1
¢(7:3)= 36 52 13 9 32 0 27 28 78 38
b(7,j)= 4 4 4 4 4 7 8 9 8 9
A. Search the initial local 1-center:

g(7,10) = 78, A =10, h(7:5) & 77s B=5

b(7,10) = 8 £ b(7,5) = 4

o7) - ULI0 LHTS) _ 574

(7,8)

so the local

and 0.5

Tsay and Lin

43

TABLE 3 COMPUTATION OF LOCAL 1-CENTER FOR NODE 6 BY APPLYING STEPS

1a TO 8a
Node i Node j
N(6)=6 1 2 3 4 5 6 7 8 9 10 1"
c(6,j)= 50 20 27 33 45 0 42 15 50 65 60
b(6,j)= 4 2 4 4 2 6 4 8 4 10 8

g(6,10) = 65,

A. Search the initial local 1-center:

h(6,11) = 60,

A =10,

b(6,10) # b(7,11)

Q(6) - 9(6:10) + h(6,11)

> = 62.5

Q(6) - h(6,11) = 62.5 - 60 = 2.5 < c(6,10) = 60, O.K.

The initial local 1-center of node 6 is located on link (6,10)

and 2.5 distance units from node 6.
Check each connecting link:
(1) link (6,2), k = 2
GL = max[D(2,10) = 85, D(2,11)
(2) link (6,4), k = 4
GL = max[D(4,10) = 87, D(2,11)
(3) link (6,8), k = 8
GL = max[D(8,10) = 51, D(2,11)
One connecting link (6,8) may
More checking steps need to be

D(6,1) + D(6,8) = 65 > GL = 51

80]

471

47]

provide

85 ¢ Q(6)

87 £ Q(6)

51 < Q(6)

a better solution.

undertaken.

D(8,1) = 63 > GL = 51

Q'(6) = [D(6,1)+D(6,8)+GL] =
P* = Q'(b) - D(b,1) = 58 - 50 = 8 < c(6,8) = 15 0.K.
Thus, the local 1-center of node 6 is located on link (6,8)

and 8 distance units from node 6.

[50+15451] = 58 < Q(6)

of the absolute 1-center are the same according to the output
of the four computer programs. They all provide the best
solution. Comparisons of computer time used and the num-
bers of links and nodes considered by each method are sum-
marized in Table 4. It can be seen that the combined method
is more efficient than the Minieka method, because the former
skips many unnecessary links before searching the local 1-
center. The new method and the new shortcut are obviously
better than the combined method. Both the new method and
the shortcut use almost the same computer running time. For
a network with 80 nodes and 141 links, the new method and
shortcut need only 45 percent of the Minieka’s computer time
and 61 percent of the time required by the combined method.
The results show that the new method and the shortcut are

computationally fast and powerful if larger networks are con-
sidered. Also, both new methods can be categorized as poly-
nomial time-bounded algorithms.

CONCLUSIONS

The combined method finds the absolute 1-center with fewer
link computations than the Minieka method does, if the latter
is assumed to examine all links. The computational complexity
of this technique relies on the efforts of finding the all-to-all
shortest distance paths and requires O(N?) calculations. Hence,
the combined method is a polynomially bounded algorithm
and requires less computational effort. The proposed new

44

TRANSPORTATION RESEARCH RECORD 1251

TABLE 4 COMPARISONS OF FOUR METHODS BY RUNNING ON PC/AT WITH A

MATH COPROCESSOR 80287-10

Network | No. of No. of | Minieka| Combined | New Shortcut | New Method
Method Method

Number Nodes Links (sec) (sec) (sec) (sec)
1 15 27 3.6 4.5 4.1 3.7
2 17 36 4.7 5.3 4.5 4.0
3 25 50 9.9 9.5 7.5 7.2
4 30 40 131 12.4 10.0 9.5
5 40 56 277 23.3 17.5 17.0
6 45 95 44,0 32.8 22.6 22.2
7 50 74 51.7 41.0 28.4 28.0
8 65 100 109.5 82.2 53.4 53.0
9 80 141 207.4 148.0 90.4 90.0

shortcut gives a stricter bound than does the Larson and Odoni REFERENCES

shortcut. After this new shortcut is applied, the location and
its service distance to the local 1-center for the desired link
can be obtained directly. The new method finds the absolute
1-center by considering the number of nodes instead of the
number of links in a network. Although the combined method
has reduced the number of links needed in calculating the
local 1-center, the number of remaining links, in most cases,
is still greater than the number of nodes considered for the
given network. Therefore, after several tests, it can be con-
cluded that the new method and the new shortcut are faster
and more powerful than the combined method or the Minieka
method, especially for a large network. On this basis, the new
method or the new shortcut is recommended for use in locat-
ing a new transportation facility if the absolute 1-center loca-
tion problem is being considered.

ACKNOWLEDGMENT

The authors would like to express their deepest thanks for
the assistance of Gwo-Feng Yang during the phases of devel-
oping computer programs and preparing this final manuscript.

1. H. S. Tsay. The Combined Facility Location and Vehicle Routing
Problem: Formulation and Solution. Ph.D. dissertation. Purdue
University, West Lafayette, Ind., Aug. 1985.

2. H. S. Tsay. New Efficient Algorithms for Solving 1-Center Loca-
tion Problems. Transportation Planning Journal, Vol. 15, No. 2,
June 1986, pp. 207-220. (Printed in Taiwan)

3. S. L. Hakimi. Optimum Distribution of Switching Centers and
the Absolute Centers and Medians of a Graph. Operations
Research, Vol. 12, 1964, pp. 450-459.

4. S. L. Hakimi. Optimum Distribution of Switching Centers in a
Communication Network and Some Related Graph Theoretic
Problems. Operations Research, Vol. 13, 1965, pp. 462-475.

5. B. C. Tansel, R. L. Francis, and T. J. Lowe. Location on Net-
works: Parts 1 and II. Management Science, Vol. 29, 1983,
pp- 482-511.

6. J. D. Fricker and H. S. Tsay. A Polynomial Time Algorithm to
Solve the General Absolute 1-Center Problem. Presentation at
ORSA/TIMS Joint National Meeting, Atlanta, Ga., Oct. 1985.

7. R. C. Larson and A. R. Odoni. Urban Operations Research.
Prentice-Hall, Englewood Cliffs, N.J., 1981, pp. 439-442.

8. E. Minieka. A Polynomial Time Algorithm for Finding the Abso-
lute Center of a Network. Networks, Vol. 11, 1981, pp. 351-355.

9. G. Y. Handler and P. B. Mirchandani. Location on Networks:
Theory and Algorithms. MIT Press, Cambridge, Mass., 1979.

10. H. S. Tsay and L. T. Lin. A New Method for Finding Absolute
1-Center in a Network. Presented at 1987 TIMS/ORSA Joint
National Meeting, New Orleans, La., May 1987.

TRANSPORTATION RESEARCH RECORD 1251

45

Locomotive Scheduling Under

Uncertain Demand

ScoTT SMITH AND YOSEF SHEFFI

Each day, railroads face the problem of allocating power to trains.
Often, power requirements for each train are not known with
certainty, and the fleet of locomotives may not be homogeneous.
To deal with both of these complications, we formulate a multi-
commodity flow problem with convex objective function on a time-
space network. The convex objective allows us to minimize expected
cost under uncertainty by penalizing trip arcs likely to have too
little power. Our solution heuristic sends locomotives down the
shortest paths (based on marginal arc costs) in the time-space
network and then attempts to improve interchanges of locomotives
around cycles. Two lower bounds are also developed by relaxing
the multicommodity aspect of the problem. In 19 test problems,
ranging in size from 15 to 404 arcs, the heuristic performed well,
with short running times and costs averaging within 3 percent of
the best of the two lower bounds developed.

A problem frequently faced by transportation carriers is the
allocation of a fixed supply of vehicles to a given schedule.
Examples include the allocation of locomotives to freight trains,
of buses to transit routes, and of airplanes to flights. These
examples have the following features in common:

1. There is a published or “‘committed to’ schedule of ser-
vices that have to be carried out;

2. The supply of vehicles to irips can be represented as an
integer, multicommodity minimum cost flow problem over a
network of trip, layover, and storage arcs. The problem has
multicommodity aspects because the vehicle fleet is not homo-
geneous; for example, locomotives may have different power
ratings and airplanes may be of different sizes. (Naturally,
however, there are some important differences between the
modes. For example, in the rail mode, two or more loco-
motives typically are used to meet demand for a given trip,
whereas only one airplane is used for a single airline trip);

3. Even though the schedule is fixed, the demand for ser-
vice may vary. In the rail context, the tonnage of a given train
is variable. In the bus or airline context, the number of pas-
sengers on a given trip will vary. Further, it may sometimes
be desirable not to meet all the demand, for example, by
having standees on buses, or refusing airline reservations, or
leaving cars behind for the next freight train to pick up.

This paper formulates this allocation problem and suggests
solution techniques in the context of rail. First, background
information on both the formulation of the problem and past
research in this area is presented. Second, the problem is
formulated as a mathematical program. Third, a fast heuristic
solution technique is presented. Finally, the results of the

Department of Civil Engineering, Massachusetts Institute of Tech-
nology, 77 Massachusetts Avenue, Cambridge, Mass. 02139.

heuristic are compared with lower bounds obtained through
various relaxations. The techniques presented here explicitly
consider uncertainty in locomotive demand and are able to
deal with locomotives of different power ratings.

BACKGROUND

This section looks at the network representation of the loco-
motive scheduling problem. This formulation underlies vir-
tually all other attempts in the literature to develop a solution
for this problem. Some of that research is reviewed in the
second part of this section.

Time-Space Representation

The rail scheduling problem is typically formulated as a min-
imum cost flow problem on a time-space network, which is a
graph of locations versus time on which activities are plotted
(Figure 1). Each node in this network represents a terminal
(vard) at a point in time, and arcs are of the following types:

1. Trip arcs represent trains between the upstream terminal
node and the downstream terminal node that the arc connects.

dummy supersource

station B

Q)

station A

u[Q)

time

Layover arc

Bypass arc

-

Trip arc

End arc

FIGURE 1 Sample time-space network.

46

There is a power requirement for each trip, which may be
represented either by a lower bound on the arc flow of loco-
motives or by a penalty function that increases greatly as this
flow falls below the minimum desired value;

2. Layover arcs represent short-term storage at a terminal.
They have a lower bound of 0 and some fixed cost per unit;

3. Bypass arcs represent long-term storage of unneeded
units and have very low cost per unit; and

4. End arcs represent locomotive requirements at each ter-
minal at the end of the planning horizon. Any practical time-
space representation has a finite planning horizon. Therefore,
if this horizon is short, end effects must be considered. In the
model here, we want to know how many locomotives are
needed at each terminal at the end of day, week, or whatever
period we are modeling. Thus, the end arcs will have either
cost functions or lower bounds similar to those for trip arcs.

This is a multicommodity network flow problem with either
a “bundle constraint” in the lower bound for each arc or a
penalty term in the cost function that ‘‘bundles” the com-
modities. We flow locomotive units of various types through
the network, but a minimum level of motive power must be
met for each arc.

Past Work

Comprehensive reviews of rail scheduling are contained in
two papers by Assad (/,2) and one by Peterson (3). Some of
the earliest analytical work in locomotive assignment is that
of Bartlett in 1957 (4), who presented a pairing algorithm to
assign vehicles to a fixed schedule. Later, McGaughey et al.
(5) described the distribution of locomotives and cabooses
with a time-space network model. They used an out-of-kilter
algorithm to find the optimal flow of units through a single-
commodity network with a fixed lower bound on the power
supplied to each arc. In 1976 Florian et al. (6) considered the
multicommodity aspect of locomotive scheduling, with fixed
lower bounds. They used Bender’s decomposition to solve
this multicommodity flow problem and reported good results
with medium-size (about 200 train movements) problems but
had less success with larger problems. In 1980, Booler (7)
formulated the same multicommodity flow problem but
obtained an integer solution using a heuristic method based
on linear programming.

All of this work assumes deterministic, known lower bounds
on the power flows. Furthermore, there has been only limited
success with multicommodity flows, particularly with large
problems, as already mentioned. As the first step to the expla-
nation of our approach to the problem, the next section for-
mulates the locomotive allocation problem as a mathematical
program. Later we assume that the lower bound is not known
with certainty, and we reformulate the problem using a
penalty function.

FORMULATION

This section starts with the “traditional” mathematical pro-

gramming formulation of the problem. It then incorporates

the uncertamty in locomotive requlrements dlrectly into the
muilatinm nging cavarn 1 nrahaohility dan

£ Qi ot Af tha
L\)llllulull\}lj uulljs OvwyYLLan Pl\luuullll] \J\/llbll] Luu\,u\)un AP SN S ¥ LY

TRANSPORTATION RESEARCH RECORD 1251

power needs. The formulation and notation that follow relate
to the time-space representation of the locomotive assignment
problem.

Define the following:

i = arc number in the time-space network,
j = locomotive type,
x; = flow of locomotive type j on arc i,
H; = horsepower rating of locomotive type j
s; = horsepower flow on arc i (s, = 2Hx,),
x;, = vector of locomotive flows of type j on all arcs,
C(s;) = general operating cost function on arc i,
¢; = operating cost per unit HP flow on arc i,
I, = demand for power on trip arc i (this may be either
a deterministic value or a random variable),
F, = cumulative distribution function for /,,
f; = probability density function for /,,
p; = average demand for power (expected value of 1),
o; = standard deviation of demand for power,
P,-(“,-) = gcuerc"u peually cost function for power shortfall

on link i,
p: = penalty per unit of power shortfall on arc i,

Z(s;) = cost function on arc i (including operating cost and
penalty),
N = node arc incidence matrix for the time-space net-
work, and

b. = vector of sources and sinks for locomotive type j.

