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Foreword 

This Record contains a series of papers sponsored by the Committee on Transportation 
Supply Analysis. 

Daganzo proposes two approaches to determine the effect of crane operations on ship 
service at port terminals, first, a simple approximate approach to calculate the maximum 
berth throughput during periods of congestion, and second, the effect of two extreme crane­
operating strategies when the traffic level does not exceed the maximum throughput. 

Mouskos and Mahmassani describe the modification of the CRA Y-X-MP series to enhance 
its vector-processing performance. Specifically, codes for the solution of two network equi­
librium assignment problem formations are vectorized and tested on a CRAY X-MP24 super­
computer. The test results and the significance of the results for research and practice are 
also discussed. 

Safwat and Hasan expand and improve on the application of STEM (Simultaneous Trans­
portation Equilibrium Model). They report the results of their work to investigate the relative 
computational efficiency of the algorithm as a function of demand, performance, and network 
parameters for two small example and one large-scale real-world network. The results are 
encouraging according to the authors , and application of the STEM approach to large-scale 
urban transportation studies is encouraged . 

Chan et al. applied the tree-search method to three spatially abstracted networks, coming 
up with a hierarchical search algorithm for reducing the network-design problem. The branch­
and-bound and branch-and-backtrack techniques were used in the first two formulations of 
the problem, assuming the objective function of least budget and least travel cost, respectively. 
These techniques result in a greatly reduced search space as well as functional grouping of 
the detailed links into access/egress, line-haul, and by-pass categories. 

Tsay and Lin describe methods for selecting the optimal facility location. The authors focus 
on the one-center problem. Various methods in current use and their applications are described 
and assessed. 

Smith and Sheffi discuss the problems faced by railroads in allocating power to trains . The 
authors formulate a multicommodity flow problem with convex objective function on a time­
space network. The convex objective allows a minimization of expected cost under uncertainty 
by penalizing trip areas likely to have too little power. The author solution heuristic sends 
locomotives down shortest paths in the time-space network and attempts to improve inter­
changes of locomotives around cycles. The test results are reported. 

Chang et al. discuss a time-space network formulation for the system-optimal assignment 
of commuters to departure times and routes subject to specified constraints on acceptable 
arrivals. Time is discretized, and congestion is represented using simplified deterministic 
queueing stations. A numerical application is presented to illustrate the methodology, indi­
cating a network generator developed for this purpose. 

Wie explores the application of optimal control theory to the problem of dynamic traffic 
assignment corresponding to use optimization. Two continuous time formulations are con­
sidered, one with fixed demand and the other with elastic demand. As stated by the author, 
the paper is concerned with dynamic extensions of the steady-state network equilibrium 
model , in particular Beckmann's equivalent optimization problem, which is a mathematical 
programming function. 

v 
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Crane Productivity and Ship Delay in 
Ports 

CARLOS F. DAGANZO 

This paper studie the effect of crane operation. on hi1> service 
al port terminals. It first propuscs a implc approximate approach 
to calculate the ma ·imum berth throughput during periods uf 
congestion. The key a sumplion is lhat the workload distribution 
(over time) for the ships al berth is the same as the workload 
disfJ· ibution for the ship population as a whole. The validity of 
this as ·umplion i. tested with ·imple, exact models for a variety 
of scenarios involving different kinds of ship and crane opera.ting 
strategies. The paper then examine · the effect that two extreme 
crane operating strategies have on ship delay when the traffic 
levcl doe ·· not exceed the muimum throughput. This is done for 
an idealized situation designed to highlight the impact <if Cl'ane 
operalions while admitting clo ed-form solutions. The average ship 
delay can vary considerably with the crane operating trategy. 

A port's efficiency i often mea ured in term fit . ch rough put 
and typical ship turnaround time (i.e., a hip' time at berth 
plu any delay caused by the port). High turnaround times 
ar · not acceptable in the shipping industry becau e of the very 
large pportunity co t typically as ociatcd with . hip delay. 
However, port construction maintenance, and eq·uipment are 
also very expensive. Thu it is important for port to set an 
appropriate expenditure level, and to allocate their resources 
efficiently among their different functions. For xample, they 
should decide carefully how berth length ·h uld be divided 
among the variou traffic types, and how much cargo handling 
equipment sbo.uld be allocated to each terminal. Although 
such d cisions often depend on factor that cannot be quan­
tified rational olutions should be found with an understand· 
ing of how the hip 'turnaround time and the port throughput 
depend on different resource allocation levels. 

The port element that influence ship turnaround most 
directly are berth space and crane availability. Although other. 
elements have the potential for delaying operation (tugboat 
unavailability and land- ide congestion, for example) they are 
not con idered in thi pap r. 

Even though queuing· theory ha been applied to ports fsce, 
for example, work by Plumlee, Mettam. Jone and Blunden, 
Nicolau , Miller, Koenisbergand Meyer , D akin and Walton, 
and Sabria (1 - 8). and other references in abria' di" erta· 
tion], and to the berth system in particular, no models seem 
to recognize explicitly the interaction between berth availa­
bility and Cfane operating strategies. This may be becau. e the 
requirements for on hore (un)loading equipment can vary 
considerably from hip to hip, and may also be subject to 
peculiar restrictions, which complicates matters. Work by 
Atkins (9) contains one of the best descriptions f the ship 
loading process for modern container porfs. 

Department of Civil Engineering, University of California, Berkeley, 
94720. 

The goal of this paper is to develop an understanding of 
the impact that different crane cheduling strategic have in 
the long run on maximum throughput and ship delay . T 
achieve thi goal, we will work with a repre entation of the 
world that although highly idealized , preserve the phenom­
ena of interest. The paper builds on previou work (10,J J) 
that u ed the same idealized model to develop crane ched­
uling strategies . 

The model in these references assumed that ·hip were 
divided into holds; that each hold had a certain amount of 
work that needed to be done (measured in time units of crane 
time); that certain holds could be handled without the need 
for a shore crane; and that shore cranes could be moved 
rapidly. The objective was to assign cranes to holds to reduce 
hip delays. ometimes this meant that a large ship with little 

need for crane would eize the cranes working on another 
hip Lhat required more work. 

For the most part all the ship were assumed to be already 
at berth, but a ca e in which ship had to queue for berth 
space wa also di cussed. For this purpose it wa a sumed 
rllat a ship departure alway freed enough pace for another 
. hip and that ships were chosen from the queue in order of 
arriva l. A ju tification for all of these modeling . implifications 
(which are al o adopted here) can be found el ewhere (JO). 

This paper attempts to take the ·e re ults one step further. 
It studies the y· tem' teady- tate performance as a function 
of the ship arrival pattern when the aforementioned crane 
operating rules are used. It presents simple expressions for 
maximum expected throughput as a function of the number 
of cranes and total berth length. It al o provides ship delay 
formulas when ships have to queue for cranes but the berth 
space is never in short supply. 

The next section gives approximate expressions for the 
average number of busy and idle cranes during periods of 
conge tion. These expres ion lead to berth throughput and 
crane productivity formula . The approximation, which is pro­
po ed for reasonably efficient crane operation , is tested with 
exact expressions for a special case in which all the holds 
requiring a crane take the same amount of time to be handled. 
(This assumption, which still preserves the main phenomena 
we want to model, is al o u ed in later ections.) 

The following section applies t11e re ulc from the previous 
one; it compares efficient and inefficient crane scheduling 
strategies and examine the trade·off between cranage co t 
and maximum productivity. 

Next is a study of shjp delay for a multipurpose terminal 
in which ships are either self-sufficient or require, at most, 
two cranes. It is a sumed that berth space is never in short 
supply [this is reasonable from a port economics standpoint 
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(8)], but ships may not always get all the cranes they need 
immediately on arrival. The final section summarizes the results 
and suggests further work. 

CRANE PRODUCTIVITY 

Averaged over time, the number of busy port cranes is related 
to cargo throughput by the relationship: 

(cargo throughput) 

= (busy cranes) x (crane capacity) (1) 

where the crane capacity is the maximum number of cargo 
units that a fully used crane can handle per unit tir11e. 

It is thus important to be able to predict the number of 
busy cranes during periods of congestion. The result can indi­
cate the maximum possible berth throughput. 

A Simple Model 

We assume that there is an infinite ship queue and that the 
berth can hold exactly S ships. The ith ship to enter the berth 
is assumed to have H; holds requiring attention. The H1 are 
mutually independent, identically distributed random varia­
bles with cumulative distribution function, FH. 

At any given time, the number of busy port cranes equals 
the minimum of two values: the number of available cranes, 
C, and the number of active holds, A (holds still requiring 
attention at the time). 

If the number of active holds present at a berth at a random 
time has the same cumulative distribution function (cdf) as 
the number of holds requiring attention for S ships randomly 
sampled from the queue, then berth throughput can be cal­
culated simply. The accuracy of this assumption is tested in 
the next section. The resulting simple throughput expressions 
are derived next. 

Because A is distributed like the sum of S independent, 
identically distributed random variables with cdf, F H(h) A is 
likely to be well approximated by a normal random variable 
and the expected number of busy cranes by the mean of the 
truncated normal variable, min {A, C}: 

E(busycranes) = C - <T\/Sljl([C - Smj/<TYS) (2a) 

and similarly 

E (idle cranes) = <T\/S ljJ ([ C - Sm]/<T v'S) (2b) 

In these equations , m and er are the mean and variance of 
Hi and ljJ ( *) represents lhe integral of the standard normal 
cumulative distribution function. his function is given by 
1p( *) + (*)<I>(*), where <J>( • and 1p( *)are the standard normal 
cdf and probability density function, respectively [see lark 
(12) for a derivation] . The function ljl(• ) i positive , increa. ing, 
and convex; it approaches 0 as its argument approache. -oo, 
and for large positive arguments (greater than 3) its value 
barely exceeds the argumenl. See Figure 1. 

Equation 2b shows that the number of idle cranes depends 
on only Lwo parameters: the " average crane surplus," C -
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Sm, and the "holds at berth variability," <T v'S. Althoug!:i the 
expected number of idle cranes always exceeds the average 
crane surplus, these two are close when there is little variability. 

Equation 2a can be used in conjunction with Equation 1 to 
calculate berth throughput. 

An Assessment of Its Accuracy 

Equations 2a and 2b are based on the assumption that the 
distribution of active holds per ship is the same at berth and 
in the queue. 

Two factors that work in opposite directions (with an inten­
sity that depends on the specific crane scheduling strategy) 
tend to disrupt this equality: 

1. A ship's hold with little work may become inactive before 
the ship departs. If this happens often, it will tend to decrease 
the number of active holds at berth; and 

2. Because, with an efficient strategy, ships with low work­
loads are given priority, the ships with most active holds will 
tend to be overrepresented at the berth. This tends to increase 
the number of active holds at berth. 

The first factor should be most significant when the distri­
bution of (active) hold workloads within a ship is very uneven. 
The second factor should be most significant when the work­
load changes drastically across ships. 

The scheduling strategy discussed elsewhere (10) tends to 
reduce the impact of the first factor and increase the impact 
of the second. As mentioned in that reference, the strategy 
"tends to hoard at berth the holds that require work." In the 
remainder of this section we derive, for comparison purposes, 
exact expressions for two simple cases in which the first factor 
does not play a role and the crane allocation strategy proposed 
in earlier work (10) is used. 

It is assumed that all the active holds take exactly the same 
amount of time (without loss of generality we take this time 
to be one unit) and that only one crane can work on ,a hold 
at a time. We start our observation with an empty system; 
thus, at time t = 0, the first S ships in the queue join the 
berth. 
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The preceding assumption, which is also used for the ship 
delay analy ·is, still preserves the main phenomena that we 
try to model; that is, because not all ships require the same 
number of cranes, the numb r of cran s needed by the hip 
at berth fluctuates. If at lime there is a need for more cranes 
than the available number and at other times some cranes are 
idle, crane productivity is wasted. Our crane allocation rules 
are designed to restrain these fluctuations. 

Before starting the analysis, strategy G needs to be described. 
For the imple cases studied in this paper (in which hold can 
be handled in exactly one time unit, etc.), strategy G reduces 
to Lhe following: 

Strategy G: Each time a new hip joins the berth reallocate 
all the crane again; assign a many cranes as po sible to the 
hip with fewe t active holds · if some cranes are left, allocate 

as many as possible to the ship with second fewest h Id · 
repeat lhis process until either no more cranes or no more 
ships are left. 

The results of the analy is about to be presented indicate 
that the approximate and exact form ulae are pretty clo ·e. 
Although the expressions hould be te ted further (with im­
ulations geared to verify the importance of the fir ·t factor) , 
the re ult suggest that Equations 2a and 2b may be good 
fir t-ord r approximation u efut for planning purpo es. 

Multipurpose Terminals 

Two types of hips are con idered in this sub ection: iype-0 
ship that do not require the port's equipment H1 = 0) and 
type-! ships thal require exactly one crane (H1 = 1). Thi · 
ituation cou ld represent a mu'ltipurposc terminal. It i. srudied 

fir t because, with thi traffic pattern , one docs not require 
an involved crane chedu ling algorithm. Allocating crane to 
ships on a first berthed, fir t erved, ba i (wbich happens to 
be the result of strategy G) re Ltlts in maximum produc1ivity. 

Type-0 ·hip spend exactly one tim unit at berth but type-
1 ships may spend a little more time · they may have to wait 
for a crane if tbe b rth ha more type-1 ship. than there ar 
cranes. Thus Factor 2 applies. There will tend to be more 
active hold at b~rth than would be predicted from the queue, 
and Equations 2a and 2b hould underpredict throughput. 

Because all the hold · take exactly one time unit tO be han­
dled and because the .ystem tart empty , ship and crane · 
move only at integer times (1 = 0. I , 2, . . . ). The number 
of active hold at berth can change only at these times. Tn 
fact , the wbole sy tern can be m0deled exactly a. a Markov 
chai n embedded at integer time . The tate is the number of 
(type-1 ship remaining at berth at the end of one period, 
but immediately befor the next batch of ship join the berth. 
It is thus possible to derive exact numerical re ult to compare 
them with the approximation. 

Let p denote the fraction of type-1 ships. Then, the (i,j) 
element of the one-step transition probability matrix , M, 
m;1, is: 

m;
1 

= Pr{(C + j - i) type-1 ships join the berth}; if j = 

1, 2, ... , s - c 
= Pr {(C - i) or less type-1 ships join the berth} if 

j = 0. 

For j > 0 the m;1 are the binomial probabilities: 

mij = ( S-i ) p(C+J-O(l-p)(S - C-j) 
C+ 1 - 1 

For j = 0, m;0 = 1 - (m;1 + m;2 + . .. + m,<s - q) 

3 

The steady-state probability (row) vector, m, can be obtained 
by solving: m = mM, and ensuring that its elements, m;, add 
up to 1. 

The expected number of cranes in use, K, is 

s-c 
K= L m; 

i=O 

['~-; mini/ + ;, CJ P<{i type-! ,hip' join the be<th}] 

s-c 
L: m, 
i=O 

The expected number of cranes in use also gives the through­
pul of type-.L hips. Becau ·e the fraction of these ships i p 
and because hips join the berth on a fir t come, first served, 
basi , the total ship throughput, P must be P = Kip. 