We first formulate the problem with deterministic lower bounds
on the power requirements, and then show how these lower
bounds can be modeled as random variables. That formula-
tion leads to the use of penalty functions in the objective of
the mathematical program. In all cases, we assume that the
lower bound is expressed in terms of horsepower, so that
combinations of locomotive types with the same total power
rating are interchangeable. The mathematical formulation is

min 3¢, (3,Hx,) (1)

subject to

3Hx, = I for all i (2)
= b, for all j 3)

x; integer and = 0 (4,5)

This is a multicommodity minimum cost network flow prob-
lem. The objective is to assign all locomotive types | to the
network, whose node-arc incidence matrix is N, at minimum
cost. The various locomotive types cannot be assigned sep-
arately because they all contribute to the power on each train
link. This bundling of locomotive types appears in the lower
bound constraint 2.

Recall that the original problem calls for uncertainty in
demand. Therefore, the fixed lower bound formulation of
Equations 1 through 5 may not be realistic. This is because
a fixed lower bound can be thought of as an infinite cost
penalty on flows below it. Such a cost function for an arc with
a lower bound of 5000 and cost per unit flow of ¢ is shown
in Figure 2. According to this cost function, 4999 HP on this
train has an infinite cost whereas 5000 HP has the lowest cost,

clearly an unrealistic situation in a world where the :nnn up
CiCany an unreansud Siuausn it a Wornag walre tac Jv

Smith and Sheffi

20 T - T T T T T T
w L
= T

10+
»
[=} B -
2 | c

1 ¢ L L | L 1 L L
0 5000 10000
Flow s (HP)

FIGURE 2 Arec cost function with deterministic lower bound.

20 T T T

Cost Z(s)
o
T

0 5000 10000

Flow s(HP)

FIGURE 3 Arc cost function with uncertain power demand.

requirement is actually a random variable, which can attain
values lower than 5000 HP. A more realistic cost function
(Figure 3) might be obtained by reasoning as follows:

Our forecast demand is 5000 HP but we know the forecast
might be off by as much as 1000 HP. Therefore, our safest
assignment would be to have 6000 HP on this train; 5000 HP
would probably work; 4000 HP would be unacceptable. How-
ever, we do not want a fixed lower bound of 6000 HP because
5000 HP may be all the power we have available.

To yield a cost function that looks like the one shown in
Figure 3, we move constraint 2 into the objective with a pen-
alty term. By doing so, we acknowledge that (a) power
requirements may vary in a random manner and (b) the lower
bound on power is not a hard-and-fast rule; rather, there is
a trade-off between service quality and the amount of power
supplied. This formulation provides a more realistic repre-
sentation and, arguably, makes the problem easier to solve.
Thus, rather than having the demand for power, /, as a fixed
lower bound, it is modeled as a random variable.

The shape of the cost function derived this way depends
on three elements:

1. The operating cost of additional power; we assume this
is some function, C(s;) of the power supplied, s;. This cost is
assumed independent of the demand, /;, and locomotive type;

47

2. The distribution of the demand for power, /;. The prob-
ability density function for /;is denoted by f; and its cumulative
distribution by F,. This distribution has mean p, and variance
a?; and

3. The magnitude and shape of the penalty, given a short-
age. This will have the form P,(/; — s,) (recall thats, = 3, Hyx,).
In the equations that follow, the subscript i is dropped to
make the notation easier to read.

The cost as a function of power supply, s, is Z(s). Given

the probability density function of /, this cost can be expressed
as follows:

Z(s) = C(s) + f TP - 5) () dl ©6)

As a tractable approximation to the normal distribution, we
assume that / follows a logistic distribution where

F()) = [1 + exp (/o) (. — D])

f) = (alo) exp((alo) (n = 1))
X [1 + exp((afo) (n — D)]* ®)

where a = w/\/3 =~ 1.81

The cost function, Z(s), now becomes

2 = @ + p fw i) di ~ ps jmf(l) di

& % p f I di + ps(FGs) — 1))

After integrating (by parts) the cost becomes
Z(s) = cs + (pola)log(1/F(s)) (10)

In the logistic distribution mentioned above, negative demand
is theoretically possible. However, the parameters are such
that this is not a problem in practice.

Cost functions were also derived for uniform and gamma
distributed demands, with some examples plotted in Figure
4. Note the following points:

1. All functions approach the o = 0 case asymptotically as
s becomes either very large or very small with respect to p;

2. There is not much difference between the cases with
logistic, uniform, and gamma distributions. This is reassuring,
because it indicates that the exact shape of the distribution
for demand may not matter much, and we can use the logistic
distribution to form a tractable cost function. Although the
gamma distribution is probably the most realistic represen-
tation of / (it never has values below zero), it does not yield
a closed form for Z(s) and, consequently, is difficult to work
with;

3. All functions have the desired shape (as in Figure 3). In
the remainder of the paper, we assume that the demand for
power !/ is logistically distributed with mean p and standard
deviation o.

48

T T 1 I T T T T
- —
¢ logistic o =I000HP
uniform o = IO00HP -
gamma o =|000HP
logistic o =2000HP =
uniform o =2000HP
gomma o = 2000HP 1
o =0 (fixed demand)

X 09D O+ 0

Cost Z(s)

0 5000
Fiow s(HP)

10000

FIGURE 4 Arc cost function under various demand
distributions.

The problem we are solving can now be summarized as fol-
lows: Minimize the total cost of flowing power on all arcs,
subject to the following constraints:

1. Flow conservation constraints are met for each power
class and

2. The number of locomotives on each arc is integer and
nonnegative.

In other words:

min Scs; + (pa/a) log(l + exp [(@w)(wes)D} (1)

subject to Nx; = b, for all j (12)

x; integer and = 0 (13,14)

(As before, s, is defined as 3,Hx; and a = 1.81.)

This representation, in addition to having the advantages
mentioned earlier, also lends itself well to the treatment of
uncertain end effect arcs, which can be modeled like trip arcs
with high o. The next section looks at solution approaches
for this problem.

SOLUTION APPROACHES

We have formulated a nonlinear, multicommodity integer net-
work flow problem. Exact solution techniques for such a prob-
lem are likely to be neither easy nor fast. This problem, how-
ever, is similar to the (multicommodity) traffic assignment
equivalent program. The traffic assignment problem deals
with the assignment of an origin-destination trip matrix to a
transportation network so as to minimize each user’s travel
time (or cost). In traffic assignment, the arcs have a fuzzy
upper bound that arises from highway congestion effects,
whereas our problem has a fuzzy lower bound arising from
power shortfalls. Both problems can be formulated as a solu-
tion to a convex program over network flows. The heuristic
used to solve the locomotive scheduling borrows from both

TRANSPORTATION RESEARCH RECORD 1251

the incremental assignment method and the Frank-Wolfe
algorithm used to solve the traffic assignment problem.

Review of Incremental Assignment and Frank-
Wolfe

In incremental assignment, wc start with zero flow on the
network and choose a number of increments, n. The algo-
rithm, then, in each of » iterations, greedily assigns 1/n of the
total flow along each shortest path from origin to destination.
Because the cost function is nonlinear, these shortest paths
may change with each iteration (8). Although this algorithm
can be set to maintain integrality of the solution, has intuitive
appeal, and is easy to impiement, it has a number of short-
comings. First, it does not always work, as shown through
counterexamples by Ferland et al. (9). Second, if it is to
produce reasonable solutions, the number of increments may
have to be very large, thus unduly increasing the running time.

The Frank-Wolfe algorithm (&) is a feasible direction method
and therefore starts with an initial feasible solution and moves
to improved solutions, maintaining feasibility throughout. It
does this by developing linear approximations to the objective
function and by solving linear subproblems to find the correct
distances to move in improving directions. With cost min-
imization and a convex objective function, the Frank-Wolfe
method does converge to the optimal solution and is easy to
implement on networks. Furthermore, a lower bound to the
optimal solution is provided at each iteration. Flows, how-
ever, are split between paths; thus integrality is lost. In most
traffic assignment problems, convergence is rapid (about five
iterations) but may be slowed if the solution is in a highly
nonlinear portion of the objective function (Z0).

The Two-Commodity Heuristic Approach

The heuristic presented here obtains a feasible solution to the
problem through incremental assignment, and then obtains
improvements through a feasible direction method. Unlike
Frank-Wolfe, it maintains integrality and exploits the inte-
grality of the problem by moving one locomotive unit at a
time, thus obviating the need for line searches in the feasible
direction method.

The heuristic runs in two phases. First, it loads the network
by assigning one unit at a time to shortest paths. This is
referred to as the GREEDY phase. Second, after the network
is loaded, it attempts improvements by sending flows around
augmenting negative cycles in an INTERCHANGE phase.
These augmenting cycles are similar to the augmenting paths
of maximum flow algorithms in that they include both forward
and reverse arcs; thus flow can be removed from an arc when
going against the flow direction. Both phases are outlined in
more detail below:

GREEDY Phase

Step 0. Initialization. Start with zero flow, and compute
arc marginal costs at zero flow.

Step 1. Send one unit down the shortest path from any
source to the supersink; update arc fiows. (Note that the order

Smith and Sheffi

in which units are selected will affect the outcome. For the
experiments here, the largest units were arbitrarily selected
first).
Step 2. Recompute arc marginal costs along that path.
Step 3. If all units have been sent, go to the INTER-
CHANGE phase, otherwise, go to Step 1.

Note that for large problems, this phase can be speeded up
by sending more than one unit at first. Also, saving the short-
est path tree rooted at the sink node and reoptimizing it after
every assignment (rather than recomputing the shortest path
at each iteration) offers another opportunity to speed up this
phase of the heuristic.

INTERCHANGE Phase

Step 0. Identify arcs that are candidates for improvement.
In the present implementation these are arcs with large neg-
ative marginal cost (i.e., trip arcs with insufficient power).

Step 1. Search for a flow-augmenting negative cycle involy-
ing some candidate arc. If no negative cycle can be found in
the network, stop. Otherwise, go to Step 2.

Step 2. Interchange flows around this cycle and update arc
marginal costs. Go back to Step 1.

The interchanges performed in the second phase are gen-
erally more complicated than simply sending one unit of flow
around the cycle. This is because the interchanges often involve
minor HP changes and thus may involve the exchange of two
locomotive types. For example, if our two locomotives types
have 2000 HP and 3000 HP, respectively, two interchanges
that would produce a small horsepower change would be:

1. Add one high-power and remove one low-power unit
on the arc that needs additional power (net change of 1000
HP) or

2. Add two low-power and remove one high-power unit
(net change of 1000 HP).

Within the heuristic, these interchanges are performed in the
following manner:

1. Create an ordered list of arcs that will benefit from more
power.
2. Attempt to find an improving interchange involving one
of the arcs on the ordered list. This is done as follows:
2a. Select the first interchange type.
2b. REPEAT.
Select the first arc.
REPEAT.
Try to find an improving interchange (flow-
augmenting negative cycle) with this arc and inter-
change type. If one is found, go to Step 3. Other-
wise, select the next arc
UNTIL all arcs examined.
Consider the next interchange type.
UNTIL all interchange types have been considered.
3. If we have found an interchange
Perform the interchange and update arc marginal
costs.

49

Update the ordered list of arcs, go back to Step 2.
Otherwise, we terminate, because no interchange can
be found.

Example

Consider a two-node network with two trip arcs and one
bypass arc (Figure 5). The arc costs are showr in Table 1.
The locomotive supply includes one high-powered (3000 HP)
and two low-powered (2000 HP) locomotives. The greedy
phase of the heuristic performs as follows:

1. Send the high-powered unit down arc 1.
2. Send a low-powered unit down arc 2.
3. Send a low-powered unit down arc 1.

We now have 5000 HP on arc 1 and 2000 HP on arc 2. Arc
2 is short of power.

arc 1
3000 HP arc 2
2000 HP (2)
bypass arc

FIGURE 5 Sample network.

TABLE 1 COSTS FOR THE EXAMPLE

NETWORK
arc 1 arc 2 bypass
Parameters
n 4200 3000 0
o 1000 1000 0
c 1 1 0
P 10 10 0
Costs
Flow (HP) arc 1 arc 2 bypass
0 42002 30024 0
1000 33016 21146 0
2000 24102 12837 0
3000 15596 6829. 0
4000 8919. 4837. 0
5000 6166. 5146. 0
6000 6208. 6024. 0
7000 7034. 7003. 0
8000 8005. 8000. 0

50

Moving to the interchange phase, we see that the high-
powered unit on arc 1 can be exchanged with the low-powered
unit on arc 2. After this exchange is performed, we are fin-
ished, as no more improving interchanges can be seen.

The progress of the heuristic in terms of the arc flows and
the objective function is plotted in Figure 6. The method
works by first moving in big jumps (whole units) toward the
optimal solution, then refining the solution by making smaller
jumps (interchanges).

Advantages and Disadvantages of the Heuristic
Approach

This double-phase heuristic has several advantages. First, it
maintains feasibility throughout. Second, by always moving
in an improving direction, the method is intuitively appealing.
Therefore, it may lend itself well to interactive use. Third, it
is easy to incorporate other side constraints into the frame-
work of this heuristic. Some of these are the following:

1. Prohibition of certain locomotive types from certain sec-
tions of track,

2. Assigning newer, more reliable, locomotives to high-
priority trains, and

3. Sending locomotives to home shops for scheduled
maintenance.

Finally, the heuristic is also quite fast and produces close to
optimal results in several test problems.

The disadvantages of this method are, first, its heuristic
nature: optimality is not guaranteed. In addition, the com-
plexity of the interchange phase increases as the number of
the commodities is increased beyond two. This was not a
problem in the case study reported later but may present
difficulty in other applications.

LOWER BOUNDS

Several lower bounds were derived to test the performance of
the heuristic. A lower bound may be (a) an optimal solution
to a relaxed version of the primal problem, (b) a dual feasible

T T L .

a—£ 7 @ Feasible Points
O 6
(@]
Qs
o
34
<
c 3
)
z 2
o
w oy
I 2 3 4 5 6 7
Flow on Arc | (IOOOHP)

FIGURE 6 Progress to the best heuristic solution.

TRANSPORTATION RESEARCH RECORD 1251

solution, or (c) some combination of the foregoing, such as a
dual feasible solution to a relaxed version of the primal. Two
lower bounds were derived for the problem discussed here.

Frank-Wolfe Relaxation

By relaxing the integrality constraint in the original problem,
we obtain a single-commodity (horsepower) network flow
problem with convex objective function. This can be solved
with the Frank-Wolfe (convex combinations) method already
reviewed. The Frank-Wolfe method provides both a feasible
solution and lower bound on the relaxed problem at every
iteration. This lower bound on the relaxed problem will, nat-
urally, also provide a lower bound on the original minimi-
zation problem in the following manner:

heuristic solution = optimal solution

= optimal solution to relaxed problem

v

lower bound to relaxed problem

Unfortunately, a complete relaxation of the integrality con-
straint in this manner may lead to a large gap between the
optimal solution and the optimal solution to the relaxed prob-
lem. Such a gap makes it difficult to evaluate the performance
of the heuristic.

Greatest Common Factor (GCF) Relaxation

This relaxation is based on the following observation: Any
feasible solution will have a horsepower flow in each arc that
is a multiple of the greatest common factor (GCF) of the
horsepower ratings. For example, if there are two locomotive
types rated at 2000 HP and 3000 HP, the flow on each arc
will be a multiple of 1000 HP. If there are three locomotive
types with ratings of 1750 HP, 2000 HP, and 3000 HP, the
flow on each arc must be a multiple of 250 HP. Any other
horsepower flow is infeasible because it cannot possibly be
produced as a combination of locomotive flows.

We can use this observation to transform the original net-
work problem with convex nonlinear cost function to a con-
ventional linear network flow problem with integral upper
bounds on the arc flows. This latter problem is easy to solve.
The steps in the transformation are

1. Let b = GCF of the locomotive power ratings.

2. Transform the cost function by making it piecewise lin-
ear with breakpoints at multiples of b. See Figure 7. Note
that the cost function remains convex and we change its value
only at points that cannot be generated by any combination
of locomotives.

3. Create n arcs (one for each division in the cost function)
for each original arc in the network (Figure 8). (We do not
need to add additional constraints because the cost function
is still convex, thus the arcs will be loaded in the correct
order).

4. Because our sources, sinks, and bounds are all multiples
of b, we can scale flows down by a factor of b without losing
integrality. The solution to this problem, when scaled back
up, wiil be a muitipie of b.

Smith and Sheffi

20 T | | T

0 b 2b 3b 4b
Flow s(HP)

FIGURE 7 Piecewise linearization of the arc cost function.

Z(s
from [(s) =9

upper bound =b

upper bound = b

upper bound = b

upper bound = b

upper bound = infinity

dy <d2<d3 <dg<dg

FIGURE 8 Transformation to a piecewise linear cost
function.

5. We now have a conventional minimum cost network
flow problem that will provide a valid lower bound on the
original problem because (a) all feasible solutions to the orig-
inal problem are feasible in this problem and (b) the cost
function was changed only at infeasible points in the original
problem. Note, however, that a feasible solution in this prob-
lem may not be feasible in the original problem. An example
would be an arc flow that is greater than zero but less than
the power rating of the smallest locomotive.

TEST PROBLEMS AND RESULTS

The heuristic was implemented in FORTRAN on a MicroVax
II running MicroVMS 4.5 and tested on 19 problems of four
time-space network configurations (Table 2). The smallest of
these networks is shown in Figure 1, and Problems L1-L8
were drawn from an actual 3-day train schedule for the Grand
Trunk Western Railroad.

The logistic form of the cost function was used in all cases.
The power requirements varied from 3000 HP to 15,000 HP
on the trip arcs, and locomotive supplies were fixed to be

51

“barely adequate.” The basic networks had p/c = 10, ¢ =
0.5, o/p = 0.20, but these were systematically varied in some
of the test problems. Table 2 shows these parameters and
results for the various networks. The heuristic-optimal values
of the objective function behaved reasonably, with the fol-
lowing configurations having increased costs over the baseline
(Problems S1, L1):

® Higher penalty term: Increasing the penalty term tenfold
approximately doubled the objective function (Problems 83,
L3):

@ Higher standard deviation: Increasing o/ from 0.1 to 1
also increased the cost substantially (Problems S5, L5).

e Lower power supply: Because the initial power supply
was “‘barely adequate,” reducing it increased costs somewhat
as more trains were underpowered (Problems §6, L6).

We would expect average running times to be a function
of both the number of locomotives supplied and of the size
of the network. In the cases here, as the networks became
larger, running times seemed to be O(nf) where n is the num-
ber of nodes and ¢ the number of locomotives. They were
reasonable in all cases, ranging from 0.5 sec for the smallest
network to 63 sec for the largest. This is acceptable because
it is envisioned that in an operating environment, the model
will be run about once per 8-hr shift rather than continuously.

The numerical results were normalized to the best lower
bound found, which was the GCF lower bound. The results
of the heuristic were, on average, within 3 percent of this
bound. These normalized results are shown in Table 2. Prob-
lems with a flat objective function (low p/c and high o/p —
problems S2, S5, L2, L5) tended to perform better with results,
on average, within about 1 percent of the lower bound. Con-
versely, problems with a highly nonlinear objective (S3, S$4,
L3, L4) give results that were on average only within 6-7
percent of the lower bound. The Frank-Wolfe algorithm also
tended to have poor convergence on these problems.

FURTHER WORK

We have developed a model that deals explicitly with the
uncertainty in power requirements. Moreover, the heuristic
used to solve this model is promising because it is both fast
and fairly accurate. Further research should focus on im-
provements to the heuristic and incorporation of schedule
variability.

The present implementation of the heuristic does not optim-
ize speed. Some improvements, mentioned eatlier, include
sending more than one unit at a time in the early stages of
the heuristic, and keeping and reoptimizing a shortest path
tree rooted at the supersink, rather than recalculating shortest
paths for each iteration. Another improvement to the heu-
ristic would be the incorporation of additional side constraints
and provision for more than two commodities.

Of possibly greater interest is the incorporation of schedule
variability. Although the model now assumes a fixed schedule,
one way to do this would be to incorporate the heuristic into
an interactive system that displays where and when shortages
of locomotives are likely to occur, and then allowing the user
to adjust the schedule accordingly before running the heuristic

TABLE 2 TEST RESULTS

GCF Normalized Costs:

Trial Trips arcs nodes kHP p/c o/u Cost greedy int FW FWLB GCF
Tl 3 15 10 13 100 0.1 18.8 1.017 1.017 0.998 0.951 1
T2 3 15 10 13 10 0.1 18.6 1.069 1.028 0.991 0.981 1
sl 9 42 25 52 10 0.1 123 1.025 1.018 0.995 0.984 1
s2 9 42 25 52 5 0.1 105 1.016 1.013 0.999 0.991 1
s3 9 42 25 52 50 0.1 249 1.066 1.044 0,988 0.978 1
S4 9 42 25 52 10 0.05 105 1.053 1.047 0.994 0.881 1
S5 9 42 25 52 10 1 254 1.002 1.000 1,000 0.996 1
S6 9 42 25 37 10 0.1 184 1.038 1.000 0.999 0.995 il
s7 9 42 25 67 10 0.1 110 1.065 1.008 0.996 0.979 X
M1 35 153 88 137 10 0.1 1156 1.034 1.011 1.013 0.976 1
M2 35 153 88 168 10 0.1 1085 1.035 1.031 1.004 0.976 1
L1 102 404 239 283 10 0.1 1531 1.065 1.035 1.020 0.933 1
12 102 404 239 283 5 0.1 1191 1.027 1.021 1.004 0.968 1
L3 102 404 239 283 50 0.1 3598 1.133 1.104 1.039 0.914 1
L4 102 404 239 283 10 0.05 1414 1117 1.067 1.034 0.886 1
L5 102 404 239 283 10 1 2475 1.014 1.010 1.005 0.992 1
L6 102 404 239 253 10 0.1 1577 1.062 1.048 1.017 0.960 1
L7 102 404 239 309 10 0.1 1484 1.068 1.046 1.015 0.927 1
L8 102 404 239 406 10 0.1 1454 1.041 1.020 1.009 0.919 1

average 1.050 1.030 1,006 0.957 &

Trips = number of trips in this network

kHP = total horsepower supply (thousands HP)

p/c = ratio of penalty to cost term

afu = coefficient of variation for power demand

GCF Cost

= Total cost (thousands $) for GCF relaxation

greedy = total cost after GREEDY phase / GCF Cost

int = total cost after INTERCHANGE phase / GCF Cost

FW = total cost of Frank-Wolfe solution / GCF Cost

FWLB = total cost of Frank-Wolfe lower bound / GCF Cost

GCF = total cost of GCF relaxation / GCF Cost

run time = total running time for the heuristic, excluding input/output

and computation time for relaxatioms.

Smith and Sheffi

again. However, to adjust schedules within the algorithm will
require consideration of systemwide train scheduling and cus-
tomer demand, both of which are very difficult to quantify.

ACKNOWLEDGMENT

This research was funded by the Grand Trunk Western
Railroad.

REFERENCES

1. A. A. Assad. Models for Rail Transportation. Transportation
Research, Vol. 14A, 1980, pp. 205-220.

2. A. A. Assad. Analytical Models in Rail Transportation: An
Annotated Bibliography. INFOR, Vol. 19, No. 1, 1981, pp. 59—
80.

3.

10.

53

E. R. Peterson. Operations Research and Rail Transportation.
In Scientific Management of Transport Systems (N. K. Jaiswal,
ed.), Elsevier North-Holland, New York, 1981, pp. 37-51.

. T. E. Bartlett. An Algorithm for the Minimum Number of Trans-

port Units to Maintain a Fixed Schedule. Naval Research Logis-
tics Quarterly, Vol. 4, No. 2, 1957, pp. 139-149.

. R. 8. McGaughey, K. W. Gohring, and R. N. McBrayer. Plan-

ning Locomotive and Caboose Distribution. Rail International,
Vol. 4, 1973, pp. 1213-1218.

. M. Florian, G. Bushnell, J. Ferland, G. Guerin, and L. Nastan-

sky. The Engine Scheduling Problem in a Raijlway Network.
INFOR, Vol. 14, No. 2, 1976, pp. 121-138,.

. J. M. P. Booler. The Solution of a Railway Locomotive Sched-

uling Problem. Journal of the Operational Research Society, Vol.
31, 1980, pp. 943-948.

. Y. Sheffi. Urban Transportation Networks. Prentice-Hall, Engle-

wood Cliffs, N.J., 1985.

. J. A. Ferland, M. Florian, and C. Achim. On Incremental Meth-

ods for Traffic Assignment. Transportation Research, Vol. 9,
1975, pp. 237-239.

S. E. Mimas. Equilibrium Traffic Assignment Models for Urban
Networks. Master’s thesis. Department of Civil Engineering,
Massachusetts Institute of Technology, Cambridge, 1984.

54

TRANSPORTATION RESEARCH RECORD 1251

System-Optimal Trip Scheduling and
Routing in Commuting Networks

GANG-LEN CHANG, HANI S. MAHMASSANI, AND MicHAEL L. ENGQuUIsT

A time-space network formulation is presented for the system-
optimal assignment to departure times and routes of traffic flows
from multiple origins to a common destination. Time is discretized,
and congestion is represented using simplified deterministic queuing
stations. The solution minimizes total travel time in the system
subject to arrivals at the destination taking place within a specified
time interval. Alternatively, a formulation is presented for the
minimization of a total cost measure consisting of a weighted sum
of the users’ travel time and schedule delay. The solution can be
obtained using efficient and widely available pure network optimi-
zation algorithms. A numerical application is presented to illus-
trate the methodology, including a network generator developed
for this purpose.

Peak-period congestion continues to be a severe daily annoy-
ance in most metropolitan areas where large volumes of com-
muters desiring to arrive at their destinations within a narrow
time interval compete for limited transportation system capac-
ity. No major innovations for combating congestion seem to
have emerged in the past 15 yr. Recently, the potential of
advanced information and communication technology for
congestion control appears to have rekindled interest and
effort in this problem. However, the design and evaluation
of various control strategies require deeper understanding of
the systems’ complex nature and methodologies with the capa-
bility to deal effectively with time-dependent flows in con-
gested networks.

Several contributions have addressed the problem of find-
ing a time-dependent flow pattern that satisfies dynamic user
equilibrium conditions in an idealized system consisting of a
single route containing a bottleneck and connecting a single
origin-destination pair (I-9). Extensions have included mul-
tiple routes and alternative assumptions on the system’s con-
figuration or behavioral mechanisms underlying tripmakers’
decisions (10-14). The day-to-day dynamics of the interaction
between commuter decisions and congestion in a traffic sys-
tem have also received some attention recently, using simu-
lation experiments (I5) and observational studies (16—19).
Relatively little attention has been directed toward the prob-
lem of solving for time-dependent traffic patterns that are in
some sense optimal from a total system cost standpoint.

Previous studies dealing with time-varying system-optimal
traffic patterns have followed one of two lines: (a) optimizing
the traffic-generation patterns in a given system with a single
route (and one bottleneck) or (b) assigning known time-

G.-L. Chang, Department of Civil Engineering, University of Texas at
Arlington; Arlington 76010. H. S. Mahmassani, Department of Civil
Engineering, University of Texas at Austin, Austin 78712, M. L.
Engquist, Management Science and Information Systems, University of

Tayag at Auctin Anctin 72719
2 CXGS At AUSun, AUSUL /S/ad.

dependent flows from multiple origins to a single destination
to the links of a network so as to minimize total system cost
(travel time). Research along the first line consists of analyt-
ical derivations or discussions of system-optimal departure
patterns, in connection with the aforementioned dynamic user
equilibrium studies in an idealized system in which a number
of commuters from the same origin are trying to arrive at a
common destination at the same time (6, 9). Extension to the
scenario of staggered work hours has been described else-
where (20). Discussions of system-optimal departure patterns
are also given by Hendrickson et al. (21), Fargier (5), and
Newell (14).