Example: Assume that S = 3 and C = 2. In this case the 
calculations required by the preceding expressions are simple. 
We obtain the exact result: 

p = 3 - [p3 (1 - p2 + p3)] 

If the distribution of ships at berth is the ame as in the queue, 
the number of busy cranes is the minimum of and a binomial 
random variable with S trial and probability of success, p. 
For our ca ·e, the expectation of such a variable is (3p - p 3

), 

and 

p = 3 - p2 

As expected, this expres ion underpredict the exact one, but 
the maximum difference is only about 0.1 when p "" 0.6. The 
error i much smaller wbenp is close to 0 or l; it never exceeds 
4 percent. See Figure 2. 

The result derived from Equation 2a, which includes a nor­
mal approximation to the binomial, is quite close to this last 
expression (for p = 2/i, one obtains P = 2.56 with the last 
expression and P = 2.51 with Equation 2a). The normal 
approximation would be even better in a case with more berths 
and cranes, just when the binomial calculations become 
cumbersome. 

1n general e ither approximation should be quite good if p 
<< CIS, because then crane are almost never in short upply 
and both ship types pend the ame time at berth . The approx­
imation hould at o be quite good when p >> C!S, as then 
the exact and approximate formulas predict K = C. These 
observations are consistent with the example; the worst 
underprediction occurs when p = C/S. 
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FIGURE 2 Comparison of exact and approximate throughput 
expressions for S = 3 and C = 2 at a multipurpose terminal. 

Single-Purpose Terminals 

This subsection explores the accuracy of our simple model in 
a more complex situation. It is assumed that all the ships 
require at least one crane, but that ships can have a varying 
number of active holds. Now the crane scheduling strategy 
can make a difference, and strategy G is used. (The impli­
cations of changing the strategy are examined in the Crane 
Usage Evaluation section .) 

As in the pre eding section, the system can be modeled as 
a Markov chain . Here the state is a vector composed of the 
numbers of ships with 1, 2, 3, ... active holds that are still 
at berth immediately before the next batch of ships joins the 
berth. Although the state space is multidimensional, it is finite ; 
numerical analysis is possible. 

We present numerical results for a terminal with 4 cranes. 
In the first instance (Case A) we assume that the berth can 
hold 3 ships and ' that the ships request either 1 or 2 cranes 
each. For the second case (B) the berth can hold only 2 hip , 
but the ships can request either 1, 2, or 3 cranes. 

Case A is characterized by a single parameter: the fraction, 
p, of ships that have 2 active holds. Only thre pos ible state 
are possible becau e , at mo t, 1 ship can be le ft at berth, and 
this S11ip can only have either 1 or 2 active holds. Thi make-s 
the earch for the steady- tate probability vector (and the 
associated measures of performance we seek) rather simple; 
the analysis is equally simple for an arbitrary number of ships 
and cranes. The process is similar to that outlined in the 
preceding section. Thu , only the re ult are given here. 

The productivity in hips handled by the berth per unit time, 
P, is 

p = 3 - p2 [(3 + p)/(1 + p + 2 p 2
)] (3) 

Clearly, P cannot exceed 3. 
Jn holds per unit time tJ1e productivity is equal to the average 

number of busy cranes K. Because the average number of holds 
per ship is (1 + p), K = P(l + p) . This reduces to 

K = 4 - [(1 + p 2) (1 - p)2/(l + p + 2 p2
)] (4) 

which cannot exceed C = 4. Note that, as expected, if all 
ships have 1 hold (p = 0), then P = 3 and K = 3; aiso as 
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expected, if all ships have 2 holds (p = 1), P = 2 and K = 
4. Figure 3 shows graphically how P and K vary with p. 

We now test the accuracy of the assumption that states that 
the distribution of active holds at berth is equal to the dis­
tribution of active holds for S ships in the queue . We calculate 
K assuming that the 3 berthed ships have been randomly taken 
from the queue . Then, 4 cranes will be at work unless the 3 
ships have exactly 1 hold each. This happens with probability 
(1 - p )3

, and thus K is approximately given by 

K = 4 - (1 - p)3 (5) 

The maximum difference between Expressions 4 and 5 occurs 
when p = 0.53 which results in K = 3.87 and 3.90 respec­
tively . The discrepancy is .less than 1 percent. As expected , 
Equation 5 yields larger values than does Equa tion 4. If one 
u es Equation 2a, which also include a normal approxima­
tion , the re ult is not very different (3.87 instead of 3.90) · 
j u t by chance, it nearly matches the e ac1 value , which is 
also 3.87. In any case it appears that our assumption (about 
the distribution of active holds at berth) does not lead to large 
inaccuracies for this example . 

For Case B, the ship workload changes more from ship to 
ship thus one expect the approximation to be less accurate. 
Two parameters now define the problem: p, the probability 
that a ship has 2 active holds, and q, the probability that the 
ship has 3 active holds. Of course , the fraction of ships with 
a single active hold is (1 - p - q) . The Markov analysis can 
still be used. In this case, too, only three possible states can 
arise: the berth either is empty or has 1 ship that can have 
either 1 or 2 active holds; no other possibilities exist. 

The berth productivity (ships per unit time) is found to be: 

p = 1 + 1/(1 + 2 pq + q2 + q3
) (6) 

This value remains between % and 2; if there are no ships 
with 3 holds (q = 0), then, as expected, P = 2. The crane 
usage, which coincides with the number of holds served per 
unit time is K = P(l + p + 2q), where the quanti ty in 
parentheses is the expected number of active holds per ship: 

K = (1 + p + 2q)(l + 1/(1 + 2pq + q2 + q3)) 

4.s~--~--~--~---r---~ 

1.5 

0.5 

00 0.2 0.4 0.6 0.8 

F radian of 2-hcid ships, p. 

(7) 

FIGURE 3 Exact expressions for berth throughput and crane 
usage at a single-purpose terminal with S = 3 and C = 4. 
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The approximation for K using the distribution of holds in 
the queue is: 

K = 4 - 2 (1 - q)(l - p - q) (8) 

Note that if (p + q) = 1, Equation 8 yields K = 4, but 
consideration shows that it should be a little smaller: whenever 
5 active holds are at berth, 1 ship with 1 active hold must 
remain for the next period. If the next ship requests only 2 
cranes, 1 crane will have to be idle. Thus K cannot be 4 except 
when either q = 1 or p = 1. Then all the ships are identical, 
and 5 active holds can never be at berth; in that case the 
approximation is exact. 

Equation 7 is consistent with these observations. The max­
imum difference between the exact and approximate expres­
sions over all possible values of p and q occurs when p = . 72 
and q = .28. Then the exact value is 3.80, and the approxi­
mation is 4.00 (a 5.26 percent error). In most other instances 
the overprediction is less severe. The average (root mean 
square) error over all possible values of p and q is slightly 
less than 3 percent. 

This error is not very large (given the rather large workload 
variability exhibited by this example), suggesting that Equa­
tions 2a and 2b may be reasonable predictors in actual situ­
ations. Still to be tested, however, is the extent to which 
Factor 1 counterbalances (and perhaps overcorrects) this error. 

CRANE USAGE EVALUATION 

The results from the section on crane productivity are now 
demonstrated. The section immediately following investigates 
the importance of an efficient crane allocation scheme and 
the subsequent section, the trade-off between cranage cost 
and maximum productivity. 

Effect of a Bad Crane Allocation Method 

In this subsection we explore the changes to productivity for 
the single-purpose terminal scenario of the preceding subsec­
tion, when a "bad" crane allocation method (strategy B) is 
used. This strategy, which is also described in an earlier work 
(10), is almost the exact opposite of strategy G. For the ideal­
ized scenarios in this paper, the strategy is easy to describe: 

At every integer time (t = 0, 1, 2 ... ), reallocate all the 
cranes (one at a time) to the ship with most active unattended 
holds. 

As before, the system can be studied as a Markov chain, 
and the results are as follows: 

p = 3 - p 2 (3 + 2p + 2p2)/(1 + p + 3p2 + p 3 + p 4
) (9) 

for case A, and 

p = 1 + (1 - q2)/(1 + 2pq + q2
) (10) 

for Case B. 
Equations 3 and 9 are rather close. They differ the most in 

the range from p = 0.4 to 0.8, when the difference is on the 
order of 0.02 to 0.025. Thus for Case A, the specific crane 
allocation strategy used does not seem to matter much. The 
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situations where the wrong crane choice influences produc­
tivity do not arise often enough. When p = 0.5, the cranes 
are idle 3.9 percent of the time with the good scheme but only 
5.1 percent with the bad one. 

For Case B we perform the same comparison when the 
average number of active holds per ship is 2. At one extreme, 
all the ships have 2 active holds (p = 1), and at the other 
extreme, half the ships have 1 hold and half, 3 holds (p = 0 
and q = 0.5). Whenp = 1, both strategies are equal (clearly), 
and as one moves toward the other extreme the bad strategy 
deteriorates: 3.5 cranes are busy on average with the efficient 
strategy, but only 3.2 with the bad strategy. This is a 10 percent 
difference in productivity. 

These comparisons illustrate the productivity increases that 
can be obtained with efficient operation. The increases are 
not enormous, but when ships are very different from one 
another, they can be significant. Even in these cases, however, 
the percentage changes in productivity are only a few per­
centage points larger than the errors in Equations 2a and 2b. 
This suggests that these expressions should be quite robust 
and applicable even if the scheduling strategy only vaguely 
resembles strategy G. 

Although it may seem like a contradiction, increases in 
productivity comparable with the errors in Equation 2 should 
not be dismissed. A 5 percent increase in productivity would 
be highly desirable at a port, but a 5 percent error in our 
ability to predict it does not invalidate a preliminary planning 
tool (in fact, in the planning stages a 5 percent prediction 
error may be quite satisfactory). 

The next subsection explores the trade-off between crane 
cost and productivity. 

Optimum Number of Cranes 

Clearly, there are some benefits associated with a high max­
imum productivity. If maximum productivity is increased, say, 
by purchasing more cranes, the terminal can attract more 
business and generate more revenue. Maximum productivity 
also increases with S (see Equation 2a). Thus, it is possible 
to use Equation 2a to determine the most cost-effective com­
bination of berth capacity and number of cranes to achieve a 
certain productivity goal. 

Equations 2a and 2b can also be used to determine the 
equipment needs for a given berth capacity. Let a denote the 
yearly marginal profit associated with one unit of productivity, 
and let us measure the productivity by the average number 
of busy cranes as given by Equation 2a. Let f3 denote the 
yearly cost associated with owning one crane. This cost does 
not include any operating costs, which should have been fac­
tored into a. Thus, the total yearly profit associated with 
owning C cranes is: 

Profit = a{C - <I VS lfl ([C - Sm]l<I VS)} - f3C 

This is a concave function of C, which will have a unique 
maximum at the point where the derivative vanishes: the root 
of the equation, 

(1 - f3/o.) = <I>{(C - Sm)l(<I VS)} (11) 
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where <I>(*) stands for the standard normai cdf. Equation 11 
has a solution if 13 < u. The best number of cranes to have 
is the nearest positive integer to this solution. In reality one 
should never have 13 > u because this would mean that the 
profits obtained by continuous operation of a crane are not 
enough to offset its fixed cost: the terminal should not oper­
ate. 

The calculations suggested in this subsection assume that 
the marginal profit associated with an extra productivity unit 
is constant. This is a coarse approximation that may be valid 
for long-term planning (when it is planned to use the terminal 
capacity nearly to its fullest), but not always. If, as is more 
common, to provide a good level of service to its users, the 
terminal is not used to its fullest, then the most significant 
benefit derived from the availability of more cranes is a reduc­
tion in ship delay; and ship delay is not linear with the number 
of cranes. 

The next section derives ship delay expressions that can be 
used to address these questions. 

SHIP DELAY 

This section explores the relationship between ship delay and 
crane operations. As before, this is done by means of idealized 
models that can be solved analytically. It is assumed that ship 
arrivals to the terminal are stationary and random, and that 
while the terminal may not have enough cranes from time to 
time to serve all the ships at berth, the berth is long enough 
so that ship queuing is extremely rare. This should be the 
case at well-run ports and will help to separate the effects of 
crane operations on delay from those of berth availability. 

The Model 

Ships fall into two categories: type-0 ships that need no cranes 
and type-1 ships that need cranes. The service times of type-
0 ships are arbitrary. Type-1 ships can be one- or two-hatched; 
that is, they may have either one or two active holds, which 
require exactly one time unit of a crane's attention. 

Because the berth is almost never congested, it will be 
assumed that it never is; for all practical purposes, its length 
is infinity. This implies that the type-0 ships never interact 
with the type-1 ships and that the operations of both can be 
studied separately. Of course, to make sure that the infinite 
berth length assumption is reasonable, one will have to check 
a posteriori that the total number of type-0 and type-1 ships 
at berth is very unlikely to exceed the maximum possible 
number. 

The two crane scheduling strategies already presented will 
be compared. Strategy G (good) gives priority to the ships 
with one active hold and strategy B (bad), to the ships with 
two holds. 

For both ship types we seek the expectation and the vari­
ance of the number of ships at berth. The expectations give 
an indication of the cost of delay; and together with the var­
iance they yield insight into the maximum number of ships 
that are likely to be present simultaneously at the berth. 
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Results 

Let us focus our attention on the type-1 ships and imagine 
that all ships have exactly two holds; that is, one-hatched ships 
have another (empty) hold. Let Q denote the total number 
of holds at berth that are still active. This does not include 
any holds that have already been handled, even if the ship 
still is at berth. We define Q = Q1 + Q2 , where Q 1 denotes 
the number of holds belonging to one-hatched ships and Q2 , 

to two-hatched ships. 
The total number of type-1 ships, N 1, in the system can be 

obtained as a function of Q1 and Q2 • This is because with 
strategy G all the active holds on two-hatched ships are spread 
across as few ships as possible. Thus, 

(12) 

where the last term in this equation is rounded to the nearest 
integer, if Q2 is odd With strategy G, ships with one hold 
have priority. Thus, Q1 can be visualized as the number of 
customers (holds) in a queuing system with C servers with 
deterministic (unit) service times. A simple model for Q2 , 

however, is not readily available (it would seem to require 
priority queues). To avoid this complication, we express N 1 

as a function of Q1 and Q. Because Q = Q1 + Q2 , we can 
write: 

(13a) 

or approximately, 

(13b) 

This expression is more useful because the total number of 
holds can be modeled as a queuing system with C servers 
where the customers are the holds on all ships; some arrive 
in batches of two. 

Queuing systems with many servers and a variety of arrival 
and service processes have been extensively studied. Here we 
use Newell's approximate formulas (13) because of their sim­
plicity and generality. They apply to arrival processes that 
can be approximated by a diffusion process (e.g., with inde­
pendent increments, compound Poisson). 

A similar type of argument can be made for strategy B. 
Because now two-hatched ships have priority, Q2 (and not 
Q1) is easily predicted. Thus it is now advantageous to express 
Equation 12 as a function of Q and Q2 as follows: 

(14) 

Newell's Queuing Expressions 

For our deterministic service time queuing system (assuming 
that the customer arrival process follows a stationary process 
that can be approximated by a diffusion process), Newell's 
(13) approximate expressions simplify. Let A. denote the aver­
age customer arrival rate and a 2

, the variance of the number 
of arrivals in one time unit (this value equals A. for a Poisson 
process). These two parameters characterize the arrival proc­
ess. Then the expected number of customers in the system 
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(being and waiting to be served) is a function of >.., u2, and 
the following dimensionless constant, µ: 

µ = (C - >..)lu (15) 

This constant represents how far the system is from being 
saturated. If it is negative, the system is oversaturated; a 
steady-state solution does not exist and the queue would grow 
steadily with time. Ifµ is close to zero but positive, the system 
has a steady state in which there usually is a queue; and ifµ 
is greater than 2, queues arise only rarely. The probability 
that all the servers are busy is: 

Pr{busy} = q>(µ)/ili (µ) (16) 

where iii(*) is the function appearing in Equations 2a and 2b. 
The expected number of customers in the system is 

E{no. customers} 

= A. + u{µ <P( - µ) + q>(µ)/(2 µ iii (µ))} (17) 

which for uncongested systems (µ >2) can be approximated 
by 

E{no. customers} = A. + u q>(µ) 

Note that as µ approaches infinity, the expected number of 
customers approaches A.. This is the result that is obtained for 
the infinite channel queue, and it is a lower bound to the 
actual number. Figure 4 displays the quantity in braces in 
Equation 17 and the probability that all servers are busy; both 
plotted against µ. 

Expected Number of Ships and Expected Delay 

To calculate E(Q) and E(Q1) (or E(Q2)) for strategy B, one 
needs to determine the mean and variance of the pertinent 
hold arrival process. Let a1 and a2 represent the arrival rates 
for one- and two-hatched ships, respectively, and u 1 and u2 

2.5 

Eq. 16 
2 ---Eq. 17 

Q) 
1.5 
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FIGURE 4 Grai>hs for quick evaluation of Equations 16 
and 17. 
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the corresponding variances per unit time. If ships are tramps 
(they do not fol low a schedule) , one would expect these var­
iances to be close to the arrival rates . The arrival rates for 
holds (total, and on one- and two-hatched ships) are (a 1 + 
2 a2), a1 , and 2a2 • 

One can then use Equations 15 and 17 with these arrival 
rates and the corresponding variances. These are either (u1 

+ 4u2), u 1 , or 4u2 • The coefficient 4 appears in these expres­
sions because some holds arrive in batches of two. 

Equations 15 and 16 can be used to calculate the probability 
that the system is busy, p 0 , and the probability that the system 
is busy with all the cranes attending priority holds: p 1 for 
strategy G (where priority ships have only one hold) and p 2 

for strategy B. Clearly, Po > P1,P2· 
The expected number of ships at berth is given by the 

expectation of Equations 13a or 14. These are not linear func­
tions of the Qs, but the equations need only to be rounded 
up when the system has an odd number of active holds belong­
ing to two-hatched ships. For strategy G this can happen only 
when there is a queue, and then only about half the time. 
Thus the expectations of Equations 13a and 13b differ only 
by p 012 ; but Equation 13b is linear. Thus: 

(18) 

For strategy B, an odd number of active holds belonging to 
two hatched ships can arise only if the system has an odd 
number of cranes, and then only for about half the time when 
the system is saturated with these types of ships. Thus: 

(2E(Q) - E(Q2 ) + p 2)/2 if C is odd 

(2E(Q) - E(Q2))/2 if C is even 

(19a) 

(19b) 

The average ship time in port is obtained by dividing these 
expressions by the average ship arrival rate: 

(20) 

Example 

To illustrate these expressions , assume that C = 4 and that 
ship arrivals are Poisson with a1 = 1 and a2 = 0.5. Then the 
total hold arrival rate is (1 + 2(0.5)) = 2, and the combined 
u 2 is (1 + 4(0.5)) = 3. Thus µ = 21'/3, p 0 = 0.17, E(Q) 
= 2.39, E(Q1) = 1.0, and E(Q2) = 1.07. The average number 
of ships with the good strategy is about 1.78 and with the bad 
strategy, 1.86. The average ship time in port is 1.19 time units 
for strategy G and 1.24 for strategy B. If cranes were never 
in short supply, these numbers would be 1. Thus, one can 
think of the excess (0.19 and 0.24 time units) as the delay 
caused by crane shortages; switching strategies can reduce 
this delay by about 25 percent (0.06 time units). If the delays 
are longer, choosing the best crane allocation strategy should 
be more important. With 3 cranes, for example, the average 
number of ships in the system is 2.25 with strategy G and 2.52 
with strategy B. The corresponding times in port are 1.5 and 
1.68 time units; the difference between the strategies still 
amounts to about 25 percent of the ship delay, but the dif­
ference is now larger in absolute value. 
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Discussion 

The results in the preceding section assumed that the berth 
is so long that ships never have to queue for berthing space 
and that the ship arrival process has independent increments. 
To check that ships do not have to queue for berthing space, 
one can calculate the mean and variance of the total number 
of ships at berth and verify that both are small enough. For 
type-0 ships, the mean and variance, E(N0 ) and var (N0), can 
be obtained with the formulas for an infinite server system 
(see Newell (13)]. Earlier, formulas were given for the mean 
number of type-1 ships, E(N1), but not for its variance. If Q1 

and Q were independent (they should be positively corre­
lated), Equation 13b would indicate that: 

var(N1) = (var(Q) + var(Q 1))/4 

where var(Q) and var(Q1) are given by a formula, which is 
similar to Equation 17 but is not given here. If Q and Q1 were 
perfectly correlated, the variance would instead be: 

The actual value should be between these limits, which should 
then be added to var(N0) to obtain the variance for the total 
number of ships. Although an exact value is not given here, 
the calculations may indicate whether the available berth space 
is likely to suffice; great accuracy is not always needed for 
this purpose. If some of the ships are liners, the assumption 
of an arrival process with independent increments does not 
hold. Some graphical simulations can be done. For example, 
if all the ships are liners, two cumulative plots of the number 
of cranes demanded by one- and two- hatched ships versus 
time (as per their schedules) can be constructed. These graphs 
will help determine when each hold gets served with algorithm 
G and the departure time of each ship . This yields the desired 
information. If only some of the ships are liners (and liners 
have priority), one can use the preceding process to determine 
how many free cranes there are on average after serving the 
liners. If this number does not fluctuate with time very much 
(the liner schedules could be fairly regular), one could use 
this average (instead of C) with the expressions in the earlier 
section to obtain a first estimate of tramp delay. Clearly, there 
are many situations where the queuing formulas presented in 
this section do not apply. Nonetheless, the results give an 
indication of the kind of delay savings that can be attained 
by efficient crane scheduling. 

CONCLUSION 

This paper represents an initial attempt at understanding crane 
operations at ports by means of simple analytical formulas. 
It provides some approximate expressions for the average 
num.ber of busy cranes during congested periods (a measure 
directly related to the maximum terminal throughput) and for 
ship delay. 

The maximum terminal throughput depends on several fac­
tors: the berth capacity (in ships), the number of cranes, the 
amount of work per hold and its variability within and across 
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ships, and the crane operating strategy. The crane operating 
strategy influences throughput considerably less than the other 
factors . In all the cases examined, throughput does not change 
by more than about 10 percent when one switches from an 
inefficient to an efficient strategy. This indicates that detailed 
models of crane operations are not needed to obtain rough 
productivity estimates . 

A simple formul<t , which is proposed for efficient crane 
operations, was tested against exact expressions for some spe­
cial cases . The errors were on the order of just a few percent. 
Although further testing is needed, this suggests that such a 
formula may be useful for quick response economic and plan­
ning purposes, in instances where detailed simulations are not 
possible. 

The paper also illustrates how the maximum productivity 
expressions can be used for evaluating the effectiveness of 
various terminal configurations. As an example , it calculates 
the optimum number of cranes when the berth capacity is 
fixed anU iht: L:O~t of additional cranes is counterbalanced by 
corresponding productivity increases. 

The paper also studies the impact of crane scheduling on 
ship delay for a berth that has a finite number of cranes but 
is ample enough to hold all ships ; ships arrive at random so 
some of them may have to wait for a crane if too many are 
already at berth. The paper examines idealized situations that 
can be modeled analytically, and yet are rich enough to be 
sensitive to the crane allocation strategy . For a given strategy, 
the expected delay depends on only three parameters: the 
number of cranes and the average and standard deviation of 
the number of arrivals in the time that it takes to serve one 
hold. For the examples studied, representing lightly congested 
conditions, the expected delay was reduced by about 25 per­
cent when switching from an inefficient to an efficient crane 
scheduling strategy. 

The results in this paper represent only an initial effort 
toward providing crane usage analytic models. It definitely 
would be desirable to validate the approximate productivity 
equations under a wider set of conditions, and to extend the 
queuing models to situations where berth space is not quite 
so plentiful. 
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Guidelines and Computational 
Results for Vector Processing of 
Network Assignment Codes on 
Supercomputers 

KYRIAcos C. MousKos AND HAN: S. MAHMASSANI 

Supercomputers derive their computational performance from faster 
proc~ors as well as innovations in their architecture. To take 
advantage of the vector processing capabilities of supercomputers, 
such as the CRAY X-MP series, it is necessary to modify the code 
to enhance its vector processing performance. These modifications 
can range from simple localized recoding of existing mainframe 
codes to devising new algorithms with the hardware's architecture 
in mind. In this paper, codes for the solution of two network 
ec1uilibrlum assignment problem formulation (Frank-Wolfe algo­
rithm for the single-class user equilibrium problem and. lh di­
agonalization algorithm for multiple user classes with as)•mmetric 
interactions) arc vectorized and le ted on a RAV X-MP/24 super­
computer. Only local vectorizatfon by limited recoding of existing 
programs is performed. Guidelines are given for I his puqlose and 
their application to t.h assignment codes is illustrated. The com­
putational tests performed indicate an improvement in execution 
lime of about 70 to 80 percent of the modified code relative to its 
unvectorized performance on the CRAY supercomputer. Execu­
tion of the vectorized code on the CRAY is about 22 times faster 
than the execution of the unmodified code on a mainframe com­
puter. The significance of the results for research and practice is 
also discussed. 

The network traffic assignment problem arises in connection 
with many transportation planning activities , including the 
analysis of the cost-effectiveness of capital improvement proj­
ects and the evaluation of operational planning strategies in 
traffic networks. Two decades of research have resulted in 
efficient and widely available algorithms for this problem, 
particularly for the case of a single class of users and no 
interactions across links. Such programs are routinely exe­
cuted on microcomputers, though only for moderately sized 
networks . A review and textbook presentation can be found 
elsewhere (1). For more complicated and realistic cases, espe­
cially those involving multiple user classes and asymmetric 
link interactions (1-5), existing algorithms are much more 
demanding computationally, especially for large-scale sys­
tems. Network assignment procedures are also critical for 
solving the network design problem, which is an np-hard prob­
lem that cannot generally be solved optimally using current 
computational techniques. 

Supercomputers offer at least an order of magnitude 
improvement over conventional mainframes in terms of speed 
and memory capabilities , and they greatly enhance our ability 
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to solve large problems under more realistic assumptions. 
Supercomputers derive their high performance not only from 
inherently faster silicon chips, whose performance is fast 
approaching its quantum-mechanical limits, but also from their 
radically different architectures that reflect different degrees 
of parallelism ( 6, 7). The CRAY X-MP series of supercom­
puters, which is used in the present study, appears to have 
gained the widest acceptance and accessibility in the American 
academic community. Its architecture provides a dimension 
of parallelism by using vector or matrix operations of an algo­
rithm (vectorization) . More detailed description of the hard­
ware aspects of the CRAY X-MP that are relevant to appli­
cations programmers can be found in papers by Zenios and 
Mulvey (7) and Chen (8). 

Compilers are generally available for the CRAY supercom­
puter to "vectorize" a particular code by identifying those 
independent portions that can be executed in parallel and 
sequencing the processing and task allocation accordingly. 
However, there are many inherently parallel activities that 
may have been programmed in ways intended for conven­
tional scalar processing but that actually inhibit the vectori­
zation capabilities of the compiler. It is therefore generally 
possible to take fuller advantage of the capabilities of the 
supercomputer's architecture by modifying, or vectorizing, 
the code. Three levels of vectorization can be distinguished 
(7): 

1. Local software vectorization , where the program is re­
examined in its parts and subroutines, and redesigned only 
locally, without program-wide repercussions; 

2. Global software vectorization, affecting the whole im­
plementation of the algorithm and the design of the data 
structures; and 

3. Overall algorithm vectorization, where the solution al­
gorithm itself is conceived to take advantage of the machine 
architecture. 

Recently, Zenios and Mulvey (7) provided an example of 
the kinds of I cal modifications needed to vectorize codes for 
the solution of nonlinear network programs and reported related 
computati nal experience on the CRAY X-MP/24. In addi­
tion to illustrating the potential of upercomputer for solving 
large-scale network optimization problems, their results high­
lighted the need to modify the c d to achi ve better vcc-
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torization. The present paper presents similar information for 
codes to solve the traffic network equilibrium assignment 
problem. The principal objective is to assess the computa­
tional improvements that can be achieved by local vectori­
zation of network traffic assignment codes, for the single-class 
and the two-class (with asymmetric interactions) user equi­
librium problems. The computational experiments are per­
formed on the CRAY X-MP/24 supercomputer. The results 
have important implications for practice in terms of the size 
and complexity of the problems that can be addressed and, 
more important, for the future development of solution 
approaches to the network design problem. 

The next section presents general guidelines for the local 
vectorization of FORTRAN codes. Following a brief descrip­
tion of the algorithms, the application of these principles to 
the single-class user equilibrium assignment codes, and the 
corresponding computational improvements are described. 
Results for the two-class problem are presented next, followed 
by concluding comments. 

CODE VECTORIZATION GUIDELINES 

To develop vectorizable programs and properly exploit the 
supercomputer capabilities, some appreciation of the machine's 
architecture and characteristics is helpful (7,8). The CRAY 
X-MP consists of separate dedicated functional units for vec­
tor floating point operations, vector integer operations, and 
scalar integer operations, respectively. It contains eight vector 
and eight scalar registers where vectors and scalars, respec­
tively, are held before and after being processed on their way 
from and back to the memory. Vectors are processed in a 
pipeline fashion; after an initial startup period the first result 
appears, followed by the other results , one every cycle. The 
Cray FORTRAN (CFT) compiler produces a code that con­
tains vector instructions to drive the high-speed vector and 
floating point functional units and the eight vector registers 
in their specified operation. The compiler, to be on the safe 
side, does not attempt vectorization when it suspects certain 
dependencies within DO loops, even if the corresponding 
operations are inherently vectorizable. Another important 
feature of the CRAY X-MP is the abundance of memory and 
availability of a very high speed, large solid-state device. As 
such, many of the techniques typically used to reduce and 
carefully manage storage in programs developed for main­
frame computers may actually inhibit vectorization and degrade 
performance on the supercomputer. 

The first step in the local vectorization of a program initially 
developed for scalar processing is to perform a time require­
ments analysis to determine the time-intensive parts of the 
code. These should then become the primary targets of the 
recoding effort. A combination of code modifications and 
compiler directives can then be employed. This process is 
iterative and can be continued until the programmer is sat­
isfied that no further meaningful improvement can be achieved. 
Beyond this level, additional improvements would have to be 
sought by higher-level vectorization, as described earlier. 