Contributions along the second line of research are limited
to situations where the time-dependent departures from mul-
tiple origins to a single destination are known, and congestion
is modeled using link performance functions intended for static
traffic assignment applications. As such, these are direct
extensions of the standard system-optimal network assign-
ment formulations. Merchant and Nemhauser (22, 23) for-
mulated the problem as a discrete time, nonlinear but non-
convex math program where the objective is to minimize the
total travel time spent by the given trips in the network. A
recent paper by Carey (24) reformulates that problem as a
convex nonlinear program, which is of course more attractive
computationally than the previous formulation, and discusses
possible extensions to more general situations.

The present paper addresses a more general system-optimal
state, which includes not only the assignment of known time-
varying flows to the links of a commuting network but also the
determination of the corresponding optimal time-dependent
traffic-generation patterns from the various origins, given con-
straints on desired arrivals at the destination. The paper pre-
sents a methodology for the system-optimal assignment of
commuters to departure times and routes subject to specified
constraints on acceptable arrivals. It consists of a time-space
network formulation that can easily be solved using existing
efficient network flow programming codes. The scope is still
limited to commuting systems with a single major destination,
such as a CBD or other large industrial or business employ-
ment center, but allows for multiple routes and multiple origins.
It is intended primarily as a tool to explore the potential
benefits that could be achieved from information-related and
demand-side strategies aimed at reducing congestion.

The next section presents the conceptual framework and
principal features of the proposed approach, followed by a
detailed formulation for the time-space network of principal
activities for a simple commuting system with a single route
and a single origin. Extension of the formulation to more

TR, ey .7 DN - ST, . {) WSTUNSRRRN, o UL, USISPRINGRSDY SRNAppeRnry: SRRPN, IF SO SN e
gelltldl diludliull wiLll lllull.llJlC Ioute aiid lllUlllplC Ullslllb n

Chang et al.

discussed in a later section, followed by presentation of a
numerical illustration. Finally, concluding comments and pos-
sible extensions are addressed.

MODEL FORMULATION

This section presents the key features of the time-space net-
work formulation, including the representation of the traffic
system. The context considered here is a commuting corridor
surrounded by residential areas. For convenience and ease of
presentation, we start with the simplest scenario, shown in
Figure 1, where only one highway facility exists in the corridor
for use by residents from adjoining areas in their daily com-
mute to the same work destination. Concern here is primarily
with the inbound, or home-to-work, direction.

For the purpose of analytical representation, the highway
facility is conceptually divided into a number of sections with
each including, at most, one entry ramp. The time spent in
any section or ramp depends on the facility’s service char-
acteristics and the generated time-dependent flow patterns.
In this formulation, the entire system is viewed as a network
of queuing stations. Using a simplified representation adopted
in several papers dealing with dynamic traffic assignment
(7, 10, 11, 25), each highway section can be viewed essentially
as a potential bottleneck with a given service rate (capacity).
If the flow is less than this service rate, then only the free-
flow travel time is incurred on the corresponding section;
otherwise, a waiting time in queue is incurred, representing
the excess travel time resulting from congestion. Likewise,
entrance and exit ramps can also be modeled as typical, deter-
ministic queuing stations with service rates depending on each
ramp’s physical capacity and control system (e.g., in the event
of ramp metering). Further detail is given hereafter.

Because we are dealing with only one day’s process at a
time, the system is considered for a given duration that includes
the earliest and latest possible (and meaningful) departure
times. Time is discretized into equal intervals of a suitable
small length At (in the order of a few minutes). The network
formulation of the system-optimal dynamic assignment prob-
lem can be obtained by analogy to the time-space relation of
individual vehicles traveling from the origin to the destination.
The network is akin to a trans-shipment problem where it is
desired to send flow units (tripmakers) from a set of supply
points (origins) to a demand point (destination) at minimum
cost using a network of arcs and nodes. The arcs correspond
to activities, generally involving an expenditure of time or
other cost, incurred on a per-flow unit basis; whereas the
nodes correspond to the beginning and/or end of activities.
The activities here include but are not limited to movement
on physical highway links.

Origin A

55

There are basically three categories of activities in the for-
mulation: departure from origins, travel on links (including
queuing at bottlenecks), and arrival at the common destina-
tion. Described are the formulation of each category as a
separate subnetwork and then their integration to form the
entire network for a given problem. The presentation is pri-
marily graphical in nature; the notational convention used in
the network formulation follows the work of Klingman and
coworkers (26) and is summarized in Figure 2.

Formulation of the Departure Activity

For a given origin (supply) node, each discrete departure time
alternative (of length Ar) is represented by a node, as shown
in Figure 3, with the earliest and latest possible departure
times denoted respectively by nodes DA, and DA, and the
intermediate nodes labeled sequentially. The total number of
commuters originating from location A constitutes the total
supply (in trans-shipment terminology) for node A, which is
connected to each of the associated departure nodes by a
unique outgoing arc. The flowon arc (A, DA,), k=1, ..., n,
obtained in the solution corresponds to the number of users
that depart from A in the kth time slice; the set of these flows
thus represents the optimal departure pattern of users at this
location. The departure time here is taken at the entry of the
highway facility. Thus arc (A, DA,) corresponds to local travel
from origin A to the facility. For simplicity, but without loss
of generality, we assume that the time cost of this travel is a
constant, T, associated with each arc (A, DA,),k=1,...,n.
This cost is not necessary from the perspective of model oper-
ation, however, because users at a given origin are uniquely
assigned to an entry point. A more detailed formulation could
let this assignment be determined in the optimal solution.
Commuters may have to join a queue or be otherwise delayed
at the entry point. The horizontal arc emanating from each
departure node (see Figure 3) is designated to carry only those
commuters actually entering the highway in that given inter-
val. The upper bound of flow through each arc, denoted as
C1, is used to control the maximum entry rate, reflecting
either physical capacity restrictions or the effect of traffic
control devices. The associated arc cost 71 represents the
travel time to the next “state,” a congested location in this
case. Because of the preceding capacity constraint, com-
muters departing simultaneously (i.e., in the same time slice)
may not all be allowed onto the facility at the same time.
Thus each departure node DA, is connected to the next depar-
ture alternative DA ; by arc (DA,, DA, ,), shown vertically
in Figure 3. This arc will carry the excess number of com-
muters at DA, who could not be served in a given time slice.
The resulting waiting time is then captured by the arc cost,

\b

Travelers

#Destinatlon CBD)

Origin B

FIGURE 1 An idealized commuting system for analysis.

O—EH—A—@

F&x) = hix) + I(x) + jix)
F(x) = Total Supply

(b)

Demand Node

Dix) = hix) + Jx)

(c)

V> 0] a e () G b

Supply Node Transportation Demand Node

(d)

FIGURE 2 Notation for the network formulation.

To Bottleneck Node

To Bottleneck Node

IT1| -
©.CH »-To Bottleneck Node
|11

@ 0.0 To Bottleneck Node

FIGURE 3 Graphical representation of the departure activity subnetwork.

Chang et al.

At, equal in magnitude to the unit departure time slice. An
upper bound on the flow on these waiting arcs can be specified
to reflect physical storage capacity limitations or policy
decisions.

Other trip generation sources, such as origin B in Figure
2, can also be represented in a similar manner.

Formulation of Congested Locations

It should first be noted that this representation is not intended
to capture the details of the traffic flow phenomena taking
place on the facility or the formation and dissipation of phys-
ical queues in the system. It is principally an approach to
calculate realistic travel times under congested conditions for
each link in the context of a pure network formulation of the
system-optimal, time-varying assignment problem. There may
not necessarily be a physical queue of stopped vehicles in the
actual system, even if traffic is highly congested. Instead, users
may be forced to slow down along some sections with partic-
ularly high concentrations. As noted in the previous section,
such congested locations are modeled as queuing stations and
are formulated as follows.

Two sets of nodes and associated connecting arcs are pro-
posed to model congested locations. As illustrated in Figure
4, the first set of nodes, denoted as BI,, k = 1, ... ,n,is
used to represent the arrival at the bottleneck, with nodes
BI, and BI, representing the earliest and latest arrival times,
respectively. Each node in the set {Bl,, k = 1, ..., n}is
connected by an arc (BI,, BO,), shown horizontally in Figure
4, to a unique corresponding node in the second set {BO,,
k = 1,...,n} designated to model the exit from the bot-

f;_l;
-

fr2]

0,9

)

O
[

FIGURE 4 Graphical representation of the bottleneck area
subnetwork.

57

tleneck. The upper bound on flow in each of these arcs is
defined by the bottleneck’s service rate S (i.e., the number
of users allowed to go through in a given time slice Af). The
associated arc cost 72 is the time through the section in the
absence of congestion. As in the formulation of the departure
activity, vertical arcs (in Figure 4) are specified from each
node BI, to node Bl .,k =1, ..., n, to carry the queuing
flow, with arc cost again equal to the unit waiting time At.
Note that no such arcs are shown in Figure 4 between con-
secutive BO, nodes because queuing should not occur imme-
diately upon exit from the bottleneck.

Finally, all arcs incident to the BI, nodes, except for the
queue-carrying vertical arcs, are intended to carry commuters
arriving at the bottleneck. Because each of these arcs origi-
nates at a departure node, the specification of the associated
arc cost and upper bound on flow must be consistent with
that specified in the departure formulation. Likewise, the arcs
leaving each of the BO, nodes carry the flow departing from
the bottleneck. No upper bounds are shown for these arcs in
Figure 4 because the flow has already been regulated by the
service rate S of the bottleneck, although we may want to
specify such upper bounds for more general systems.

Formulation of the Arrival Process

The formulation of the arrival process subnetwork depends
on the explicit definition of the system optimum sought. So
far, we have implied that the desired solution would minimize
total system cost, calculated as the sum of all arc costs incurred
by the assigned flows. These arc costs have in turn been spec-
ified as either uncongested travel times or delays due to
congestion at bottlenecks. We need to address further the
costs contributed to the objective function incurred in con-
junction with the arrival process, as well as the constraints
that need to be satisfied by this process. Now considered here
are two basic alternative formulations reflecting different
assumptions about the users’ preferences or cost function: a
satisfying formulation and a utility maximization one. We also
describe how variants can be modeled.

Before describing these two formulations and the under-
lying assumptions, it is useful to consider, qualitatively, the
nature of the departure patterns that can be expected in the
solution. First, it must be recognized that it is generally not
feasible for all users to arrive simultaneously (in a single time
interval Af) at the desired destination. There is a minimum
duration for the arrival period that is governed by the capacity
of the bottlenecks. If users were allowed to arrive at any time
before the official work start time, then one can almost always
find a solution that minimizes the total travel time in the
system and that involves absolutely no queuing (i.e., all the
vertical arcs in the network formulation would have zero flows).
Unfortunately, such a solution would likely exhibit so much
spread in the departure (and arrival) pattern that it would be
meaningless. In other words, we would have a trivial problem
if there were no constraints on either the range of possible
departures or the range of possible arrivals and if travel time
were the sole consideration in the objective function.

The first meaningful formulation we consider here con-
strains all arrivals to take place within a specified time band.
It is consistent with empirical evidence that workers like to
allow some extra time prior to the official work start time (18,

58

27); as such they may be indifferent to arrivals if they are
within a reasonable time band. Referring to a recent paper
by Mahmassani and Chang (12), it can also be noted that this
formulation would yield the “best” departure pattern among
the multiple patterns that satisfy boundedly rational user equi-
librium conditions for a given value of the indifference band,
assumed to be identical across users.

The sccond formulation places a penalty on the time between
actual arrival at the destination and the work start time, also
referred to as schedule delay. Thus the user’s utility function
would include both the travel time and the schedule delay,
the latter multiplied by a weight reflecting its valuation rel-
ative to travel time. This type of function would be consistent
with the classical microeconomic view of this problem, as
presented by Vickrey (9) and by Hendrickson and Kocur (7).
The solution would involve a trade-off between travel time
and schedule delay, which would lead to spread-out depar-
tures and arrivals and thus high schedule delays. We next
describe the network representation of the two cases, starting
with the satisfying formulation.

In all cases, we define a set of arrivalnodes D,,r =1, ..., n,
that define the arrival time alternatives, generally correspond-
ing to the departure nodes DA, through DA,. The satisfying
feature is included in the formulation by specifying the subset
of consecutive nodes from D, to D, as the acceptable range
of arrival times, as shown in Figure 5. All commuters are
supposed to traverse at least one of those nodes to end their
trips. Each of these nodes is connected to a supersink (or
total demand) node DE, the common destination, by arcs
(D, DE), with upper bound on flow denoted by C3 in Figure
5. This value may be the same across these arcs, representing

TRANSPORTATION RESEARCH RECORD 1251

the physical constraint for the arrival rate, or may vary across
arcs to reflect the operation of traffic control devices. Each
of the feasible arrival nodes is connected to the next one by
a vertical arc with cost Af to convey the queuing flow.

Unlike nodes D, through D,, nodes D, through D, ; are
not connected to the supersink. Vertical arcs with very high
costs (M) are specified between each pair (D,, D;,,), i =
1,...,k — 1. This will prevent flows in the network from
taking paths ending in an unsatisfactory arrival time (i.e.,
outside the band) unless there is no feasible solution for the
specified arrival time band. Obviously, nonzero flow on any
of the “big M” arcs in the final solution will be a sign of
unfeasibility, which could be resolved by widening the accept-
able arrival band to include additional arrival nodes.

Given the foregoing formulations of the three principal
activities, the network for the entire system can be constructed
through careful integration of the three subnetworks, as shown
in Figure 6 for the idealized commuting system of Figure 1.
We next describe how the formulation of the arrival process
can be modified to represent the utility maximization case.

Utility Maximization Formulation

As noted previously, the total trip cost of commuters depends,
under this rule, on the specification of the utility function. A
commonly used specitication in this context involves a trade-
off between trip time and schedule delay, of the form:

TC,, = (a-TR,) + (3 - b - SDE,))
+ (1 —38)-c-SDL;, €))]

Ds=Total travel demand
In the system

Ds=VA+VB

C3=Parameter denotes the
maximum arrlval rate

FIGURE 5§ Graphical representation of the satisfying formulation for the arrival

process subnetwork.

Chang et al.

59

FIGURE 6 Example network formulation for the idealized commuting system.

where

TC,, and TR,, = the total travel cost and travel time,
respectively, incurred by flow unit i
departing at time ¢;

SDE,, and SDL,, = the schedule delay for early and late
arrival, respectively, relative to the
desired arrival time;

a, b, and ¢ = parameters capturing the disutility of
a unit of travel time, schedule delay
for early and late arrival, respectively
(it is convenient to set a = 1 and scale
b and c¢ accordingly); and

8 = a binary variable equal to 1 for early
arrival and to 0 for late arrival.

We assume hereafter that all users are identical in terms of
the parameters of the preceding function. To capture this
trade-off between schedule delay and travel time, the network
formulation of the arrival process can be modified as shown
in Figure 7. Let node AR, denote the work starting time; the
other arrival time nodes form two groups: AR, to AR, _,
and LAR, to LAR,,, which correspond to early and late arrivals,
respectively. Only node AR, is connected to the total demand
node DE to force all flows, except those arriving at the AR,
node via a horizontal travel arc, to traverse the needed num-
ber of queuing arcs to reach AR, before they can terminate
their trips. The summation of the costs incurred on these arcs
yields the schedule delay cost. In this formulation, the spec-

ification of the arc cost consists of the time slice Az multiplied
by an appropriate factor consistent with the underlying utility
function (Equation 1); for instance, in Figure 7, the multipliers
EC and LC are equal to b/a and c/a, respectively.

The solution of the minimum cost trans-shipment problem
under the preceding specification of the arc costs will thus be
optimal for the system in terms of minimizing the total dis-
utility of system users. Several variants are possible here, such
as constraining all arrivals to occur within a particular time
band. In this case, a large number M can be imposed on all
vertical queuing arcs with at least one end outside the band
and the schedule delay costs on those entirely within the band
(still only node AR, would be connected to DE). Alterna-
tively, one can represent a utility function combining the
behavioral features of both the satisfying and utility maxi-
mizing formulation. In particular, an indifference band of
acceptable arrivals can be specified where all nodes in the
indifference subset are connected to DE and no cost is asso-
ciated with the vertical arcs connecting nodes in that subset.
Vertical arcs outside this band will, however, be assigned a
cost equal to the schedule delay disutility (but not large M).

The values of the relative weights of the various cost com-
ponents would of course have to be determined outside this
particular methodology. One use of this formulation is that
is allows the systematic investigation of the impact of these
relative valuations on the character of the optimal solution
and the associated total system costs. However, the assump-
tion of identical valuation across users may be too strong for
practical applications.

TRANSPORTATION RESEARCH RECORD 1251

LC.At

FIGURE 7 Network formulation of the arrival activity under the

utility-maximizing decision rule.

EXAMPLES OF MORE GENERAL SYSTEMS

In this section we describe the representation, in the context
of the preceding network modeling framework, of more gen-
eral situations encountered in commuting systems. Still deal-
ing with multiple origins, single destination systems, we first
consider multiple bottlenecks (in series) along a single route,
then multiple parallel routes. These types of systems have
also been considered by Ben-Akiva et al. (10, 11) in their
study of stochastic user equilibrium time-dependent flows.

Case 1: Multiple Bottlenecks Along a Single Route

Figure 8 depicts an example commuting system with two con-
gested sections, BA and BB, where commuters departing
from origin A have to traverse both sections, whereas those
from downstream origin B encounter only the second bottle-
neck, BB. The network formulation for this problem is shown
in Figure 9. Two sets of nodes {DA,i = 1, . . . , n}and {DB,,
j=1,..., n}, as defined previously, represent the feasible
departure time aiternatives of commuters from origins A and

B, respectively. The first bottleneck BA is modeled by a set
of node pairs, with each pair {(BA, and BA}), kK =1,..., n}
as described in the previous section. In the same manner,
activities in the second bottleneck are represented by the set
of node pairs, {(BB,, BB}), kK = 1, ..., n}. The cost and
upper bound associated with each arc are defined as shown
in Figure 9, in a manner similar to the basic model of the
previous section. Note that the set of arcs {(BA}, BB,),

=1, ..., n}corresponds to travel between the end of the
first bottleneck section and the beginning of the second; no
upper bounds on flow on these arcs need to be specified as
these flows are regulated by the upstream bottleneck and no
additional generation takes place in that sector. For the same
reason, no vertical arcs connect the BA} nodes. Finally, the
arrival process follows the satisfying formulation illustrated
in Figure 5, where the set of nodes {AR,, t = 1, ..., n}
corresponds to the array of possible arrival times and the
subset of those connected to the total demand node represents
the presumed acceptable arrival interval. It should be men-
tioned that the possible departure periods for the two origins
A and B are assumed to have an identical length and thus an
equal number of nodes, for clarity of presentation. This is not

Chang et al.

61

Bottlenack A \Bottleneck B /

J CBD-

/—“‘ e

Origin B

FIGURE 8 Commuting system with two bottlenecks along the single

route.

ﬂ@wﬂ@w
iy

c¥rl

FIGURE 9 Network formulation for commuting system of Figure 8.

necessary, however, as long as they are properly connected
to the rest of the network.

With the formulation of Figure 9, the system-optimal depar-
ture distribution patterns can be solved using any existing
minimum cost, linear network code that implements the net-
work simplex algorithm or its variants. See Kennington and
Helgason (28) for a discussion of these algorithms.

Case 2: Multiple Parallel Routes

In the commuting system of Figure 10, there are three parallel
routes, each containing two bottleneck sections, and com-
muters can choose their departure time as well as their route.
To construct the network formulation of such a system, we
can essentially follow the same procedure as in Case 1, with
each route being formulated independently as one sub-
network. Then all subnetworks are tied together at both the
common supply nodes and arrival nodes.

&

‘@ww

Figure 11 illustrates the resulting network formulation for
this system. Nodes DA, DB,, and DC,, k = 1, . . . , ndenote
the feasible departure period of commuters from location A
to travel through Routes A, B, and C, respectively. Node
pairs (Al,, Al¥) and (A2,, A2}), k = 1, , 1, represent
Bottlenecks 1 and 2, respectively, on Route A. Node pairs
(A3, A3}) and (A4,, A4}), k = 1, ..., n represent Bot-
tlenecks 3 and 4, respectively, on Route B. Node pairs (A5,
AS5Y) and (A6, A6}), k = 1,...,n correspond to Bot-
tlenecks 5 and 6, respectively, on Route C. The arrival process
is represented as before with a common set of nodes D, to
D, for the arrival period, with the subset D, to D, defining
the acceptable arrival time band.

Again, it should be noted that, for convenience of pres-
entation, the feasible departure periods for the three routes
in Figure 11 are assumed to consist of the same number »n of
time intervals. It is possible to let the feasible departure period
vary from route to route. However, attention should be given
to the formulation of the arrival period if the length of depar-

62

ture period is specified differently for different routes or if
travel times in the absence of congestion on each route are
not identical. Then the arrival time nodes D, and D,, should
correspond to the earliest and latest possible arrival times,
respectively, for any of the possible departure alternatives,
on any route and from any origin.

The commuting activities from origin B can also be formulated
in the same manner, but the complete graphical representation
is not incorporated in Figure 11 for clarity. With the complete

@
JE

BA4
Origin A \"2A%, »(ceo

FIGURE 10 Commuting system with multiple bottlenecks on
parallel routes.

TRANSPORTATION RESEARCH RECORD 1251

network thus formulated, the minimum cost flow pattern in the
network will yield the system-optimal assignment to both routes
and departures times. In this example, we have considered only
nonoverlapping routes. However, a more general transport net-
work can also be modeled in this framework, although the clarity
of the graphical presentation would suffer markedly. A numer-
ical example is presented in the next section along with some
comments on implementation.

NUMERICAL APPLICATION

To illustrate some of the issues involved in the application of
the methodological framework discussed in this paper and the
type of results one can expect, we describe an application to
the commuting system shown in Figure 12a. The system is
similar to that in Figure 10 in that it consists of two origins
(A and B) with access to two parallel highway facilities to the
common CBD destination. Each route contains two “‘bottle-
neck” sections, the first of which is traversed only by trip-
makers from origin A. A constant access time of 5 min is
assumed from each origin to the corresponding entry point
on the highway facility. Figure 12b shows the characteristics
(travel time, capacity per Af) of each spatial link. Each node

@l’ﬂ @@@E T4]
e O Sy

Chang et al.

o

63

ROUTE 1

origin
A

71 IN

ROUTE 2

N
(=)
7

N

Z
/ N\

(a)

F (10,60)

10,60
D(0,6)@(5,120)

(5,80) (5,120)
(5,120) (5,130)

’
5,120)

(5,130)

H »(J)—
(5,100).®(10,130) (5,100) -

Shown near each arc are the

(uncongested travel time in minutes, service rate in vehicles per At).
A At of 3 minutes is assumed in this example.

|

(b)

FIGURE 12 Commuting context and data for numerical example.

is assumed to generate a total of 960 vehicle trips during the
commuting period.

The network formulation involves adding the time dimen-
sion to model waiting times due to congestion and formulating
the departure and arrival processes. It should be apparent
that developing and coding the time-space network can be a
rather time-consuming task. As this network exhibits an obvious
repetitive structure, however, this task can be very effectively
supported by a network generating code. We have developed
such a network generator for commuting systems involving
multiple parallel routes with multiple origins. The program is
interactive and requires simple input on the number of origins,
number of routes, number of spatial nodes, operational char-
acteristics of each spatial arc (i.e., the highway sections and
ramps), total trips from each origin, size of the time slice At,
as well as the range of possible departure times from each
origin and acceptable arrival time band (for the satisfying
formulation described earlier). This obviously greatly simpli-
fies the practical use of this formulation, as the network can
now be generated in an interactive session that requires only
a few minutes. The network is then ready for solution by any
pure network optimization code. These codes are known for

their efficient execution and can easily handle networks with
tens of thousands of arcs, thereby alleviating concern about
the size of the network needed to model even relatively small
physical commuting networks.

For the example under consideration, we have executed
the algorithm for three different lengths (in minutes) of the
acceptable arrival band: 15, 36, and unconstrained (i.e., all
arrival time nodes in the range considered are connected to
the total demand sink node). The latter case is included to
provide a benchmark for comparing the effect of tightening
or relaxing the size of the acceptable arrival (indifference)
band on the departure patterns. It was assumed that 8:00 was
the common work start time, thus the indifference band would
correspond to 7:45-8:00 A.M., 7:24-8:00 A.M., and anytime
before 8:00 A.M., respectively. The case with 15 min is not
feasible, because that would imply a combined arrival rate
much in excess of the capacity of the bottlenecks on the two
routes. Actually, 36 min is the minimum feasible arrival period,
yielding a total system cost of 52,800 min and a uniform arrival
pattern of 160 arrivals per At (equal to 3 min in this example;
see Figure 12). Because this solution involves no queuing, it
cannot be improved on, as evidenced by the solution for the

64

700 T
w 60T
)
o
£ so0 ¢
@
&
O 400 T
o
= 300+ /o/
)
3 &
E 2007 P4
3 4
@
100 + 0—0—0—0—0—
[-]
0 b—F—0—0—0—0—0—

6:46 6:52 6:58 7:04

o }

TRANSPORTATION RESEARCH RECORD 1251

o—0O—0—0
/ ©Origin B, Routs 2

Origin A, Route 2
O O O OO
¢—o—0—0—0—¢
Origin A, Route 1

]
Origin B, Route 1
l—-l———-I/
7

.-
H
-+

Il
T

7:16 7:22 7:28 7:34 7:40

Time of Departure

FIGURE 13 Cumulative number of departures from each origin by route.

unconstrained case, which yields more spread out departure
and arrival patterns but at the same system cost.

The solution of the network optimization problem also
includes the departure pattern from each node (i.e., the set
of flows on the arcs connecting each origin to the possible
departure time alternatives on each route), the arrival pattern
at the CBD, the flows on the vertical queuing links, as well
as all the link flows, in addition to the value of the objective
function at optimality. The departure patterns from both ori-
gin A and origin B for each route are illustrated for the 36-
min arrival period in Figure 13.

CONCLUDING COMMENTS

In this paper, a network formulation framework was proposed
to solve for the system-optimal time-varying flows in urban
commuting networks, yielding optimal departure patterns from
each origin on each route as well as the dynamic assignment
of traffic to the network’s components. The solution of the
formulated problem can take advantage of state-of-the-art,
large-scale network optimization algorithms. Of course, the
representation of the traffic phenomena that may be occurring
on the facilities is admittedly crude and simplified; however,
this has been a problem in much of the network traffic assign-
ment work, for the static case and particularly for the time-
varying formulations. We feel that some compromises in
representation, when applied judiciously to preserve the char-
acter of the system insofar as the phenomena of interest are
concerned, are worth the resulting relative ease of the solution
procedure and thus the ability to explore and gain insight into
the various aspects of this problem.