The primary programming constructs that should be tar­
geted in vectorization efforts are DO loops, where the major­
ity of computer time expense is incurred. As already noted, 
the CRAY X-MP compiler automatically tries to vectorize 
the loops where applicable. When trying to determine whether 
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or not to vectorize a particular DO loop, the CFT compiler 
checks for the existence of any dependencies within the loop. 
Statements that should be avoided within the DO loops, 
according to the UT CHPC User Services Group (9), include 
CALL statements; 1/0 statements; branches to statements not 
in the loop; statement numbers with references from outside 
the loop; references to character variables, arrays, or func­
tional IF statements that may not execute because of the 
effects of previous IF statements; ELSE IF statements. 

The guidelines presented next were followed in vectorizing 
the network assignment codes , based on suggestions in the 
publications of the UT CHPC User Services (9) and the San 
Diego Supercomputer Center (JO): 

1. Data dependencies should be eliminated; a loop will not 
vectorize if, for example, an array is .referencing values 
dependent on computations in lower portions of the array in 
an incrementing loop. The computations cannot be pipelined. 

2. Subscript ambiguities should be eliminated; try to elim­
inate the dependency of a subscript on a previous calculation 
by including the operation in the array. 

3. In the case of nested loops, the one with the largest 
range should be assigned as the innermost loop; this would 
contribute the most to the overall effectiveness of the code 
because the inner loop is the only one that is vectorized. 

4, Conditionals should be eliminated; IF THEN ELSE 
statements can be replaced by conditional vector merge pro­
cedures. Simple IF statements are vectorizable but might inhibit 
vectorization if their references lead to some of the afore­
mentioned dependencies. 

5. The loops should be unrolled to a certain depth, thereby 
eliminating checking for termination conditions and enforcing 
chaining and functional unit overlap. 

6. Vectorizable loops should be separated from unvecto­
rizable loops-in particular, separate loops that contain CALL 
statements or 1/0 statements or any of the statements men­
tioned previously that are independent of the other compu­
tations within the loop. 

Before describing the application of these rules to the net­
work assigment codes considered in the study, the basic steps 
of the algorithms for the single-class user equilibrium and the 
multiclass user equilibrium with asymmetric costs problems 
are presented. 

REVIEW OF THE NETWORK EQUILIBRIUM 
ALGORITHMS 

Given a known matrix of origin-destination flows, a network 
of directed links connecting nodes, and link performance func­
tions that describe the dependence of link costs on the cor­
responding link flows, the single-class user equilibrium algo­
rithm solves for the flows onto the individual links of the 
network so as to achieve certain equilibrium conditions whereby 
no driver can improve her travel time by unilaterally switching 
routes . Exact solution algorithms for the single-class user 
equilibrium problem are based on Beckman's equivalent 
mathematical programming formulation (11), which can be 
solved by any of several nonlinear optimization techniques. 
The most widely used algorithm for its solution is based on 
the Frank-Wolfe or convex combinations method. This algo-
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rithm is well documented, and a detailed presentation can be 
found in a paper by Sheffi (1). A brief overview is presented 
here. 

The algorithm consists of an iterative procedure that, at 
each iteration, first finds a search direction by solving a linear­
ized approximation, then solves for the optimal move size 
along that direction. The efficiency of the algorithm derives 
from the fact that the direction-finding step is equivalent to 
performing an all-or-nothing assignment. The latter requires 
the repeated application of a shortest path routine, which is 
the principal computationally demanding element of the code. 
An additional source of computational cost is the line search 
to find the optimal move size along a particular direction and 
the computation of the relatively complicated nonlinear travel 
cost (link performance) functions. Letting ta(.) denote the link 
performance function for link a, the principal steps of the 
algorithm can be summarized as follows: 

STEP 0: Initialization. Perform all-or-nothing assignment 
based on the free flow travei times ta = ta(O), Va; This yeilds 
the set of link flows {X~}. Set counter n = 1. 

STEP 1: Update. Sett~ = t"(X~), 'Va. 
STEP 2: Direction finding. Perform all-or-nothing assign­

ment based on {t~}. This yields a set of (auxiliary) link flows 
{y~}. 

STEP 3. Line search. Find optimal move size o:" that solves: 

l
x~+a(y~-X~) 

min 2: ta (w) dw 
a 0 

subject to 0 $ o:" s; 1. 

STEP 4: Move. Set X~+i = X~ + o:" (y~ - X~), 'Va. 
STEP 5: Convergence test. If a convergence criterion is 

met, STOP (the current solution is the set of equilibrium link 
flows); otherwise, set n = n + 1 and GO TO STEP 1. 

The preceding algorithmic steps are implemented in the 
computer code as follows. The input of the characteristics of 
the network, the 0-D matrix, link characteristics, and con­
vergence measures, are included in TRAFASN. The initial­
ization STEP 0 takes place in subroutine UE, where all the 
main steps of the algorithm are controlled. Following the 
initialization of all the paths to zero flows, subroutine AON 
is called to initialize the flows on the links to zero. Then the 
travel times on the links are computed, initially with zero 
flows. All travel time computations are performed by calling 
a separate function called COSTFN. Given these travel times, 
subroutine SHPATH is called, as many times as the number 
of origins, to identify the shortest path for each 0-D pair. 
Then the flow for each 0-D pair is allocated on the links that 
make up each shortest path. The calculation of the travel times 
and the allocation of the flows to the links (all-or-nothing 
assignment) correspond to STEP 1 and STEP 2 of the algo­
rithm, respectively. STEP 3 is controlled by subroutine 
BISECT, where the move size is determined by a line search 
using the bisection method. This move size is used in updating 
the flows (STEP 4), followed by the convergence test 
(STEP 5), calculated in subroutine UE. The output of the 
program is controlled by subroutine DUMP. 

The two-class user equilihrium problem arises when two 
classes of users (e.g., cars and trucks) share the use of the 
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physical right-of-way on the highway facilities. The travel times 
(costs) experienced by one class of users depend not only on 
the flow of elements belonging to that class but also on the 
flow of the other class. When the respective effects of the 
flow of one class on the travel time of the other are not 
symmetric (e.g., the effect of one additional truck on the cars' 
average travel time is greater than the effect of an additional 
car on the trucks' travel time), the resulting user equilibrium 
problem does not have an equivalent mathematical program­
ming formulation. One of the most commonly used algorithms 
for its solution is a direct algorithm called the diagonalization 
algorithm. A discussion of other approaches is given in the 
review paper by Friesz (12). 

In the solution of the two-class user equilibrium problem, 
a separate copy of the physical network is created for each 
class of users, as described in Mahmassani et al. ( 4). The 
interactions between classes sharing the same physical links 
are then represented through the performance (cost) func­
tions associated with each link in the individual network cop­
ies. In the general case, these functions would specify the 
dependence of a link's travel cost on flows on any other link. 
In the two-class case, the specification of the cost functions 
reflects the desired dependence between user classes as inter­
actions among links. 

At each iteration, the diagonalization algorithm requires 
the solution of a single-class user equilibrium problem as a 
subproblem. The latter arises because at the nth iteration, aii 
cross-link effects are fixed at their levels from the (n - l)th 
iteration, and the cost on any given link is allowed to respond 
only to its own corresponding flow. This subproblem is solved 
using the Frank-Wolfe algorithm. Because each iteration of 
the diagonalization algorithm requires several iterations of 
the Frank-Wolfe algorithm to solve the diagonalized sub­
problem, it is more computationally demanding than the sin­
gle-class algorithm. In addition, because there are as many 
origin-destination trip matrices as there are classes of users, 
greater use must be made of the shortest path and the all-or­
nothing assignment procedures. Furthermore, the travel cost 
functions are more complicated, increasing the computational 
burden for the move size finding. 

Nevertheless, the computer code for the diagonalization 
algorithm, especially for its streamlined versions (1,5), does 
not differ significantly from the single-class code. It is com­
posed of the same subroutines, with some modifications to 
take into account the division of the traffic into trucks and 
passenger cars. The previously listed subroutines and func­
tions are renamed in this case, in the respective order in which 
they were previously mentioned, as UETRDIA, UED, AON­
UED, TRCOST, SHPUED, BISUED, and DUMPUED. For 
this reason, the modifications performed to vectorize the sin­
gle-class code are directly beneficial to the diagonlization code. 
In the next section, these modifications are described for the 
single-class code, along with computational results with the 
vectorized code on two networks used in previous numerical 
experiments ( 4,5). 

COMPUTATIONAL RESULTS FOR SINGLE­
CLASS UE CODE 

The purpose of this section is to illustrate the process followed 
to vectorize the network assignment code and to document 
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the improvements achievable by different types of modifi­
cations. Most of the testing accompanying the various indi­
vidual changes was performed on a medium-sized network 
with 182 0-D pairs, 128 nodes, and 336 links. A similar net­
work was used extensively in earlier experiments with stream­
lined versions of the diagonalization algorithm (4,5). A max­
imum of 500 iterations of the algorithm were allowed before 
the code was terminated for any test run with this network. 
All runs were performed on the CRAY X-MP/24 using two 
available Fortran compilers: the CFf 1.15 and the CFT77 
v2.0. The CFf 1.15 is written in CRAY assembly language, 
the CFT77 in Pascal. The CFT77 has superior scalar perfor­
mance and implements array syntax (arrays handled as enti­
ties) and automatic arrays (storage allocated at run time). In 
many cases, it has closer FORTRAN syntax error handling 
and vectorizes some loops that the CFf 1.15 would not. The 
CFf 1.15 generates scalar and conditional vector loops and 
chooses between the two at run time, whereas the CFT77 
generates only vector code and computes the vector length 
at run time. 

Following the steps described earlier, the performance of 
the code was first assessed without the vectorizing capabilities 
of the CFf compilers, and a time analysis was performed to 
determine the most computationally intensive elements of the 
program. The results are shown in Table 1. The total time to 
execute was 15.679 sec, using the CFf 1.15 compiler and 14.99 
sec using the other compiler (with vectorization blocked in 
both cases). This compares with 79 sec on a CYB ER CDC 
170/750 mainframe or about five times more than the super­
computer without any vectorization. 

Next, the program was executed by removing the prohi­
bition of vectorization. The results, shown in Table 2 for both 
compilers, indicate that the execution times for some of the 
routines were reduced considerably, though not uniformly. 
A total reduction of 28 percent was achieved by the vectorized 
compilation using the CFf 1.15 compiler, and of 32 percent 
using the other compiler, without any program modification. 
The shortest path routine vectorized quite well, exhibiting a 
reduction of about 60 percent. The reductions for functions 
COSTFN and FINT were much more modest, however, less 
than 5 percent, thereby pointing our efforts toward seeking 
to improve them. 

TABLE 1 EXECUTION TIMES AND PERCENTAGE OF 
TOTAL EFFORT FOR EACH SUBROUTINE WHEN 
VECTORIZATION IS BLOCKED (MAXBLOCK = 1) IN 
COMPILER FOR THE SINGLE CLASS UE CODE ON 
NETWORK 1 

CFl' l.15 CFI77v2.0 

EXECUTION EXECUTION 
TIME TIME 

SUBROUTINE (Seconds) (%) (Seconds) (%) 

AON 2.195 (14.00) 2.559 (17.07) 
BISECT 3.065 (19.55) 2.412 (16.09) 
COSTFN 5.928 (37.81) 6.115 (40.79) 
DUMP 0.222 (1.41) 0.202 (1.35) 
FINT 0.507 (3.24) 0.521 (3.47) 
SHPATH 3.330 (21.24) 2.827 (18.86) 
TRAFASN 0.051 (0.32) 0.050 (0.33) 
UE 0.381 (2.43) 0.304 (2.03) 

Total Execulion Time 15.679 (100) 14.990 (100) 

TABLE 2 EXECUTION TIMES (IN SECONDS) AND 
PERCENTAGE OF TOTAL EFFORT WITH 
VECTORIZATION USING BOTH CFT COMPILERS FOR 
THE SINGLE CLASS UE CODE ON NETWORK 1 

CFf 1.15 CFr77 v 2.0 

EXECUTION 
TIME EXECUTION 

SUBROUTINE (Seconds) (%) TIME (%) 

AON 1.430 (12.68) 0.917 (8.99) 
BISECT 1.813 (16.08) 1.517 (14.87) 
COSTFN 5.694 (50.50) 5.785 (56.72) 
DUMP 0.215 (1.91) 0.201 (1.97) 
FINT 0.485 (4.30) 0.487 (4.78) 
SHPATH 1.391 (12.33) 1.055 (10.34) 
TRAFASN 0.050 (0.44) 0.048 (0.47) 
UE 0.198 (l.75) 0.191 (1.87) 

Total Execulion Time 11.275 (100) 10.199 (100) 
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To achieve such improvements, one needs to eliminate data 
dependencies that inhibit vectorization, as discussed earlier. 
One strategy in this case is to include the travel cost functions 
within the BISECT routine instead of repeatedly calling a 
separate function (COSTFN). Calling functions or subrou­
tines in a loop may inhibit vectorization. This change led to 
a reduction of 1.274 sec (or 11.3 percent) using the CFf 1.15 
compiler. However, it was suspected that a further data 
dependency existed in the loop for computing the link per­
formance functions that inhibited vectorization. These func­
tions have the following general form: 

where t0 a is the travel time on link a under free flow conditions, 
ca is a parameter generally interpreted as the capacity of link 
a, and 13 and 'Y are link-specific parameters. The data depen­
dency in the manner in which the computation of these func­
tions was originally coded arises from the separate calculations 
of the parameters A 1 and Bl, as shown in Figure 1. The 
expressions for these parameters were therefore included 
directly in the travel time equation. The foregoing changes 
are shown in Figure 1 as an example of the kind of local code 
modifications that can dramatically improve the vector per­
formance of FORTRAN codes. The execution time summary 
following these changes is reported in Table 3 for both com­
pilers. There was a dramatic drop in execution time to 5.568 
sec (or a 51 percent improvement over the unmodified code) 
for the CFf 1.15 compiler, and to 4.061 (60 percent reduction) 
for the other, primarily because of a drop in BISECT, con­
firming the prior existence of a dependency that had inhibited 
the vectorization of the loop. 

Given the preceding results, similar changes were made 
wherever the functions COSTFN and FINT were called. A 
further step was to specify the 1/C(N) in the travel cost equa­
tions a variable Cl(N), calculated early in the program, so 
that XIC(N) was transformed to X * Cl(N), which eliminates 
the repetitive division. A division is computationally more 
demanding than a multiplication on the CRAY. The execu­
tion time summary after these and other minor changes is 
shown in Table 4 for both compilers. The total execution times 
dropped by about 57 percent and 68 percent relative to the 
unmodified but compiler vectorized code for the CFf 1.15 
and CFf v2.0 compilers, respectively, and by about 69 percent 
and 78 percent relative to the unmodified and noncompiler 
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original loop in bisect: 

DO 30 N=1, NARC 
X • FL(N) + AMD.(NFL(N)-FL(N)) 
A1 =ALP (TYP(N)) 
81 • 8ET(TYP(N)) 
CST - COSTFN (L(N), C(N), V(N), X, A1, 81) 

3 0 D • D + CST'(NFL(N) - FL(N)) 

1st Change: Removing the call function COSTFN 

DO 30 N=1, NARC 
X 3 FL(N) + AMO' (NFL(N) -FL(N)) 
A1 3 ALP (TYP(N)) 
81 = 8ET(TYP(N)) 
CST = L(N)/V(N) 
IF(C(N). NE.O) CST = CST.(1 + A1.(X/C(N))"81) 

30 D = D + CST'(NFL(N) - FL(N)) 

2nd Change: Incorporaling expressions for Al and Bl 
directly in the cost (CST) calculation 

DO 30 N=1, NARC 
X = FL(N) + AMD• (NFL(N) - FL(N)) 
CST - L(N)/V(N)' (1+ ALP(TYP(N))'(X/C(N))"8ET(TYP(N))) 

3 0 D = D + CST'(NFL(N) - FL(N)) 

FIGURE 1 Changes to subroutine BISECT to eliminate data 
dependencies. 