It should further be noted that the work presented here is
not motivated by a desire to force people to leave at specified
times and on preset routes, or by a naive presumption that
they would comply if told to do so. Rather, it is intended to
generate a benchmark, an “ultimate” solution against which
to compare the effectiveness of various strategies, such as,
for example, flexible work arrival times. Furthermore, it can
be a useful tool to examine the potential of information-related

strategies, whereby users could be guided toward the optimal
solution. Of course, economists hold the view that one could
approach the desired state through pricing; this strategy is not
a particularly strong motivator for this work. Another appro-
priate application of this methodology is the development of
contingency evacuation plans for use during some emergency,
such as a hurricane or an incident at a nuclear power plant,
or for military purposes.

Several improvements and extensions of the methodolog-
ical framework can be considered. In terms of system rep-
resentation, extension to the many origins to many destina-
tions case would be most desirable. However, the penalty is
rather severe as the problem would then exhibit the features
of a capacitated multicommodity problem, which requires
additional assumptions for proper resolution, in addition to
the obvious increase in the level of complexity required in
the representation. Improvements in terms of traffic modeling
are certainly possible, but one would then have to sacrifice
the easy-to-solve pure network formulation.

ACKNOWLEDGMENTS

This paper is based on research funded by National Science
Foundation grant to the University of Texas at Austin. The
authors are grateful to Robert Herman for his encouragement
and contribution to their efforts in this general problem area.
This work has also profited from useful discussion with Andre
de Palma of Northwestern University.

REFERENCES

1. A.S. Alfaand D. L. Minh. A Stochastic Model for the Temporal
Distribution of Traffic Demand—the Peak Hour Problem.
Transportation Science, Vol. 13, No. 4, 1979, pp. 315-324.

2. M. Ben-Akiva, M. Cyna and A. de Palma. Dynamic Model of
Peak Period Congestion. Transportation Research, Vol. 18B, 1984,
pp. 339-355.

3. C. F. Daganzo. The Uniqueness of a Time-Dependent Equilib-
rium Distribution of Arrivals at a Single Bottleneck. Transpor-
tation Science, Vol. 19, No. 1, 1985, pp. 29-37.

Chang et al.

4.

10.

11.

12,

13.

14.

15.

16.

A. de Palma, M. Ben-Akiva, C. Lefevre, and N. Litinas. Sto-
chastic Equilibrium Model of Peak Period Traffic Congestion.
Transportation Science, Vol. 17, No. 4, 1983, pp. 430-453.

. P. N. Fargier. Effects of the Choice of Departure Time on Road

Traffic Congestion: Theoretical Approach. In Proc., Eighth
International Symposium on Transportation and Traffic Theory
(V.F. Hurdle et al., eds.), University of Toronto Press, Toronto,
1983, pp. 223-263.

. J. V. Henderson. Road Congestion: A Reconsideration of Pricing

Theory. Journal of Urban Economics, Vol. 1, 1974, pp. 346~
365.

. C. Hendrickson afd G. Kocur. Schedule Delay and Departure

Time Decisions in a Deterministic Model. Transportation Sci-
ence, Vol. 15, 1981, pp. 62-77.

. M. J. Smith. The Existence of a Time-Dependent Equilibrium

Distribution of Arrivals at a Single Bottleneck. Transportation
Science, Vol. 18, No. 4, 1984, pp. 385-394.

. W. S. Vickrey. Congestion Theory and Transport Investment.

American Economic Review, Vol. 59, 1969, pp. 251-261.

M. Ben-Akiva, A. de Palma, and P. Kanaroglou. Effects of
Capacity Constraints on Peak-Period Traffic Congestion. Trans-
portation Research Record 1085, TRB, National Research Coun-
cil, Washington, D.C., 1986, pp. 16-26.

M. Ben-Akiva, A. de Palma, and P. Kanaroglou. Dynamic Model
of Peak Period Traffic Congestion with Elastic Arrival Rates.
Transportation Science, Vol. 20, No. 3, 1986, pp. 164—181.

H. S. Mahmassani and G. L. Chang. On Boundedly Rational
User Equilibrium in Transportation Systems. Transportation
Science, Vol. 21, No. 2, 1987, pp. 89-99.

H. S. Mahmassani and R. Herman. Dynamic User Equilibrium
Departure Time and Route Choice on Idealized Traffic Arterials.
Transportation Science, Vol. 18, No. 4, 1984, pp. 362-384.

G. F. Newell. The Morning Commute for Nonidentical Travelers.
Transportation Science, Vol. 21, No. 2, 1987, pp. 74-88.

H. S. Mahmassani and G. L. Chang. Experiments with Departure
Time Choice Dynamics of Urban Commuters. Transportation
Research B, Vol. 20B, No. 4, 1986, pp. 297-320.

G. L. Chang. Departure Time Choice Dynamics in Urban Trans-
portation Networks. Ph.D. dissertation. Department of Civil
Engineering, University of Texas at Austin, 1985.

17.

18.

19,

20.

21,

22.

23.

24.

25:

26.

27.

28.

65

H. S. Mahmassani and G. L. Chang. Dynamic Aspects of Depar-
ture Time Choice Behavior in a Commuting System: Theoretical
Framework and Experimental Analysis. Transportation Research
Record 1037, TRB, National Research Council, Washington, D.C.,
1985, pp. 88—-101.

H. S. Mahmassani, G. L. Chang, and R. Herman. Individual
Decisions and Collective Effects in a Simulated Traffic System.
Transportation Science, Vol. 20, No. 4, 1986, pp. 258-271.

H. S. Mahmassani and C.-C. Tong. Availability of Information
and Dynamics of Departure Time Choice: Experimental Inves-
tigation. Transportation Research Record 1085, TRB, National
Research Council, Washington, D.C., 1986, pp. 33-46.

J. V. Henderson. The Economics of Staggered Work Hours.
Journal of Urban Economics, Vol. 9, 1981, pp. 349-364.

C. Hendrickson, D. Nagin, and E. Plank. Characteristics of Travel
Time and Dynamic User Equilibrium for Travel-to-Work. In Proc.,
Eighth International Symposium on Transportation and Traffic
Theory, (V. F. Hurdle et al., eds.), University of Toronto Press,
Toronto, 1983, pp. 321-347.

D. K. Merchant and G. L. Nemhauser. A Model and an Algo-
rithm for the Dynamic Traffic Assignment Problem. Transpor-
tation Science, Vol. 12, 1978, pp. 183-199.

D. K. Merchant and G. L. Nemhauser. Optimality Conditions
for a Dynamic Traffic Assignment Model. Transportation Sci-
ence, Vol. 12, 1978, pp. 200-207.

M. Carey. Optimal Time-Varying Flows on Congested Networks.
Operations Research. Vol. 35, No. 1, 1987, pp. 58-69.

V. F. Hurdle. Equilibrium Flows on Urban Freeways. Trans-
portation Science, Vol. 15, No. 3, 1981, pp. 255-293.

D. Klingman, N. Phillips, D. Steiger, R. Wirth, R. Padman, and
R. Krishnan. An Optimization-Based Integrated Short-Term
Refined Petroleum Product Planning System. CBDA 123. Center
for Business Decision Analysis, Unversity of Texas at Austin,
1985.

C. Hendrickson and E. Plank. The Flexibility of Departure Times
for Work Trips. Transportation Research A, Vol. 18A, No. 1,
1984, p. 25-36.

J. L. Kennington and R. V. Helgason. Algorithms for Network
Programming. John Wiley & Sons, New York, 1980.

66

TRANSPORTATION RESEARCH RECORD 1251

An Application of Optimal Control
Theory to Dynamic User Equilibrium

Traffic Assignment

Byung-Woox WIE

Optimal control theory is applied to the problem of dynamic traffic
assignment, corresponding to user optimization, in a congested
network with one origin-destination pair connected by N parallel
arcs. Two continuous time formulations are considered, one with
fixed demand and the other with elastic demand. Optimality con-
ditions are derived by Pontryagin’s maximum principle and inter-
preted as a dynamic generalization of Wardrop’s first principle.
The existence of singular controls is examined, and the optimality
of singular controls is assured by the generalized convexity con-
ditions. Under the steady-state assumptions, a dynamic model with
elastic demand is shown to be a proper extension of Beckmann’s
equivalent optimization problem with elastic demand. Finally, the
derivation of the dynamic user optimization objective functional
is demonstrated, which is analogous to the derivation of the objec-
tive function of Beckmann’s mathematical programming formu-
lation for user equilibrium.

The objective of this paper is to explore the application of
optimal control theory to the problem of dynamic traffic
assignment corresponding to user optimization. Two contin-
uous time optimal control problems will be formulated, one
with fixed demand and the other with elastic demand. The
present paper is concerned with dynamic extensions of the
steady-state network equilibrium model, particularly Beck-
mann’s equivalent optimization problem, which is a mathe-
matical programming formulation (1). This formulation is based
on the steady-state assumptions:

(1). The average arc travel cost is some known function of
the total traffic flow traversed during the period of analysis;

(2). Travel demands associated with each origin-destination
(O-D) pair are constant over time; and

(3). Flow entering each arc is always equal to flow leaving
that arc during the period of analysis.

Hence, the relaxation of the steady-state assumptions lead to
the problem of dynamic traffic assignment in which the net-
work characteristics are explicit functions of time.

A pioneering research in dynamic traffic assignment was
accomplished by Merchant and Nemhauser (2-4). They for-
mulated the model as a discrete time, nonlinear, and non-
convex mathematical program corresponding to system
optimization in a multiple-origin single-destination network.
They showed that the Kuhn-Tucker optimality conditions can
be interpreted as a generalization of Wardrop’s second prin-

Department of City and Regional Planning, University of Pennsyl-
vania, Philadelphia 19104,

VA

ciple, which requires equalization of certain marginal travel
costs for all the paths that are being used. The behavior of
their dynamic model was also examined under the steady-

be a proper generalization of the conventional static system
optimal traffic assignment model.

The algorithmic question of implementing the Merchant-
Nembauser (M-N) model was resolved by Ho (5). He showed
that, for a piecewise linear version of the M-N model, a global
optimum is contained in the set of optimal solutions of a
certain linear program. He also presented a sufficient con-
dition for optimality, which implies that a global optimum
can be obtained by successively optimizing at most N + 1
objective functions for the linear program, where N is the
number of time periods in the planning horizon.

Recently Carey (6) resolved a hitherto open question as to
whether the M-N model satisfies a constraint qualification. It
was shown that the M-N model does in fact satisfy a constraint
qualification, which establishes the validity of the optimality
analysis presented by Merchant and Nemhauser (4). More
recently, Carey (7) reformulated the M-N model as a convex
nonlinear mathematical program. As a consequence, the new
formulation could have analytical, computational, and inter-
pretational advantages in comparison with the original M-N
model. In particular, the Kuhn-Tucker conditions are both
necessary and sufficient to characterize an optimal solution;
in the M-N model, however, they are not sufficient because
the constraint set is not convex.

In contrast with the atorementioned mathematical pro-
gramming approaches, Luque and Friesz (8) provided a new
insight into the problem of dynamic traffic assignment through
the application of optimal control theory. They formulated
the M-N model as a continuous time-optimal control problem
corresponding to system optimization. The optimality conditions
were derived by applying Pontryagin’s maximum principle, and
economic interpretation was conducted and compared with those
obtained from Merchant and Nemhauser (4).

It is worth noting that the Merchant-Nemhauser model and
its extended models consider a system-optimized flow pattern
that satisfies a dynamic generalization of Wardrop’s second
principle. In general, a traffic flow pattern obeying Wardrop’s
second principle minimizes the total transportation cost of the
network as a whole, and it can be regarded as the most desir-
able flow pattern for society. In the present paper, however,
we are interested in a user-optimized flow pattern obeying a
dynamic generalization of Wardrop’s first principle, which

Wie

requires equalization of certain unit travel costs for all the
paths that are being used. Suppose that travel demands are
time-dependent but fixed in a multiple O-D network. The
problem of dynamic traffic assignment corresponding to user
optimization can be viewed as a noncooperative game between
players associated with various O-D pairs and departure times.
Wardrop’s first principle can then be generalized for dynamic
traffic assignment such that:

Individual drivers attempt to minimize their own travel costs
by changing routes. At each instant in time, no one can reduce
his or her travel costs by unilaterally changing routes; there-
fore, the unit travel costs on paths used by drivers who have
the same departure time and O-D pair are identical and equal
to the minimum unit path costs for that O-D pair.

Our analysis is restricted to the network with one O-D pair
that is connected by N parallel arcs, as shown in Figure 1. It
is also assumed that there is one transport mode—for exam-
ple, private automobile. Note that A is the set of directed
arcs. We will use index a to denote a directed arc. We will
consider a fixed planning horizon of length 77 that is, all
activities occur at some time ¢ € [0, T)]. In the remainder of
this paper, traffic flow is defined as the average number of
vehicles passing a fixed point of an arc per unit of time, and
traffic volume is defined as the total number of vehicles accu-
mulated on arc a at some time ¢ € [0, 7.

Our dynamic model is related to models proposed by Hur-
dle (9), Hendrickson and Kocur (/0), Mahmassani and Her-
man (I7), Mahmassani and Chang (12), de Palma et al. (13),
Ben-Akiva et al. (/4,15), Smith (16), Daganzo (17), and New-
ell (I8). But our model differs in important aspects, which
include its formulation as a continuous time optimal control
problem. We do not attempt to compare our model with
models proposed by the authors just cited. One may refer to
Friesz (19) and Alfa (20) for literature reviews on the dynamic
network equilibrium models proposed to date.

ASSUMPTIONS
Exit Function

The flow leaving arc a € A is a function of the traffic volume
accumulated on that arc at time ¢ € [0, T]. The exit functions
g.[x.()] are concave, differentiable, nondecreasing, and non-
negative for all x,(f) = 0, with the additional restriction that
8.0) = 0 (Figure 2).

—_

67

Demand Function

Denote by 6[t,D()] the inverse of the travel demand function
where D(¢) is the travel demand between origin and desti-
nation at time ¢ € [0,7]. The function 6[¢,D(¢)] is strictly
monotone, decreasing, differentiable, and nonnegative for all
D(f) = 0 and has a different function at each time t € [0, 7]
for time-dependent elasticity of demand (Figure 3).