TABLE 3 EXECUTION TIME SUMMARY FOLLOWING 
MODIFICATION OF BISECT AS SHOWN IN FIGURE 1, 
USING BOTH COMPILERS FOR THE SINGLE CLASS UE 
CODE ON NETWORK 1 

CFI' 1.15 CFI'77 y 2.0 

EXECUTION 
TIME EXECUTION 

SUBROUTINE (Seconds) (%) TIME (%) 

AON 1.433 (25.73) 0.931 (22.93) 
BISECT 1.328 (23.85) 0.654 (16.09) 
COS1FN 0.477 (8.56) 0.494 (12.15) 

DUMP 0.211 (3.79) 0.203 (4.99) 
FINT 0.475 (8.53) 0.488 (12.02) 

SHPAlH 1.411 (25.34) 1.061 (26.12) 
1RAFASN 0.050 (0.90) 0.047 (l.17) 

UE 0.184 (3.30) 0.184 (4.52) 

Total Execution Time 5.568 (100) 4.061 (100) 

TABLE 4 EXECUTION TIME SUMMARY FOLLOWING 
ALL MODIFICATIONS TO THE SINGLE CLASS UE CODE, 
USING BOTH COMPILERS, FOR NETWORK 1 

CFI' 1.15 CFT77 y 2.0 

EXECUTION 
TIME EXECUTION 

SUBROUTINE (Seconds) (%) TIME (%) 

AON 1.357 (27.99) 0.847 (25.66) 
BISECT 1.313 (27.07) 0.641 (19.43) 
DUMP 0.204 (4.21) 0.206 (6.23) 

SHPAlH 1.392 (28.71) 1.056 (31.99) 
1RAFASN 0.050 (1.04) 0.048 (1.47) 

UE 0.533 (10.99) 0.505 (15.23) 

Total Execution Time 4.849 (100) 3.301 (100) 
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vectorized case. The ratio of CDC mainframe to vectorized 
performance thus becomes of the order of 25 times, compared 
with about 5 times without any vectorization. This highlights 
the need for and potential of relatively simple local code 
modifications to take better advantage of supercomputing 
capabilities. It is of course possible to improve further on the 
code's performance; however, the point was reached where 
the marginal improvements due to additional changes did not 
justify further effort. 

Additional tests of the final vectorized code were performed 
on a large network of 700 nodes and 1,956 links, confirming 
the magnitude of the improvement achieved by local vecto­
rization relative to the execution of the unmodified code on 
the supercomputer and to the CDC mainframe. 

COMPUTATIONAL RESULTS FOR 
DIAGONALIZATION CODE 

As explained earlier, the diagonalization program for multiple 
user classes with asymmetric interactions is very similar to the 
single-class code. Thus the modifications implemented for the 
former closely parallel those described in the previous section 
for the latter. These changes primarily affected the compu­
tation of the link performance functions, which are more com­
plicated in the case of multiple user classes, and the BISUED 
subroutine (the equivalent of the BISECT subroutine for the 
single-class code). Additional details can be found in the report 
by Mahmassani et al. (13). 

The performance of the vectorized diagonalization code 
was tested on a relatively large network, with two classes of 
vehicles operating on it. The interactions between vehicle 
classes are represented in the link performance functions, as 
described by Mahmassani and Mouskos (4,5). The network 
consists of 364 0-D pairs, 1,400 nodes, and 3,912 links. A 
total of 25 iterations were allowed before the code was ter­
minated for all test runs. For this network, time analyses were 
performed for (a) original code with no compiler vectoriza­
tion, (b) original code with compiler vectorization, and 
(c) modified code with compiler vectorization. The corre­
sponding execution time analyses are summarized in Tables 
5, 6, and 7, respectively, for both CFT compilers. 

Comparing the results of Tables 5 and 6, compiler vecto­
rization without code modification leads to an improvement 
from 23 sec to about 13.5 sec (i.e., a 41.5 percent reduction) 

TABLE 5 EXECUTION TIME SUMMARY FOR THE 
UNMODIFIED DIAGONALIZATION CODE WITH 
VECTORIZATION BLOCKED 

CFT 1.15 CFT77v2.0 
EXECUTION EXECUTION 

TIME TIME 
SUBROUTINE (Seconds) (%) (Seconds) (%) 

AONED 1.192 (5.17) 0.949 (4.89) 
BISUED 5.726 (24.84) 2.795 (14.40) 
DUMPUED 0.434 (1.88) 0.257 (l.32) 
SHPUED 10.033 (43.52) 8.429 (43.41) 
TR COST 4.608 (19.99) 5.945 (30.41) 
UED 0.245 (1.06) 0.239 (1.23) 
UETRDIA 0.815 (3.54) 0.802 (4.13) 

Total Execution Time 23.053 (100) 19.414 (JOO) 
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TABLE 6 EXECUTION TIME SUMMARY FOR THE 
UNMODIFIED DIAGONALIZATION CODE WITH 
VECTORIZATION USING BOTH CFT COMPILERS 

CFf 1.15 CFf77 v 2.0 

EXECUTION EXECUTION 
TIME TIME 

SUBROUTINE (Seconds) (%) (Seconds) (%) 

AO NED 0.661 (4.90) 0.448 (3.45) 
BISUED 2.856 (21.17) 1.983 (15.25) 
DUMPUED 0.201 (1.49) 0.136 (1.04) 
SHPUED 4.389 (32.54) 3.712 (28.56) 
TR COST 4.440 (32.91) 5.865 (45.13) 
UED 0.125 (0.93) 0.084 (0.64) 
UETRDIA 0.816 (6.05) 0.770 (5.92) 

Total Execution TIJlle 13.489 (100) 12.998 (100) 

TABLE 7 EXECUTION TIME SUMMARY FOR THE 
MODIFIED DIAGONALIZATION CODE WITH COMPILER 
VECTORIZATION 

CFf 1.15 CFf77 v 2.0 

EXECUTION EXECUTION 
TIME TIME 

SUBROUTINE (Seconds) (%) (Seconds) (%) 

AO NED 0.423 (6.26) 0.299 (5.18) 
BISUED 0.861 (12.74) 0.795 (13.76) 
DUMPUED 0.217 (3.21) 0.187 (3.24) 
SHPUED 4.326 (63.99) 3.647 (63.11) 
UED 0.125 (1.85) 0.084 (1.45) 
UETRDIA 0.808 (11.95) 0.766 (13.26) 

Total Execution TllllC 6.759 (100) 5.779 (100) 

for the CFT 1.15 compiler and a 33 percent reduction for the 
other compiler. This time is cut by about half after the code 
is modified, as shown by Table 7, for a total reduction of 
about 70 percent, corresponding to a nonvectorized to vec­
torized improvement ratio in excess of 300 percent, for both 
compilers. As a reference, the code executed in 126 sec on 
the CDC mainframe, so the vectorized code on the CRAY 
performed 22 times better than the unmodified code on the 
mainframe. 

CONCLUDING COMMENTS 

The results presented in this paper provide an indication of 
the magnitude of the reductions in execution time of network 
assignment codes on the CRAY X-MP/24 supercomputer that 
can be achieved by the vectorization of the codes, and relative 
to mainframe computers. For both the single-class user equi­
librium and the two-class user equilibrium problem with asym­
metric interactions, considerable improvement was achieved 
following local vectorization by limited modifications to the 
codes: about 80 percent and 70 percent, respectively, over 
the unvectorized execution. Our experience confirms the 
effectiveness of the recommendations followed to optimize 
these two FORTRAN codes, mainly trying to avoid depen­
dencies within the DO LOOPS. Inserting in line the travel 
cost functions proved very helpful in both cases. The unmo­
dified codes ran about 5 times faster on the CRAY X-MP 
without compiler vectorization, and between about 7 and 10 
times faster with compiler vectorization, than on the CDC 
mainframe. However, after the modifications, execution on 
the CRAY was about 22 times faster than on the mainframe. 
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Of course, generalization of these conclusions requires addi­
tional experiments on networks with different configurations 
and sizes. It is expected that the relative improvement due to 
the modifications would depend on the extent to which the 
shortest path routine is called in a particular problem. 

It is therefore important to realize that off-the-shelf codes 
for network analysis originally developed to maximize effi­
ciency on mainframes are not likely to run very efficiently on 
supercomputers with vector processing capabilities. The results 
given here demonstrate that relatively simple local modifi­
cations can have significant impacts on the vector performance 
of such codes. The generally applicable guidelines followed 
in our vectorization of these codes are easy to implement and 
have been shown to be quite effective. 

In this study, no attempt was made to go beyond the local 
level of code vectorization. It is quite possible that additional 
improvements can be achieved by using more efficient data 
structures, or different algorithms, for the overall problem or 
any of its parts, specifically conceived or selected for their 
potential for efficient vector performance. Interesting chal­
lenges lie ahead along those lines as solution procedures are 
revised and devised to take advantage of increasingly available 
innovative hardware. For instance, local modifications in the 
shortest path routine did not yield significant improvements, 
suggesting that additional reduction may require more global 
attempts. 

Having established the foregoing results, it is important to 
ask what their implications might be for research and practice. 
Should researchers and practitioners attempt to perform all 
assignment runs on supercomputers? The answer is of course 
that most everyday applications of traffic assignment models, 
especially of the fixed-demand single-class variety, will and 
should continue their migration to microcomputers. The capa­
bilities offered by supercomputers mean that one can address 
very large-scale problems, and afford greater detail in network 
representation and, more important, greater realism in the 
underlying assumptions. For instance, problems with multiple 
user classes and asymmetric interactions are notoriously de­
manding computationally; supercomputers offer an attractive 
computing environment in which to solve such problems and 
not be discouraged from performing sensitivity analyses. In 
addition, supercomputer capabilities may lead to break­
throughs in two subjects of current interest to researchers and 
of great potential practical significance: dynamic assignment 
problems and the network design problem. Both problems 
give rise to serious computational hurdles that have consid­
erably slowed progress on their substantive aspects and on 
their solution in practical applications. 

The network design problem belongs to the category of np­
hard problems. A particular variant of practical interest arises 
in connection with the selection of truck-related improve­
ments, described by Mahmassani et al. (4,14), that can be 
stated as follows: Given a network with known 0-D matrices 
for each category of network users and a number of links n, 
the problem is to propose various improvements to the links 
so as to improve operating conditions and service levels offered 
by the network. If k improvement options are available for 
each link, the problem's combinatorial complexity rises to k". 
Because the calculation of the travel costs associated with a 
particular combination of improvements requires the appli­
cation of a traffic assignment procedure (to find either a user 
equilibrium solution or a system optimum solution), improve-
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men ts in the execution of traffic assignment codes have impor­
tant implications for the size of practical network design prob­
lems that can be solved. The encouraging results obtained in 
this study allow some optimism toward vectorizing transpor­
tation network design codes, of which the network equilib­
rium assignment is a component, and attempting their exe­
cution on the CRAY. Furthermore, it would be useful to go 
beyond local code vectorization to consider global restruc­
turing of the code to achieve greater levels of computational 
efficiency. 
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Computational Experience with a 
Simultaneous Transportation 
Equilibrium Model Under Varying 
Parameters 

K. NABIL A. SAFWAT AND MOHAMAD K. HASAN 

Safwat and Magnanti have developed a combined trip generation, 
trip distribution, modal split, and traffic assignment model that 
can predict demand and performance levels on large-scale trans­
portation networks simultaneously-that is, a simultaneous trans­
portation equilibrium model (STEM). Safwat and Brademeyer 
have developed a globally convergent algorithm for predicting 
equilibrium on the STEM. The objective of this paper is to inves­
tigate the relative computational efficiency of the algorithm as a 
function of demand, performance, and network parameters for 
two small, sample networks and one large-scale, real-world net­
work. The algorithm was found indeed to be sensitive to the values 
of several variables and constants of the model. Many of the results 
were as expected and could be generalized. As the values of demand 
parameters increase, the algorithm tends to take more iterations, 
on the average, to arrive at a given accuracy level. Beyond max­
imum "practically feasible" values, however, the algorithm may 
require a considerable computational effort to satisfy a given tight 
level of accuracy. Network configuration may have a considerably 
greater influence on convergence rate than network size. These 
results should further encourage application of the STEM approach 
to large-scale urban transportation studies. 

Safwat and Magnanti (J) have developed a combined trip 
generation, trip distribution, modal split, and traffic assign­
ment model that can predict demand and performance levels 
on large-scale transportation networks simultaneously-that 
is, a simultaneous transportation equilibrium model (STEM). 
The model achieves a practical compromise between behav­
ioral and computational aspects of modeling the equilibrium 
problem. It is formulated as an equivalent convex optimiza­
tion problem, yet it is behaviorally richer than other models 
that can be cast as equivalent convex programs. Although the 
model is not as behaviorally rich as the most general equilib­
rium models, it has computational advantages . It can be solved 
with a globally convergent algorithms [see Safwat and Bra­
demeyer (2) for proof of convergence of the logit distribution 
of trips (LDT) , algorithm under milder assumptions com­
pared with the strict "norm" conditions required for conver­
gence of existing algorithms for general asymmetric models], 
that is also computationally efficient for large-scale networks 
[see Safwat and Walton (3) for computational experience with 
an application of the STEM model to the urban transportation 
network of Austin , Texas]. It is not clear, however, how the 
computational efficiency of the LDT algorithm would be influ-

Department of Urban & Regional Planning, Texas A&M University, 
College Station 77843. 

enced by variations in demand, performance, and network 
characteristics of the STEM model for different applications. 

The objective of this paper is to investigate the relative 
computational efficiency of the LDT algorithm as a function 
of demand, performance, and network parameters for selected 
example networks as well as the large-scale Austin network. 
This sensitivity analysis should provide useful guidelines for 
future applications of the approach. 

In the following section a brief summary of the STEM 
model and the LDT algorithm is presented. The next section 
includes the sensitivity analysis procedures , results, and inter­
pretations. The final section contains the summary and major 
conclusions. 

A STEM METHODOLOGY 

Following is a brief description of a STEM model and the 
LDT algorithm that predicts equilibrium on the STEM model 
by solving an equivalent convex program (ECP). For a detailed 
description of the methodology, the reader may refer to 
work of Safwat and Magnanti (1). Proof of convergence of 
the LDT algorithm may be found in work by Safwat and 
Brademeyer (2). 