Cost Function

The travel cost on arca € A is a function of the traffic volume
accumulated on that arc at time ¢ € [0, T]. The cost functions
C,[x.(9)] are convex, differentiable, nondecreasing, and non-
negative for all x,(f) = 0. Note that the travel cost on arc
a € A is simultaneously a function of the exit flow of that arc
at time ¢ € [0, TY; that is, C,[x,(¢)] = C,{g.[x.()]} (Figure 4).

8alxa(t)]

0 %z 1)

FIGURE 2 Exit function.

6{t, D(1)]

v

0 D(t)
FIGURE 3 Demand function.

Origin

Destination

N

FIGURE 1 Simple network with N parallel arcs.

68

Calxa(t)]

G
i
0 Xa(t)
N
Cal@alXa(t)])
0 8alxa(t)]

FIGURE 4 Cost function.

DYNAMICS AND CONSTRAINTS

The dynamic evolution of the state of arc a € A is described
by the first-order nonlinear differential equations:

X(0) =

u(t) = glxa(0]

VaeA t€[0, 7] (1)

dx.(t) _
dt

where

x,(f) = the state variable, denoting the traffic volume
on arc g at time ¢;
u,(t) = the control variable, denoting the flow entering
arc a at time ¢;
glx.()] = the flow leaving arc a at time ¢; and
X,(f) = the time derivative of the state variable.

Because the state variable is an explicit function of time, x,(¢)
can be interpreted as the instantaneous rate of change in the
traffic volume on arc a with respect to time, which is the
difference between inflow and outflow on arc a. Equation 1
is called the state equation in this paper. We can see that the
state equation is linear in the control variable and nonlinear
in the state variable because of nonlinearity of the exit func-
tion g, [x,(f)] with respect to the state variable.

For the origin node, the flow conservation constraints can
be stated as

2, ut) = D()

aE A

Vie[o, T] @)

TRANSPORTATION RESEARCH RECORD 1251

Equation 2 requires that the number of trips generating at
the origin node at time ¢ must be equal to the summation of
the control variables over all arcs at time ¢. Note that D(f)
would be exogenously determined in the dynamic model with
fixed demand and endogenously determined in that with elas-
tic demand; see following sections of this paper.

In addition, we assume that the traffic volume on arc a is
a known positive constant at time ¢ = 0:
x,(0) = x? YVaeg A 3)
We also ensure that both the state variable and control var-
iables are nonnegative for all arcs and ¢ € {0,7]:

LH=0 VYaceA t€][0,T] (4

u() =0 VYa€eA te€]0,T] (5)
Because the assumption that g,(0) = 0 ensures that the state
variables are always nonnegative, we do not subsequently
consider constraints (Equation 4) in an explicit manner. For
simplicity, we do not impose the upper bound on the control
variables as a physical constraint, indicating the maximum
inflow admitted to arc a. Definex = (.. ., x,, .. .)and u =
(..., 4, . ..). To save notational efforts, the following set
is used as the set of feasible solutions.

Q = {(x,u) : Equations 1, 2, 3, and 5 are satisfied} (6)

DYNAMIC USER EQUILIBRIUM TRAFFIC
ASSIGNMENT WITH FIXED DEMAND

Model Formulation

Suppose the number of trips generating from the origin at
each time ¢ € [0, T] is fixed and known. We postulate that
the following continuous time optimal control problem has a
solution that is a user-optimized flow pattern satisfying a
dynamic generalization of Wardrop’s first principle:

T (xalr)
Minimize J, = >, f f C,(w)g,' (w) dw dt
a € A/07J0

subject to (x,u) € Q @)

The performance index J, is the summation of an integrated
integral over all arcs in the network. The derivation of J, has
the same analogy to that of the objective function of Beck-
mann’s equivalent optimization problem with fixed demand.
The detailed derivation of J, is shown in the appendix. Because
the performance index J; does not have any intuitive economic
interpretation, it should be viewed as a mathematical con-
struction to solve the problem of dynamic user equilibrium
traffic assignment. When J, achieves its minimum value, the
control problem (Equation 7) provides us with a user-
optimized traffic flow pattern that is described by the optimal
trajectories through time of both the state and the control
variables. Note that the control problem (Equation 7) is for-
mulated in the Lagrange form because we do not impose any

Wie

state constraint at the terminal time 7. We shall suppress the
time notation (f) when no confusion arises.

Optimality Conditions

The necessary conditions for an optimal solution of the control
problem (Equation 7) can be derived by Pontryagin’s maxi-
mum principle [Pontryagin et al., (27)]. As a first step in
analyzing the necessary conditions, we construct the Hamil-
tonian:

= 3 [Cmp w3 vl -]

+ 'J'[D - a;Aua] + agABa.[_ua] (8)

where v,(¢) is the costate variable associated with the ath state
Equation 1; p(f) is the Lagrange multiplier associated with
the flow conservation constraints at the origin; and B,(f) is
also the Lagrange multiplier associated with nonnegativity of
the ath control variable.

We can obtain the first-order necessary conditions, also
known as the Euler-Lagrange equations in the calculus of
variations. The differential equations governing the evolution
of the costate variables vy, are given from the Hamiltonian
(Equation 8), which require [see Bryson and Ho, (22)]:

oH _ .
py YVa

= [Cx) — Vol 8'(x) Va€A t€][0,T])
Equation 9 will be called the costate equation. Boundary
conditions on the costate variables are obtained by the trans-
versality conditions:

YAT) =0

According to Pontryagin’s maximum principle, the Ham-
iltonian must be minimized at each time ¢ € [0, T]. The Kuhn-
Tucker optimality conditions for i to be an optimal solution
that minimizes the Hamiltonian are readily obtained as:

VacA (10)

oH
—=0=vy,-u-B Vaca (11)
B.=z0 and B, -u, =0 Vac A (12)

In the terminology of optimal control theory, dH/du, is often
called impulse response function because the gradient of the
Hamiltonian with respect to the control variable represents
the variation in the performance index J, as a consequence
of a unit impulse in the corresponding control variable at time
t, while holding x2 constant and satisfying the state equation
(Equation 1). In particular, Equation 12 contains the com-
plementary slackness conditions to take into account non-
negativity of the control variables.

The preceding necessary conditions for optimality may be
collected in the following compact form:

Vo= [Calxa) — valgix.) Ya€A (€][0,T] (13)

69

YT) =0 Va€A (14)
Y.~ w=0 VacA t€[0,T] (15)
Uy, (Y, —) =0 VacA (€][0,T] (16)

The optimality conditions (Equations 13—16) can be under-
stood such that if at some time ¢t € [0, Ty, > pforalla €
A, the flow entering arc a is equal to zero, and if y, = p, u,
is either zero or singular in nature. Singular‘control is dis-
cussed further in the next section. It is implied that the quan-
tities determining the control variable u, are the value of
[y2 — w), which is the difference between the costate variable
and the Lagrange multiplier. Hence, we may conjecture that
the optimality conditions are analogous to the principle of the
flow of electricity, in which electric current moves from a
node with higher voltage to a node with lower voltage.

The Arrow-Kurz sufticiency theorem (23, 24) ensures that
the necessary conditions are also sufficient when the Hamil-
tonian is convex in the state variables. We can see that the
Hamiltonian (Equation 8) is convex in the state variables
under the assumptions made previously. Hence, the opti-
mality conditions (Equations 13-16) are necessary and also
sufficient.

Singular Controls

Because the Hamiltonian (Equation 8) is linear in the control
variable, the gradient of the Hamiltonian with respect to u,
does not depend on the control variable. Therefore, the opti-
mality conditions for u to be an optimal control that min-
imizes the Hamiltonian provide no useful information to
determine the optimal control in terms of the state and costate
variables. In this case we must take successive time derivatives
oH
of — =
du,
by using the state Equation 1 and the costate Equation 9 until
we find an explicit expression for the control variables. The
optimal control determined by this procedure is called a sin-
gular control. A finite time interval for which a singular con-
trol exists is called a singular interval. An extremal arc on

Y. — & — B, and make appropriate substitutions

. . . d | oH
which the determinant of the matrix at— e vanishes iden-
i U

a o

tically is called a singular arc.

To determine the singular control, we must use the fact
that successive time derivatives of the gradient of the Ham-
iltonian would be also constant and equal to zero on a singular
arc. The first and second time derivatives of the gradient
of the Hamiltonian with respect to u, give the following
relationship:

Y.=pR and J,=|i Va€A t€(t,,]C[0,T] a7

We substitute the costate equation (Equation 9) into the first
relationship in Equation 17:

(Co— Vg + =0 (18)

The second time derivatives of Equation 18 are calculated:

(Cka = Va)ga + (Co — Va)8a %, + o =0 (19)

70

By using the state equation (1), we may manipulate Equation
19 to yield the following expression for the singular control:

, o bel = it [Cg + (G~ pgalg.
i Cog. + (C, — gl

VacA te(,] C|0,T] (20)

One may ask whether the singular control given by Equa-
tion 20 is optimal or not. To answer this question, we shall
derive the necessary conditions for optimality of singular con-
trols. The generalized convexity condition can be obtained
elsewhere (22):

o [a2[eH ., g
2 [ﬁ [EH = =€, =)5, — Cgi =0

VaeA te [, C[0, T 21

According to the costate equations (Equation 9) and assump-
tions made earlier, the generalized convexity conditions are
satisfied. Hence, we can conclude that the singular control
(Equation 20) is optimal.

Dynamic User Equilibrium Principle

The important question now arises as to whether or not a
traffic flow pattern, described by time trajectories of the state
and control variables as an optimal solution of Equation 7,
satisfies a dynamic generalization of Wardrop’s first principle.
To answer this question, we define the following function by
manipulating the costate equation (Equation 9):

Q,(0)=Cu(x,) +Va/8alx.) Va€A (€[0,T] (22)
It is well known that when the performance index /, achieves
its minimum value J{,we have the following properties (22):

Y
Yo() = ax.()
coa _ df ay
Y6) = dt<—r1r,,(r)> VaeA t€][0,T] (23)

We see that v,(¢) is the time rate of change in the value of
the performance index J; as a consequence of a change in the
corresponding state variable x,(¢) along the optimal state tra-
jectory at time ¢ € [0, T]. Therefore, we may interpret ®@,(f)
as the sum of static and dynamic terms: C,(x,) is the unit
travel cost on arc a that is equilibrated in the static user
optimization problem; and +,/g, is regarded as the contri-
bution to arc unit travel cost due to the dynamic nature of
our control problem. In the present paper, we call @, (f) the
instantaneous travel cost on arc a € A at time ¢ € [0, T).
We are now ready to state and prove the following theorem:

Theorem 1: If at some time ¢t € [0, T], u, > Ofor alla € A,
then ®,(t) = inf {®,(f) : V a € A}.

TRANSPORTATION RESEARCH RECORD 1251

Proof. From the costate equation (9), we see that
D) = Culxa) + Val8a(xa) = Yo
VaeA t€][0,T] 24)

However, from Equation 15, we know that

Yo = B Vace A t€]0, T] (25)

It follows at once from Equations 24 and 25 that

D (1) = Vae A, te [0, T] (26)

Wa alen | ; that of N for
YY U didy 1

oW +h
oW i §

K 1at if u, > U ior alla C A, uicn Equatiﬁﬁ 25
holds as an equality because of the complementary slackness
conditions of Equations 15 and 16. Hence, the theorem is
immediately proved.

Theorem 1 tell us that user equilibrium conditions hold at
each instant in our dynamic model. Hence, we regard Theo-
rem 1 as a dynamic generalization of Wardrop’s first principle,
which is termed the Dynamic User Equilibrium Principle in
the present paper. But it is restricted to a network with one
O-D pair connected by N parallel arcs. This principle can also
be restated at each instant r € [0, T:

D) =P() =. ... = BUO=Dy (=, .. .=DN() 27)
u (>0 fora=1,2,. ...,k (28)
u(y=0 fora=k+1,....,N (29)

DYNAMIC USER EQUILIBRIUM TRAFFIC
ASSIGNMENT WITH ELASTIC DEMAND

Model Formulation

Suppose that travel demands change in response to travel costs
between the elements of an origin-destination pair. We pos-
tulate that the following continuous, time-optimal control
problem has a solution that is a user-optimized flow pattern
obeying a dynamic generalization of Wardrop’s first principle:

T (xa(r)
Minimize J, = D, f f C.(w)gl(w) dw dt
ae A JO JO (30)

J‘T J’D(r)
ol 0(t, y) dy dt

subject to

(x,u) € Q
DO = T u)

a e

where D(¢) is the number of trips generating at the origin at
time ¢ € [0, T] and 0[¢, D(¢)] is the inverse of the travel demand
function. Note that D(¢) is determined endogenously in the
control problem (Equation 30). The performance index J, is
decomposed into two terms: the performance index J; and an
integrated integral of the inverse demand function.

Wie
Optimality Conditions

To analyze the necessary conditions, we construct the Ham-
iltonian:

H=3 [comgondw - | 06, ay

PR T ACH B S ES (1)

It is important to note that the second term of H is strictly
concave in the control variable u, because the integral of a
monotone decreasing function is strictly concave. The nega-
tive of a strictly concave function is, however, a strictly convex
function.

The costate equations and transversality conditions are
identical to Equations 9 and 10, respectively. The Kuhn-Tucker
optimality conditions for the minimization of the Hamiltonian
(Equation 31) with respect to the control variables are obtained:

A 0=y -0, Sul-B Vaca (32)
Bu,, acA
B.=0 and B, -u, =0 Vace A (33)

We may collect the necessary conditions for optimality of
the problem of dynamic user equilibrium traffic assignment
with elastic demand in the following compact form:

—Ya = [Calxs) = Yl 8alx) Va€EA t€[0,T] (34
v(T)=0 YaEA (35)
Yo—08=0 Va€EA te€[0,T] (36)
U, (v.—9)=0 Ya€A t€[0,T] (37

It can be understood from the optimality conditions (Equa-
tions 34—37) that if at some time ¢t € [0, T] vy, > 6 for all a
€ A, the flow entering arc a is equal to zero; and if vy, = 0,
then u, is explicitly determined by the state equation (Equa-
tion 1) and the costate equation (9) as a solution of a two-
point boundary-value problem. It is worth noting that the
control problem (Equation 30) does not have singular
controls.

The Arrow-Kurz sufficiency theorem (23, 24) ensures that
the optimality conditions (Equations 34-37) are necessary
and also sufficient, because the Hamiltonian (Equation 31) is
convex in the state variables under the assumptions made
previously. In addition, Theorem 1 holds for the dynamic
model (Equation 30) except for the fact that p(¢) is replaced
by 6[¢, D(f)] in Equations 25 and 26.

Equivalency Under the Steady-State Assumptions

We wish to assure that the control problem (Equation 30) is
a proper dynamic extension of Beckmann’s equivalent optimi-
zation problem with elastic demand. To do this, we examine
the behavior of our dynamic model under the steady-state
assumptions, such that the time rate of a change in the traffic

71

volume on each arc would be zero during [0, 7| and travel
demands would be constant over time.

Through a change of the variables of integration, we may
rewrite the first term in the Hamiltonian (Equation 31) and
have the following relation:

e ga(xa)
n; i L Cuw)g.(w) aw = agA J; C,(s) as (38)

Let f, denote the flow on arc a because u, is always equal to
g.(x,) under the steady-state assumptions. In addition, the
inverse of the demand function is denoted by 6(D). We are
now ready to formulate our dynamic model (Equation 30) as
a nonlinear convex mathematical program under the steady-
state assumptions as follows:

Minimize Z(, D) = 3, f: " Cys) ds — L “om)dy (39

subject to

D=2 f. (40)
aEA

f,=0 YVacg A (41)

D=0 (42)

The Kuhn-Tucker optimality conditions for the problem
(Equations 39 through 42) can be readily obtained as

flC(f) =N\ =0 Vae€A (43)
C(f) - A=0 Va€ A (44)
DN = 6(D)] =0 (45)
A —6(D)=0 (46)
f,=0 Yac€ A (47)
D=0 (48)

where \ is the Lagrange multiplier interpreted as the minimum
travel cost between members of the O-D pair. Because the
optimality conditions (Equations 43—48) are identical to user
equilibrium conditions, we can conclude that our dynamic
model is a proper generalization of Beckmann’s equivalent
optimization problem with elastic demand. Obviously, the
dynamic model (Equation 7) is also a proper extension of the
static user equilibrium traffic assignment model with fixed
demand.

CONCLUSION

Our analysis has been restricted to a very simple network.
Obviously, its further extension would be to have a more
complex network with multiple origins and multiple desti-
nations (25-27). We have not discussed any computational
issues on implementing our dynamic model; such issues are
important in assessing the applicability to a realistic network.
The existing solution algorithms for dynamic system-optimal

72

traffic assignment could probably be modified to solve our
dynamic model after the discretization of continuous time-
optimal control problems (3, 5). We have also assumed that
the exit function is nondecreasing; however, it is not true
according to traffic flow theory. In fact, an exit function is
both increasing and decreasing, and an exit flow is maximized
at an optimum density (traffic volume per unit length). Finally,
the concept of dynamic user equilibriom made in this paper
must be clearly redefined and compared with one that already
exists in the transportation literature. An important question
would be whether or not our dynamic model with elastic
demand is equivalent to a deterministic user equilibrium model
of joint route and departure time.

APPENDIX: THE DERIVATION OF THE
PERFORMANCE INDEX J,

Luque and Friesz (8) considered the optimal control problem
for dynamic system-optimal traffic assignment in a multiple-
origin, single-destination network. We need to transform their
original formulation into the control problem for a single
origin-destination network:

4 Al
Minimize J, = , fn S, [x.(0)] dt (A-1)
aEA
subject to
(x,u) € Q

where S,[x,(£)] is the total travel cost on arc a at time ¢. The
costate equations are obtained:

oH
ax,

I

~Va

Il

Saxa) = Va8ix) Va€A t€[0,T] (A-2)

Then we define the following function:

S (x2) + Va

*0 ==

VaEeA t€]0,T) (A-3)

Luque and Friesz (8) state that the numerator of Equation
A-3 has the units of incremental travel cost per unit increment
of traffic volume on arc a, whereas g.(x,) has the units of
incremental flow per increment of traffic volume. Equation
A-3 expresses incremental travel cost per unit increment of
flow; therefore ¢,(f) can be interpreted as the instantaneous
marginal travel cost on arc g at time ¢. The theorem proved
in Luque and Friesz (8) enables us to state a dynamic gen-
eralization of Wardrop’s second principle for all ¢ € [0, T):

Gilt) = doB) = e = (1)

Sdea)=...... < bplh) (A-4)
u(>0 fora=1,2,....,k (A-5)
u () =0 fora=k+1,....,N (A-6)

TRANSPORTATION RESEARCH RECORD 1251

We can see that the set of arcs is grouped into two subsets:
one for arcs with positive inflow and equal instanianeous mai-
ginal travel cost, and the other for arcs with zero inflow and
travel costs greater than or equal to minimum instantaneous
marginal travel cost.

We now hypothesize that the optimal control problem of
Equation A-1 with a fictitious performance index J; deter-
mines a dynamic user-optimized traffic flow pattern. The
remaining question is how to identify a fictitious performance
index J,. To answer this question, we define S,[x,(f)] as a
fictitious travel cost on arc a when it contains the traffic vol-
ume x,(¢) at time ¢ € [0, T]. Provided that the preceding
hypothesis is accepted, the following optimal control problem
must give a traffic flow pattern obeying the Dynamic User
Equilibrium Principle:

Minimize J, = D, J; i S, [x.(0)] dt (A-7)

acA
subject to
x,u) €

Then we can readily obtain the fictitious instantaneous mar-
ginal travel cost on arc a at time ¢ as

Sux) + Yo

do(0) = /(%))

Yac€A t€(0,T] (A-8)

For the hypothesis to be true, the following condition must
be satisfied:
() =) Va€A €0, T] (A-9)

Using Equation 22, we have the following relation:

Ya
Caxa) + =
)+ e
Suxd) | Ve
=22 4 —4- VYag€A te[0,T A-10

gulx)) 8uxa) SE
Then we manipulate Equation A-10 as follows:
Sux) = Clx)gux) Va€A te€[0,T] (A-11)
where Si(x,) = e,
Equation A-11 can be rewritten as
dSi(x.) = C,(x.)ga(xo)dx, VaE€A,tE[0,T] (A-12)

Turning A-12 into a definite integral, we get the explicit form
of a fictitious travel cost:

xa(t,

Sl = [cmygin) dw

VacA te[0,T] (A-13)

Wie

Consequently, we can get the explicit expression of the per-
formance index J, by substituting Equation A-13 to Equation

A-T7:
T ﬁr)
L= 2 f f C(w)gi(w) aw dt (A-14)
aec A’0 0

GLOSSARY

a: an arc;

A: the set of arcs in the network;

x,(0): the state variable, indicating the traffic volume
accumulated on arc a at time ¢;

.0 the time derivative of the state variable;

u,(f): the control variable, indicating the traffic flow
entering arc a at time f;

v.(0): the costate variable to take account of the state
equation in the minimization of the Hamil-
tonian;

Y(0): the time derivative of the costate variable;

w(t): the Lagrange multiplier to take account of the
flow conservation constraint at the origin node;

B.(0): the Lagrange multiplier to take account of the
nonnegativity of the control variables;

Ji: the performance index for dynamic user equi-
librium traffic assignment with fixed demand;

Jy: the performance index for dynamic user equi-
librium traffic assignment with elastic demand;

H: the Hamiltonian;

C,[x.(0]: travel cost on arc a when it contains the traffic
volume x, at time f;

galx.(0)): the flow leaving arc a when it contains the
traffic volume x, at time ¢;

Cllx.(0)]: the derivative of the travel cost function with
respect to the state variable;

FAEAGIE the derivative of the exit function with respect
to the state variable;

[0, T7: the period of analysis, where T is the fixed
terminal time;

D(t): the number of trips generating at the origin

o[t, D(D)]:

node at time ¢;
the inverse of the travel demand function,;

D, (1): the instantaneous travel cost on arc a at time
5

b,(0): the instantaneous marginal travel cost on arc
a at time ¢,

S.lx.(0)]: the total travel cost on arc a when it contains
x,; and

A the minimum travel cost between members of
an origin-destination pair encountered in a static
user equilibrium problem.

REFERENCES

1. M. Beckmann, C. McGuire, and C. Winston. Studies in the Eco-

nomics of Transportation. Yale University Press, New Haven,
Conn., 1956.

. D. K. Merchant. A Study of Dynamic Traffic Assignment and

Control. Ph.D. dissertation. Cornell University, Ithaca, N.Y.,
1974.

10.

11.

12,

13.

14.

15.

16.

18.

19.

2%,

22;

23.

24,

25.

26.

27.

73

D. K. Merchant and G. L. Nemhauser. A Model and an Algo-
rithm for the Dynamic Traffic Assignment Problems. Transpor-
tation Science, Vol. 12, 1978, pp. 183-199,

. D. K. Merchant, and G. L. Nemhauser. Optimality Conditions

for a Dynamic Traffic Assignment Model. Transportation Sci-
ence, Vol. 12, 1978, pp. 200-207.

. J. K. Ho. A Successive Linear Optimization Approach to the

Dynamic Traffic Assignment. Transportation Science, Vol. 14,
1980, pp. 295-305.

. M. Carey. A Constraint Qualification for a Dynamic Traffic

Assignment Model. Transportation Science, Vol. 20, 1986, pp.
55-58.

. M. Carey. Optimal Time-Varying Flows on Congested Networks.

Operations Research, Vol. 35, 1987, pp. 58-69.

. F. J. Luque, and T. L. Friesz. Dynamic Traffic Assignment Con-

sidered as a Continuous Time Optimal Control Problem. Pre-
pared for presentation at the TIMS/ORSA Joint National Meet-
ing, Washington, D.C., May 5-7, 1980.

. V. F. Hurdle. The Effect of Queueing on Traffic Assignment in

a Simple Road Network. Proc., 6th International Symposium on
Transportation and Traffic Theory, Sydney, Australia, 1974,

C. Hendrickson and G. Kocur. Schedule Delay and Departure
Time Decisions in a Deterministic Model. Transportation Sci-
ence, Vol. 15, 1981, pp. 62-77.

H. S. Mahmassani, and R. Herman. Dynamic User Equilibrium
Departure Time and Route Choice on Idealized Traffic Arterials.
Transportation Science, Vol. 18, 1984, pp. 362-384.

H. S. Mahmassani and G-L Chang. Experiments with Departure
Time Choice Dynamics of Urban Commuters. Transportation
Research, Vol. 20B, 1986, pp. 297-320.

A. de Palma, M. Ben-Akiva, C. Lefevre, and N. Litinas. Sto-
chastic Equilibrium Model of Peak Period Traffic Congestion.
Transportation Science, Vol. 17, 1983, pp. 430-453.

M. Ben-Akiva, M. Cyna, and A. de Palma. Dynamic model of
Peak Period Congestion. Transportation Research, Vol. 18B, 1984,
pp. 339-355.

M. Ben-Akiva, A. de Palma, and P. Kanaroglou. Dynamic Model
of Peak Period Traffic Congestion with Elastic Arrival Rates.
Transportation Science, Vol. 20, 1986, pp. 164—-181.

M. J. Smith. The Existence of a Time-Dependent Equilibrium
Distribution of Arrival at a Single Bottleneck. Transportation
Science, Vol. 18, 1984, pp. 385-39%4.

. C. F. Daganzo. The Uniqueness of a Time-Dependent Equilib-

rium Distribution of Arrivals at a Single Bottleneck. Transpor-
tation Science, Vol. 19, 1985, pp. 29-37.

G. F. Newell. The Morning Commute for Nonidentical Travelers.
Transportation Science, Vol. 21, 1987, pp. 74-82.

T. L. Friesz. Transportation Network Equilibrium, Design and
Aggregation: Key Developments and Research Opportunities.
Transportation Research, Vol. 19A, 1985, pp. 413-427.

. A. S. Alfa. A Review of Models for the Temporal Distribution

of Peak Traffic Demand. Transportation Research, Vol. 20B,
1986, pp. 491-499.

L. S. Pontryagin, V. A. Boltyanski, R. V. Gankrelidge, and E.
F. Mishenko. The Mathematical Theory of Optimal Process. John
Wiley & Sons, New York, 1962.

A. E. Bryson and Y.-C. Ho. Applied Optimal Control, rev. John
Wiley & Sons, New York, 1975, pp. 246-270.

K. J. Arrow and M. Kurz. Public Investment, the Rate of Return,
and Optimal Fiscal Policy. Johns Hopkins University Press, Bal-
timore, Md., 1970.

A. Seierstad and K. Sydsaeter. Sufficient Conditions in Optimal
Control Theory. International Economic Review, Vol. 18, No. 2,
1977, pp. 367-391.

B.-W. Wie. Dynamic User Equilibrium Traffic Assignment in
Congested Multiple-Origin Single-Destination Networks. Working
paper. Department of City and Regional Planning, University of
Pennsylvania, Philadelphia, 1987.

B.-W. Wie. Dynamic User Equilibrium Traffic Assignment with
Elastic Demand in Congested Multiple Origin-Destination Net-
works. Working paper. Department of City and Regional Plan-
ning, University of Pennsylvania, Philadelphia, 1987,

B.-W. Wie. The Day-to-Day Adjustment Mechanism of Stochastic
Route Choice. Working paper. Department of City and Regional
Planning, University of Pennsylvania, Philadelphia, 1987,