A STEM Model 

In this subsection, a STEM model that describes users' travel 
behavior in response to system's performance on a transpor­
tation network is presented as follows : 

G, = o: S, + E, for all i E I (1) 

S, = max {O,ln 2: exp ( - 0 U,1 + AJ} 
j E D; 

for all i E I (2) 

T,1 G, exp ( - 0 U,1 + A)! 2: exp ( - 0 U,k + Ak) 
kB D; 

for all ij E R (3) 

for all p E P;1, all ij E R (4) 

cp = L sap c.( F.) 
a 'A 

for all p E P,1, all ij E R (5) 
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In this model, the demand variables are 

G, the number of trips generated from origin i, 
T,i = the number of trips distributed from origin i to des­

tination j, 
HP the number of trips traveling via path p from any 

given origin i to any given destination j, and 
F. the number of trips using link a. 

The performance variables are 

S1 = an accessibility variable that measures the expected 
maximum utility of travel on the transport system as 
perceived from origin i; 

U,i the average minimum "perceived" cost of travel from 
i to j; 

Cp the average cost of travel via path p from ,my given 
i to any given j; and 

Ca = the average cost of travel on link a expressed as a 
function of the number of trips ( F.) on that link. 

The rest of the quantities are 

E, = a composite measure of the effect that the socio­
economic variables, which are exogenous to the trans­
port system, have on trip generation from origin i; 

Ai a composite measure of the effect that the socio­
economic variables, which are exogenous to the trans­
portation system, have on trip attraction at destina­
tion j; 

a a parameter that measures the additional number of 
trips that would be generated from any given origin 
i if the expected maximum utility of travel, as per­
ceived by travelers at i, increased by unity; 

0 a parameter that measures the sensitivity of the utility 
of travel between any given origin-destination pair ij 
as a result of changes in the system's performance 
between that given 0-D pair; 

if link a belongs to path p 
otherwise; 

and the defined sets are 

I = set of origins, 
R = set of destinations, 

P,i = set of simple paths from i to j, and 
D, = set of destinations accessible from origin i. 

The basic assumptions of this STEM model may be sum­
marized as follows: 

1. Trip generation ( G;) is given by any general function as 
long as it is linearly dependent on the system's performance 
through an accessibility measure (S;) based on the random 
utility theory of travel behavior (i.e., the expected maximum 
utility of travel). 

2. Trip distribution (T1) is given by a logit model where 
each measured utility function includes the average minimum 
perceived travel cost ( U1) as a linear variable. 

3. Modal split and trip assignment are simultaneously user 
optimized. Notice that the STEM framework allows for the 
modal split to be given by a logit model or (together with trip 
assignment) to be system optimized [see Safwat ( 4)]. 
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LDT Algorithm 

The LDT algorithm belongs essentially to the class of feasible 
direction methods. At any given iteration r, the method involves 
two main steps. The first step determines a direction for 
improvement (d'). The second step determines an optimum 
step size (A*) along that direction. The current solution x' is 
then updated, that is, x'+ 1 = x' + A* d', and the process is 
repeated until a convergence criterion is met. Feasible direc­
tion algorithms differ mainly in the way feasible directions 
are determined and may not always converge to the optimum 
solution. 

The feasible direction d', in the LDT algorithm, is deter­
mined as follows: 

Step 1. Update link cost by calculating C~ = C"( F~) for 
all a E A. Set i = 1 in an ordered set of origin /. 

Step 2. Find the shortest path tree from i to all j E D 1• Let 
Uij be the cost of the shortest path from i to j. 

Step 3. Find d' = Y' - X' where the vector X' = (S', T', 
F') and the vector Y' = (L', Q', V') are given by 

Lj = max {O, In L exp ( - 01 Uij + A)} for all i E I 
j E D; 

Qij = (a,Lj + E;)exp( - 01 U,i + A)IL (- 01 Ujk + Ak) ijER 

B' p 
if p = p* E pii 

otherwise, 

kEDi 

for all p E P1i, ij E R 

v~ = L L oap B~ for all a EA 
ij E R p E Pij 

Then the feasible direction at iteration r is the vector d' 
with the following components: 

d~ V~ - F~ 

for all i E I 

for all ij E R 

for all a EA 

Safwat and Brademeyer (2) proved that the LDT algorithm 
is globally convergent under the same mild assumptions as 
with the STEM model. 

SENSITIVITY ANALYSIS PROCEDURES AND 
RESULTS 

Several major factors may influence the convergence rate of 
the LDT algorithm: 

1. Trip generation parameter (a), 
2. Minimum trip generation (E;), 
3. Trip distribution parameter (0), 
4. Attractiveness measure (A1i), 
5. Link performance function (Ca), 
6. Network configuration, 
7. Network size, 
8. Convergence criterion, and 
9. Accuracy level. 
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It is very clear that the combinations of values for these 
factors are enormous; hence, we have to be selective and more 
focused, particularly when initial experimental results revealed 
that the LDT algorithm is indeed sensitive to the selected 
values. This required a systematic approach and additional 
care in the "selection process." 

Two small example networks and one large, real-world net­
work were used in the analysis. The first small example net­
work (Network 1) was obtained from work by Nguyen and 
Dupuis (5) and the second (Network 2), from the work of 
Nagurney (6); both were proposed for testing algorithms for 
the asymmetric traffic assignment problem. Network 1 con­
sists of 19 links, 13 nodes, 4 origin-destination pairs, and 2 
origins (see Figure 1); and Network 2 consists of 36 links, 22 
nodes, 12 origin-destination pairs, and 4 origins (see Figure 
2). Tables 1 and 2 include the "observed" interzonal demand 
volumes on Networks 1 and 2, respectively. Note that these 

FIGURE I Network 1. 

l 

FIGURE 2 Network 2. 
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networks are, however, different from the "original" ones in 
terms of their demand and link performance functions. 

The trip generation parameter E; was selected as the 
"observed" trip generation. Two values of the attractiveness 
measure A;i were tested. 

1. A;i equals the natural logarithm of the observed trip 
distribution from i to j (this is a reasonable estimate that is 
based on theoretical grounds), and 

2. A;i equals five times the value in item 1. 

Two link performance functions were considered: linear 
and the usual BPR (i.e., Bureau of Public Roads) 4th power 
function. These are 

Cost** 1: C. = t0 • [1 + b (F.fCAP.)] and 

Cost** 4: C. = t0 • [1 + b (F.fCAP.)4] 
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TABLE 1 TRIP DISTRIBUTION MATRIX FOR 
NETWORK 1 

3 4 

l 400 BOO 

2 600 200 

TABLE 2 TRIP DISTRIBUTION 
MATRIX FOR NETWORK 2 

5 6 7 8 

235 230 220 

2 240 235 225 

3 230 220 235 

4 235 225 240 

where t is the free-flow travel time on link a, b is the link 
congesti~n parameter, and CAP a is the practical capacity of 
link a. These "parameters" were selected at "reasonable" 
values for all links of a given network such that the average 
volume-to-capacity ratio on the network at equilibrium is 
approximately 0.6 (i.e., t0 a = 1 and b = 1.15 for both 
networks, and CAP" = 700 for Network 1 and 400 for 
Network 2). 

The third network (i.e., the large-scale urban transporta­
tion network of Austin, Texas) consists of 7 ,096 links, 2, 137 
nodes, 19,213 origin-destination pairs, and 520 origins. The 
network was used earlier by Safwat and Walton (3), and no 
changes were made in its demand or performance functions. 
The average volume-to-capacity ratio on the Austin network 
was approximately 0.2; this is quite conceivable because the 
network includes existing, committed, and proposed improve­
ments for the year 2000. 

The analysis focused on the two major travel demand 
parameters a and 0. For the two example networks, possible 
values of these two parameters were considered at two dif­
ferent values of the other one. That is, the values of a varied 
between 0.001 and 50 while values for 0 were set at 0.05 and 
0.12, and the values of 0 varied between 0.01 and 0.9 while 
values of a were set at 0.001 and 10. For the Austin network, 
the values of a varied between 1 and 50 while the value of 0 
was set at 0.05, and the values of 8 ranged between .05 and 
0.14 while the value of a was set at 1. The ranges of values 
were selected to capture "significant" variability in the com­
putational efficiency of the algorithm, as reflected by the num­
ber of iterations required to arrive at a prescribed accuracy 
level based on a given convergence criterion. In some cases, 
however, there were "practically maximum" values of the 
parameters beyond which the algorithm could not arrive at 
the prescribed accuracy level (which was selected to be tight) 
in thousands of iterations. 

TRANSPORTATION RESEARCH RECORD 1251 

Two convergence criteria and two accuracy levels were 
included in the analysis. Notice that at any iteration in the 
LDT algorithm the following equation holds true for all ij E 

R [see Safwat and Magnanti (1)]: 

Gj exp ( - 8 Uji + A1) exp (0 Cij) 

Tij = :L ( - 0 u;k + Ad 
k E Di 

where 

Cij = 1/0 [Si - In (a Sj + E;) 

for all ij E R 

It is obvious that at equilibrium 8 Cij = 0 for all ij E R; 
hence, two convergence criteria may be specified as follows: 

1. Stop whenever - E 1 < 8 Cij ~ + E 1 for all ij E R or 
2. Stop whenever TERi'~1S = "v1L (e Cij) 2 < 2 2 

where E1, E2 > 0 are small accuracy levels (selected at 0.05 
and 0.1 in our analysis) and TERMS is the Total Equilibrium 
Root Mean Squares error. 

The convergence rate of the LDT algorithm was measured 
in terms of the number of iterations required to achieve a 
given level of accuracy. This is a proxy measure for the CPU 
time as it was more or less constant for each iteration. In 
particular, for the example networks, the CPU time for input 
and initial solution was 0.09 sec and, per iteration, 0.01 sec 
on a VAX 8650 minicomputer that was used for analysis. For 
the Austin network the CPU times were about 190 and 170, 
respectively. 

Because the emphasis in analysis is on the demand param­
eters a and 0, values of other factors were selected on the 
basis of their respective influence on the effect of changes in 
these two parameters on the convergence rate of the algo­
rithm. For instance, to select the appropriate value for the 
attractiveness measure A,1, Figure 3 shows the effect of 0 on 
the number of iterations to arrive at a prespecified accuracy 
level (which was selected at E1 = 0.05 as determined by the 
sensitivity analysis procedure itself, as is explained later) for 
the two different values of the attractiveness measure A;1 already 
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FIGURE 3 Effect of theta on convergence rate (Network 1, 
Cost** 4, alpha = 0.001, epsilon = 0.05). 
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indicated. In Figure 3, the parameter ex was set at a small 
value of0.001 to reduce its influence on results to a minimum; 
the usual BPR 4th power link cost function (Cost** 4) was 
selected because it is more realistic than the linear cost func­
tion (Cost** 1); and Network 1 was used because its config­
uration was found to have more influence on the results than 
Network 2 (see Figure 4). 

The graphs in Figure 3 show very clearly that using five 
times the value of a "reasonable estimate" for A;j caused the 
number of iterations to increase considerably for all values of 
0; the increase becomes more significant as 0 increases. On 
the basis of these results, the attractiveness measure for the 
remainder of the analysis was set at its more "reasonable" 
value-that is 

A,; = In ("observed" trips from i to j) 

To select a convergence criterion, Figure 5 shows the sen­
sitivity of results with respect to the two proposed criteria. 
As expected, the second criterion (i.e., TERMS) was always 
met before the first, "stricter" one, and the patterns of con­
vergence are similar. This is so because e2 = 0.1 implies 
achieving an average value of E1 = 0.05, whereas the first 
criterion allows a maximum value of 0.05 on each individual 
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FIGURE 4 Effect of theta on convergence rate (Cost** 4, 
alpha = 0.001, epsilon = 0.05). 
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link. The first criterion was used in the remainder of the 
analysis to achieve more accurate results. As for the accuracy 
level, Figure 6 shows the results for two different values of 
E1 (i .e., 0.05 and 0.1). Again the results were as expected in 
terms of the magnitudes and shapes of the two curves in the 
figure. The value of 0.05 was used throughout the analysis to 
obtain more accurate results. 

The effect of network configuration and size. is shown in 
Figure 4 for the two example networks. Surprisingly, the 
"larger" Network 2 always converged considerably more quickly 
regardless of the change in the parameter 0, whereas the 
"smaller" Network 1 revealed relatively slower convergence 
rates, particularly at higher values of 0. It seems that Network 
2 has a significantly "simpler" configuration than Network 1 
in terms of layout, traffic circulation, and travel demand data 
(see Figures 1 and 2). These results indicate that network 
configuration may be a significant factor that could override 
the effect of network size. 

The convergence rates of the algorithm with respect to 
changes in 0 are shown in Figures 7, 8, 9, and 10. For the 
example networks, Figures 7 and 8 show that regardless of 
the value of ex and network configuration, the number of 
iterations would on the average increase as 0 increases, as 
would be expected, because larger values of 0 imply higher 
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sensitivity of travel demands to changes in the system's per­
formance. The rate of increase, however, may depend on 
network configuration and, more important, the shape of the 
link performance function; as the cost function becomes steeper, 
Figure 9 shows that, again as expected, the rate of conver­
gence becomes nonlinearly slower. 

Figure 10 shows that for the Austin network the results are 
monotonic and confirm the same trend. The relatively faslt:r 
convergence on the Austin network may be due to the fact 
that it is far less congested than the two example networks. 
Also, network configuration may have been a significant fac­
tor that superseded the effect of network size, which does not 
seem to be a significant factor. 

The results for the effect of the demand parameter a on 
convergence rate are shown in Figures 11through14. Figure 
11 shows the effect of a for two different values of e (0.05 
and 0.12). It is very clear that the decrease in the value for 
e has dampened the effect of a on convergence rate. This 
behavior is in conformity with our intuition. A similar trend 
was observed for different cost functions (see Figure 12) and 
network configuration (see Figures 13 and 14). In Figure 12, 
then BPR 4th power function adversely influenced the rate 
of convergence nonlinearly, whereas the linear cost function 
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had virtually no effect. Figure 13, consistent with Figure 4, 
shows that configuration of Network 2 appears to be "sim­
pler" than that of Network 1. The results of the Austin net­
work shown in Figure 14 are also consistent with those of the 
example networks. 

SUMMARY AND CONCLUSIONS 

The objective of this paper was to investigate the computa­
tional efficiency of the LDT algorithm for predicting equilib­
rium on a simultaneous transportation equilibrium model 
(STEM) as influenced by several demand and performance 
parameters of the STEM model as well as network charac­
teristics. The sensitivity analysis considered several major fac­
tors, including demand parameters (a, 0, £ 1 and A 1J, per­
formance functions (linear and 4th power), convergence 
criterion, accuracy level, and network configuration and size. 
The focus, however, was on the two major demand param­
eters a, 0. 

The main conclusions of this paper may be summarized as 
follows: 
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1. The effect of each of the two major parameters a, 0 on 
convergence rate was found to be, as expected, sensitive to 
the values of the other one in addition to the values of other 
major variables and constants of the STEM model and the 
network configuration and size. 

2. In general, as the value of the parameter increases, the 
number of iterations to arrive at a prespecified accuracy level 
will tend to increase as expected. The effect of 0 seems to be 
more significant than that of a. The combined effect of both 
parameters is considerably greater than that of the individual 
parameters separately. 

3. There are maximum "practically feasible" values of a, 
0 beyond which the algorithm may take a considerable com­
putational effort to satisfy a given tight level of accuracy. 
These maximum values may differ from one application to 
another. The possible reason for the existence of such prac­
tically "upper bounds" on the values of parameters may be 
related to the flatness of the objective function of the equiv­
alent convex program that is being solved by the LDT algo­
rithm, particularly when the network is less congested. 

4. Network configuration may have considerable effects on 
the convergence rate whereas network size may not. 

These results, especially those of the Austin network, fur­
ther encourage the application of the STEM approach to real­
world urban transportation studies. Actual calibration of 
demand and performance parameters will certainly provide 
additional insights into the practicality of the proposed method. 
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Transportation-Network Design 
Problem: Application of a Hierarchical 
Search Algorithm 

YuPo CHAN, T. STEVEN SHEN, AND N1zAR M. MAHABA 

Two variants of a network design problem are solved by appli­
cation of the tree search method. The first formulation aims to 
reduce a specified vehicle-minutes of traffic congestion at the least 
possible budget expenditure, and the second minimizes traffic 
congestion for a given budget. Both involve system-optimizing traffic 
assignment models with multipath flows. The solution method con­
sists of network abstraction, tree search, and network disaggre­
gation-collectively referred to as the "hierarchical search algo­
rithm." It is shown that such an algorithm reduces the search 
space by reducing the number of nodes and links and providing 
a tighter bound during the tree search. It also groups detailed 
links according to the function they perform-whether it be access/ 
egress, line-haul, bypass, or internal circulation. However, the 
algorithm yields only a suboptimal solution, the quality of which 
is measured by an error function. The metropolitan network of 
Taipei, Taiwan, Republic of China, is used as a case study to verify 
some of the algorithmic properties, confirming its role in real­
world applications. Finally, the performance of the algorithm, 
which is based on network abstraction, is favorably compared with 
a network-extraction network-design model. 

Theoretical advances in the last two decades have significantly 
improved our understanding of network traffic flow. Numer­
ous equilibration models have been put forth under both 
system-optimizing and user-optimizing assumptions. In spite 
of advances in computational hardware and software, how­
ever, the network-design problem is an NP-hard problem that 
defies efficient solution techniques (1). This is a particularly 
acute problem in practice, where the size of networks can 
easily go into hundreds of nodes and links (as in our case 
study later). No practical solution algorithms exist today to 
tackle such problems satisfactorily. Difficulties still arise, for 
example, in solving the network design problem exactly, because 
it is computationally demanding to solve a user-optimized flow 
pattern at each step of a system-optimizing search process in 
the presence of Braess's paradox. 

There have been several attempts to address this NP-hard 
problem by reducing the size of the network, which tends to 
cut the computational requirement exponentially. For exam­
ple, network extraction techniques have been practiced for a 
long, long time to cut down the size of a network design 
problem. The approach calls for removing "insignificant" nodes 
and links from a network, leaving only the "important" topo­
logical features (2,3). However, in spite of carefully designed 
controlled experiments conducted during the past 20 years 

Y. Chan, Department of Operational Sciences, School of Engineering 
(ENS), Air Force Institute of Technology, Wright-Patterson, Ohio 
45433-6583. T. S. Shen, Barton-Aschman Associates. 11'.H 15th Street. 
N.W., Washington, D.C. 20005. N. M. Mahaba, 25,Hamadan Street: 
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(2 ,4), such procedures are still heuristic in nature, often resulting 
in unpredictable accuracies. 

In lieu of extraction, network abstraction has been exam­
ined as an alternative to cut down on dimensionaiity (5 ,6). 
In this approach, nodes and links are aggregated together to 
reduce network size. Partial success has been reported in 
placing error bounds on a limited class of transportation prob­
lems, typically variants of the classical Hitchcock transpor­
tation/assignment model (7,8). 

Continuous equilibrium network design formulations have 
also been proposed. Instead of discrete node-arc represen­
tation, improvement variables are continuous (9). Some com­
putational gains have been reported, even for user­
optimizing traffic assignments. 

The preceding aggregation efforts, although improving our 
ability to solve larger problems, are not quite enough-as 
pointed out already (10). Recent attempts have been made 
to obtain approximate solutions to both discrete and contin­
uous network design problems. Wong (1), for example, revis­
ited Scott's seminal work on discrete network design heuristics 
and placed worst-case analyses on the computational proce­
dure. Suwansirikul et al. (11), on the other hand, suggested 
a heuristic for finding an approximate solution to the contin­
uous user-optimizing network design model. 

To summarize, much work remains to be done in the classic 
problem of network design. An obvious void is in the abstrac­
tion of a realistic transportation network (instead of the Hitch­
cock assignment problem) and in the placement of error bounds 
on the corresponding network design problem as we disag­
gregate back to the original problem. 

Here a network design problem is formulated as a hierar­
chical mathematical program. The original network is abstracted 
into an aggregate network, thus reducing the number of nodes 
and links in the process (5 ,12). A tree search is then per­
formed in the aggregate network, which serves as a proxy for 
the detailed network (3,13). The resulting network invest­
ment strategy is then disaggregated back to the original, detailed 
network for implementation (14), with a statement on the 
quality of the approximate solution. 

PROBLEM FORMULATION 

We state here the first of two network design problems, in 
which a lowest budget expenditure objective function is for­
mulated as follows: 

Minimize B = 2: b,y, (1) 
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where b, is the budget expenditure for the tth project (per­
formed on link i,j) and 

= {1 if project tis implemented 
y, 0 otherwise (2) 

Congestion cannot be allowed to exceed a certain level £ 0 : 

(3) 

where E(y), in vehicle-minutes, is the result of a system­
optimizing traffic assignment. Thus the model is more suited 
for system-control applications than for evaluation purposes, 
and y,'s are best interpreted as traffic control strategies to 
effect an overall improvement of areawide traffic congestion. 

By way of definition 

(4) 

is the total congestion after link improvements with the node­
arc incidence matrix: 

ifp = k 
if p = l 
otherwise 

and the link-flow "bundling" equation 

where 

°" xk.t L.., '1 
kl 

(5) 

(6) 

Rk1 = the set of links en route from origin k to destination 
!; 

f;j = a convex travel cost function of nonnegative link 
flow X;j, constrained by a limiting capacity C;j; 

t.f;j = the improvement in link ij consisting of either travel 
cost reduction or capacity expansion or both; 

xW = nonnegative integer, standing for the flow from ori­
gin k to destination l in link (i,j); 

yij = the same as y, where tis specified for link ij; and 
vk1 = the origin-destination demand. 

Although an alternate formulation will be offered in sequel, 
recapitulated below are the basic assumptions in our network 
design models throughout this paper: 

1. Travel demand is fixed for each origin-destination 
(0-D) pair and 

2. System-optimizing equilibration procedure is employed. 

Through network abstraction (5,15-17), we wish to sim­
plify the preceding optimization by reducing the number of 
links and nodes. One collapses vkt into VKL through zonal 
aggregation where 

(7) 

In other words, adjacent zones k are grouped into aggregate 
zone K and likewise l into L. Finally, the links (i,j)s are 
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aggregated int9 composite links (J,J)'s with the corresponding 
travel times, F1h at flow volumes X;j and X 1h respectively: 

'<l(i,j) (8) 

We can now rewrite the preceding network design for­
mulation (Expressions 1 through 8) by replacing every symbol 
with a capitalized, underlined letter, or Greek letter, con­
verting it from the detailed space to the aggregate space: 

Objective function: B ~ fl. with b'" ~ 13m (9) 

System travel cost function: E(y) ~ Ji (Y) (10) 

Traffic flow: x ~ X (11) 

The tree search is now carried out in the abstracted network 
instead of the detailed one, resulting in an optimal solution 
consisting of link improvements {t.Fu}, rather than {t.f;J. 
Finally, a disaggregation method has to be employed to con­
vert each of these link improvements back to the detailed 
network: 

'<1(1,J) (12) 

The state of the art in network aggregation, particularly in 
the context of network design, is still quite rudimentary, as 
alluded to earlier. In the words of Zipkin (7): 

[E]ven with computational experience and good software, we 
do not envision universally appropriate procedures for aggre­
gation. Rather, modellers will have to combine ... techniques 
and judgement to suit the problem at hand. 

Below, we show a network abstraction procedure that satisfies 
our specifications outlined by Equations 7 through 12 for a 
typical transportation network design problem. 

NETWORK AGGREGATION ALGORITHM 

As mentioned, a network abstraction procedure typically starts 
with zonal aggregation. In transportation analysis, the group­
ing of contiguous nodes k and l together is more often than 
not decided exogenously, mainly by political, geographical, 
and other considerations. This is distinctly different from sci­
entifically motivated "error-bound" procedures that require 
that "topologically similar" nodes be aggregated together (7)­
a process that may require "regrouping" a posteriori for the 
express purpose of tightening error bounds. 

Although zonal aggregation can be accomplished quite readily 
here via Equation 7, link aggregation needs some explanation. 
According to Chan (5,15,16), link aggregation can be per­
formed in three phases after an initial traffic assignment is 
made in the detailed network. 

Phase 1. Categorization 

The links aligned along the minimum paths between each 
detailed 0-D pair, Rk1, are categorized first according to 
groupings, as illustrated in Figure 1. We identify two general 
classes of flow paths: (a) interzonal flow paths, such as that 
from node 2 to 7, which goes through aggregate zones I, II, 
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and III, and (b) intrazonal flow paths, such as that from 
node 2 to 3 where the entire path is contained in aggregate 
zone I. 

The categorization of links in a path is then broken down 
into aggregate link classifications according to where the flow 
path is coming from and where it is leading. For example, in 
Figure 1, the flow path 2-7 is broken down in the following 

I 

n 

FIGURE 1 Example network. 

TABLE 1 LINK AGGREGATION 

Y LA I II 2 y2: A' I II __ 4 1: t. = 

0-D Demands EI II LI II A I II Ell III 

f2 1+f1 3=13 f3 5=18 f5 4=9 

f2 l+f 1 3=13 f 5 6 =7 

f2 1+f 1 3=13 f 3 5=18 

f2 1+f1 3=13 f3 5=18 
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manner: The first category contains detailed links that carry 
the egress flow from aggregate zone I to II, which we denote 
as E' 11

• Referring to Figure 1 again, it is found that links (2,1) 
and (1,3) are the detailed egress links that fall into this cat­
egory. As a result, the set E' 11 contains (2,1) and (1,3) as 
elements. The second category contains detailed links that 
carry the line-haul traffic from aggregate zone I to zone II: 
L' 11

. It corresponds to detailed Jin k (3 ,5). Similar! y, the bypass 
link from I to 111-'Bm-contains (5,4). The line-haul link 
L 11 m contains (4,7), and, finally, the access link A" mis made 
up of node 7 only. The reader may notice that each column 
in the summary Table 1 corresponds to an aggregate link 
Flj, each identified by If and aggregate link type a such as 
line-haul, access, and so on. In the case of a bypass link, an 
additional superscript specifies the zone in which the line-haul 
traffic passes through, KFij. 

In the entries of Table 1, the links on each path from origin 
k to destination I are partitioned into groups lakA according 
to whether they serve a line-haul, access/egress, or intraflow 
function: 

(13) 

As suggested earlier, an intraflow is the traffic that originates 
and terminates within an aggregate zone. An example can be 
found in aggregate zone II between nodes 4 and 6. Unlike 
interzonal flows, aggregate links that carry intraflows in zone 
I are simply identified by F1. 

1181 III All III 

f4 7=15 f7=0 

f4 7=15 f7 9 +f9 8=10 

f4 7=15 f7 9 +fg s=10 

Link times KFIJ LI 11=18 AI II=8 [II III=3 II8I II=9 

I II 

LII III=15 All III=6 2/3 

Link times 
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Phase 2. Summation 

In this phase, the .travel times of a s ·rial string of links belong­
ing to the same aggregate link grouping lak1I are summed. 
Referencing Figure 1 again as an example, in the £ 1 n grouping 
and for flows between 2 and 7, we find links (2,1) and (1,3) 
with travel times f 2 1 = 8 and / 1 3 = 5, respectively. The 
summation phase ca lls for the addition of these two elements, 
producing the aggregate link time Fi, = 13, which is tabulated 
in Table 1. In general, detailed link times f;j in the chain from 
detailed zone k to zone l are summed to become F'k1: 

F'k, = 2: f;j 
ij E lak1I 

(14) 

Phase 3. Weighting 

Up to the last step of our aggregation procedure, we have in 
general several aggregate-time quantiti P'z, under each 
aggregate link F'/ (or KF~'), as illustrated in Table 1. Our final 
objective, as the reader may expect, is to derive a single link 
time for each aggregate link F'/. This is accomplished by com­
puting the weighted average (or convex combination) of chains 
in parallel, where the detailed 0-D flows are used as weights 
(normalized by the total flow volume on the aggregate link). 
1_'he weighted average becomes the required link travel time 
F •. 

Take the example of the F'k/s under An min Table 1. There 
is one trip on Fi 7 , one trip on Fi 8 , and one trip on F~ 8 , 

re ulting in a total of three trip on the aggregate link An m. 
Weighting Fi. 7 , Fi 8 and F~ 8 equally by VJ, 1/i , and VJ, respec­
tively, we obtain 62/J, which is the link time for All rn. 
In general, 

where 

(15) 

and lai = the set of 0-Ds that use aggregate link F'/ (or 
KF'j). 

Finally, the portion of internal circulation mixed with line­
haul traffic in an aggregate zone is to be assigned uniformly 
to all the access/egress and bypass links of the zone concerned. 
We denote this type of internal links IK, where the subscript 
K denotes the aggregate zone in which the link can be found. 
The portion of internal circulation flowing on exclusive right­
of-way (ROW) links, on the other hand, should be modeled 
as a separate intra-ROW link. We denote this type of internal 
links iK. For example, shown in Table 1 is one internal trip 
from 4 to 6, using link ( 4, 6) in in. Likewise, the other internal 
trip from 6 to 4 uses link (6, 4) in In. The link aggregation 
procedure described above yields In = 1 V2 and in = 1 Yz. For 
clarity, readers may wish to consult Figure 1 as they go through 
Table 1. 

Aside from computational advantages, the aggregation pro­
cedure presented here has obvious functional advantages. The 
categorization of the detailed links in each aggregate zone 
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into line-haul, access/egress, bypass, and internal circulation 
groups facilitates transportation analysis, as we can now con­
veniently refer to a generic class of detailed links by the par­
ticular function they perform (15). Thus a transportation plan­
ner can specify his/her improvement strategy in terms of the 
function performed by each aggregate link. For example, if 
egress from zone I to zone II is to be improved, £1 n is specified 
as a candidate project. 

While the example illustrates only single-path assignments, 
it is clear that the multipath assignment case represents a 
simple extension. Instead of weights w'k1 defined for each 
0-D entry vk', it is now generalized to W'k1 (q), representing 
the 0-D flows vk'(q) "fanning out" into the qth path. Thus 
the example can be carried forward without loss of generality 
(18). 

AGGREGATE TREE SEARCH 

Once a network is abstracted, the hierarchical search algo­
rithm finds the optimal network design through a tree search 
procedure. A branch-and-bound algorithm will be used to 
search for the best link improvements to the abstracted net­
work. To fix ideas, the algorithm here follows the classic tree 
search logic for binary variables, using the simple logic of 
"branching from the minimal lower bound." Other variants 
of the tree search-such as branch-and-backtrack-can be 
built upon the basic concepts here (19) and will be illustrated 
in sequel. 

Bounding Rule 

Every time a branch is made on the search tree, we evaluate 
the vehicle-minutes of travel resulting from improving a link 
or several links corresponding to the odd numbered node to 
the left and even numbered node to the right, respectively 
(see Figure 2). At each of these nodes one can write the 
following inequality (or bounds) for system-optimizing traffic 
assignments that are supposed to be performed: 

(16) 

where 

£ 0 = vehicle-minutes of travel congestion before link 
shortening; 

£n = "arithmetic update" on travel congestion assuming 
flows do not shift paths after link improvement (hence 
only those that used the link benefit from travel-time 
reduction); and 

£c = travel congestion if there is a shift of flow paths. 

If we use the same set of symbols, but underline them to 
denote the corresponding bounds in the aggregate search tree, 
we can write: 

(17) 

Now we will trace out the relationship between the !J.'s in 
the aggregate network and the E's in the detailed network. 
Given that each aggregate network is derived on the basis of 
a fixed group of detailed links and some outdated detailed 
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Inactive 

(010) 
55=1 

Upper 
Bound o 

OPTIMUM, S=l 
s'=7.15% 
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0 

11 
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~=!!.1 
E =En=222 
!:l =-2 

_!4=!!.1 
E =En=230>E 
-=4 !:4 0 

11 

Inactive 
E4 

Inactive 
EB 

FIGURE 2 Aggregate branch-and-bound tree. 

flow pattern further up the tree, one can show that at a par­
ticular node of the tree search (proof of this set of inequalities 
is shown in the Appendix): 

E" ~ E" and (18) 

EC;;?: p (19) 

the other hand, if§."> E 0 at node i, we examine the aggregate 
network and carry out postoptimality procedures to obtain 
gc. Either of the following cases may happen at a node i: 

> 
/;;_; = !11 < Eo 

1. If >, we calibrate by doing a detailed traffic assignment 
where ? reads "is likely to be greater than or equal to." to obtain E;. 

Combining inequalities 16 through 19, the complete bounding 
relation can be written as 

(20) 

Hence 

(21) 

which says that, compared with the detailed assignment made 
at each node i of the aggregate tree, the aggregate system­
optimizing travel congestion for the same node cannot be 
better. In other words, g is the upper bound for E. 

Applying this bound to extend the "feasibility exclusion 
rule" of tree search, one can gain some efficiency at the bounded 
nodes by observing that as long as §." is less than or equal to 
the maximally tolerable congestion ED> we do not need to 
perform any traffic reassignment or "calibrate" the aggregate 
network against the detailed one. (Calibration is defined as 
performing a traffic assignment on the current detailed net­
work and perfonning the network ahstraction procedure again. 
More is said about calibration in the following section.) On 

2. If :s, we keep on branching from this bounded node i. 

Exclusion takes place only when the detailed reassignment 
indicates that E; > E0 • 

The exclusion criterion just described would guarantee a 
comprehensive search space in our aggregate tree search pro­
cedure, because we do not prune our tree by exclusion pre­
'llaturely. A bounded node is excluded only if the detailed 
assignment indicates that no feasible solution can be obtained 
no matter what values the "free" variables pick up. 

Equivalence Between Search in the Aggregate and 
Disaggregate Networks 

The problem of disaggregation arises when one wants to trans­
late network improvements in the aggregate network back to 
the detailed. Ideally speaking, one wishes to have the same 
network design as a detailed analysis, even though the analysis 
was actually performed in the aggregate search tree. 

If, in the process of investigating congestion reduction in 
the aggregate search tree, we decided on shortening the travel 
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time on link Pj by b.i•a, it gets translated to a corresponding 
set of detailed links {.:if;}a: 

(22) 

To evaluate .:if;js, we examine {F/'.1}, the set of parallel chains 
defined in Equations 13 and 14. Because of our convex­
combination definitions in aggregation, the amount of link 
shortening in each of the chain F/'.1 is the same: 

(23) 

A series of link times [f;J/'.1 may be contained in F/'.1, according 
to Equation 14. This set of linear algebraic equations is there­
fore to be solved to obtain .:if;/ 

L .:if;j = .:iF/'.1 
ij E lak1I 

Va, 'Vkl (24) 

It should be pointed out that the solutions of this set of 
equations are by no means unique. More often than not, they 
are indeterminate. Mathematical techniques alone are not 
able to resolve this problem satisfactorily. But irrespective of 
the arbitrary judgments made in solving Equation 24, the 
aggregate results of investment decisions are similar, as is 
shown below. 

An essential part of making investment decisions in the 
aggregate space is to establish the equivalency between the 
aggregate and detailed networks. In other words, we wish to 
show the invariance properties both in the static networks and 
as we perform the search dynamically. 

If the shortest paths do not shift, it can be shown that the 
total vehicle minutes of travel are conserved: 

via Equation 15 

2: 2: vk
1
ft'i1 

a kl E Jal 

via Equation 14 

(25) 

A similar invariance relationship is maintained in project 
disaggregation. The equivalence of congestion reduction can 
be written as 

Va.:iFa = L vkl .:ift'. 
k/ E Jal 

= L vkt .:iF/'.1 via Equation 13 
k/ E Jal 

(26) 

Although the discussions have been concentrating on dis­
aggregation, the same invariance relationship can be devel­
oped for aggregation. Instead of specifying an aggregate link 
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for improvement one can specify a set of detailed links, which 
are collapsed into the aggregate space prior to tree search. 

While one can guarantee E0 = !J.0 by prohibiting path changes 
in the aggregate network, the invariance properties described 
above may not be guaranteed as one performs the tree search, 
which by its very nature causes path shifts. If too many path 
shifts occur, the weights used in network aggregation change 
according to Equation 15. This means that the original aggre­
gate network may no longer be an accurate representation of 
the detailed. Under these circumstances, a calibration of the 
aggregate network is required, where a detailed traffic assign­
ment is performed upon which a new abstract network is built. 

The following heuristics should serve as guidelines for 
deciding when to calibrate at a node of the aggregate tree: 

1. Using the project disaggregation rule, one can define 
the set of detailed links to be shortel}ed and the amount for 
each aggregate investment project .:iFu. Inspect (rather than 
actually compute) the routing matrices of the detailed network 
to estimate the number of detailed links that would cause flow 
shift; call this number e. (The postoptimality procedure of 
Murchland (20), for example, allows for a quick inspection 
of whether the shortening of a link introduces any flow shift.) 
If the flow shift is "significant," calibrate; otherwise, proceed 
with reassignment in the aggregate network. 

2. Record the number of odd-numbered nodes in the aggre­
gate tree that have been generated without calibration. This 
number, b, together with an estimate of the average number 
of detailed links that could cause path shifts at each odd­
numbered node, e, gives a measure of the inaccuracy. If the 
inaccuracy exceeds a tolerance limit, calibrate; otherwise, 
proceed. 

3. If the aggregate reassignment indicates a shift of flow 
but the detailed indicates otherwise, record the number of 
aggregate 0-D flow path shifts, d. Together with b and e, d 
constitutes a measure of the inaccuracy of the aggregate tree 
search. Again, if the inaccuracy exceeds the tolerance limit, 
calibrate; otherwise, proceed. 

To sum up the preceding three guidelines, we can define 
an error function at each node k of the aggregate tree as 

sk = be + d (27) 

The quality of a solution can be measured by the cumufative 
inaccuracies from the root node of the tree. The inaccuracy 
introduced by skipping calibration at a few odd-numbered 
nodes where detailed flows have been rerouted cannot be 
nullified by a calibration performed at the end of these "skips." 
We have to measure the inaccuracy of the solution by sum­
ming all the error functions at all calibration points skipped 
along the path, from the "root" of the tree to the solution at 
odd-numbered node K, where the quality of the solution, S, 
is to be measured. 

s = 2: sk (28) 
k E (l~K) 

One can normalize S by the total number of detailed links 
A. and the number of nonzero entries in the aggregate 0-D 
matrix, P: 

S' = __ S_ 
A. + p 

(29) 



30 

Such a percentage gives a rough estimate on the fraction of 
the total links and 0-D pairs that have been affected by the 
path changes. 

Following the same line of argument, the budget expend­
iture defined for an aggregate project changes as calibration 
takes place. The reason for this change is that the set of 
detailed links contained within the aggregate link changes 
over time as a consequence of path changes. Aggregate proj­
ect costs, therefore, have to be redetermined at each calibra­
tion procedure by summing the costs of the current set of 
corresponding detailed projects. The point to be noted, how­
ever, is that this cost redefinition does not interfere with 
the additivity (hence, the monotonicity) of the budget 
function Bk. 

Unfortunately, one cannot guarantee optimality in the 
aggregate search procedure-as the reader may have con­
cluded already. Depending on how often we calibrate (i.e., 
regrouping the detailed links to a different aggregate link), 
the result of the optimization routine would conceivably be 
different. Even when calibration is performed at each node, 
the final detailed project selection would still depend on the 
order in which the 0 - 1 decision variables Y; are introduced 
into the tree. The reason for that relationship is that the 
disaggregation of aggregate link improvement to the detailed 
level would depend on the current grouping of detailed links 
to aggregate links, and the grouping is again a function of the 
order in which Y/s are introduced. 

Branch-and-Bound Algorithm 

We are now ready to formalize the tree-search algorithm. 

Step 0. Perform network aggregation at the root node r = 

1. Define for this node Y = (0), and label it with objectives 
function fl.. = fl..1 = 0. 

Step 1. Bound: Out of the set of active nodes, find the 
node l with the smallest objective function fl.. 1 (i.e., the lower 
bound T). Node l is the bounded node. If r -:f. l, set r = 
r + 2. 

Step 2. If an active node j has !ii s Ji"' a reassignment is 
performed at the detailed level, yielding a new system cost 
Ei. Compute the error function si, which indicates the need 
for calibration. Then set upper bound U = fl..i. Put node j on 
an inactive status. All active, feasible nodes with fl..; 2": U are 
dominated and declared inactive. If there are no more active 
nodes, terminate the algorithm. The optimal solution fl../ = 

Uhas been found. 
Step 3. Branch. Branch from the bounded node l, creating 

node r + 1 to the right and r + 2 to the left. Set a free 
variable Yk = 0 on the right branch and Yk = 1 on the left 
branch. At node r + 1, an arithmetic update is performed, 
with the free variables set to 1. If Ji, + 1 > fi. 0 , obtain E, + 1• 

If E, + 1 > ff:."' node r + 1 has been fathomed and termed 
inactive. Otherwise, set fl.., = fl.. 1• At node r + 2, compute 
fl..,+ 2 = 'W'Y, + 2 . Go back to Step 1. 

NUMERICAL EXAMPLE 

Take the base network shown in Figure 1, which has a total 
,....n·rul"i::>ctlnn .<'.ru.·t nf Ho ")1,") ui::ohl,....]p._mln11tP.C' ln hrt.th tho::. r.anoro& 
...,.._, ...... ovLJL.J. ..... .lJ. V'IJLJL V.I. L..J "-'-""-' 'V.lJ..L"-'J."-' jJ_J.J.J.J.~L...,LJ .lJ.J. VVL.1.l L.1.LV u.55.1.'-' 

gate and detailed networks. We will define three aggregate 
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projects, which improve the line-haul, access, and bypass 
functions rendered by the network, respectively: 

Project 1-shorten V 11 

Project2-shortenAlll 

Project 3-shorten 11B1 m 

by !:.l' 11 = 2 minutes 

by f:.Arn = 4minutes, and 

by 1:,.n81 III = 1 minute. 

The costs for Projects 1, 2, and 3 are estimated from their 
detailed counterparts as 2, 5, and 1 units, respectively. The 
objective of tree search is to find the lowest-budget network 
improvement plan, with the tolerable congestion level E

0 
set 

at 222 vehicle-minutes. 
In Figure 2, we perform the branch-and-bound tree-search 

algorithm step by step, as illustrated: 

• Initialization: At node 1, Y1 = (0,0,0) at budget level 
fl.. = 0, and fi.1 = £o = 232. We branch to nodes 2 and 3, 
corresponding to Y1 = 0 and 1, respectively. 

• Nodes 2 and 3: Node 2 is the bounded node, with a lower 
budget fl.. 2 = fl..1 = 0 (compared with a fl.. 3 of 2 at node 3). 
At node 2, variable Y1 is fixed at zero value, leaving only Y2 

and Y3 free. An arithmetic update is performed at node 2, 
with the free variable set to 1: fi. 2 = fi.1 - V2!:.F2 -

V3dF3 = 232 - 2 x 4 - 2 x 1 = 222 = fi.'2· We branch 
from node 2 to nodes 4 and 5. 

• Nodes 4 and 5: At the bounded node 4, an arithmetic 
update is performed: fi.4 = fi.1 - V3!:.F3 = 232 - 2 x 1 = 
230 > E0 • According to the logic described in the bounding 
rule portion of the aggregate tree search section, the true 
state of the system has to be assessed. A reassignment is made 
on the aggregate network, resulting in fi.4 = Ji'J. This prompts 
another reassignment on the detailed network corresponding 
to dfs 4 = 1, resulting in E4 = fi.4 > E0 • We exclude further 
branching from node 4. Between terminal nodes 3 and 5, node 
3 is the bounded node because it carries a lower B of 2. A 
reassignment at node 3 yields~ = 224 = E3 , with an error 
function~s3 = b · e = 1 x 0 = 0. We branch to nodes 6 and 
7. 

• Nodes 6 and 7: Between 5, 6, and 7, node 6 is the bounded 
node. An arithmetic update yields E2 = E3 - V3dF3 = 224 
- 2 = 222 = E 0 • Further branching is to be performed from 
this node. 

• Nodes 8 and 9: Bounded node 8 carries !is = 224 = 

fi.3 > E0 • We exclude further branching from this node after 
checking that E8 = !is = 224 > E0 • 

Out of the three terminal nodes (5, 7 and 9), node 5 is the 
bounded one because it carries the least budget. The reas­
signed system cost !is = fi.5 = 220. The flows that formerly 
traversed 11B1 III are now rerouted using A 1 II and E 11 m as 
bypass links. In the detailed network Es = Eg = 213. The 
error function ss = b · e + d = 1 x 0 + 1 = 1. 

• Termination: Node 5 is a feasible node with a budget 
objective function of 2.5; Bs = 2.5 would be an upper bound 
to help reject further branching from any nodes with B's 
higher than 2.5. By this rule, nodes 7 and 9 are rejected. The 
optimum of improving ii II [or link (3,5)] by 2 min is found. 
The error function measures 

s = 2: s, = 1 
IE. (1-----)-5) 

or a percentage error of S' 1/(10 + 4) = 7.15 percent. 
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CASE STUDY 

We further illustrate the hierarchical search algorithm through 
a case study of the 1978 network from Taipei mettopolitan 
area, Taiwan, Republic of China, consisting of 49 zones (see 
Figure 3). To show the versatility of aggregate tree search, 
the following network design formulation, rather than the one 
used in the numerical example, is used: 

minimize E(y) = min L L (f,i - lif;iy,) xt' (30) 
kl ij e Rkl 

subject to the node-arc incidence relationship of Equation 5 
and the budget constraint 

(31) 

Essentially, this is the inverse of the formulation in Equations 
1 through 6, wherein the best congestion reduction is to be 
achieved within the budget allowance. In Equation 30, the 
travel time function f,i assumes the form 

(32) 

40 

FIGURE 3 Taipei metropolitan network. 

31 

where Pii is the volume/capacity ratio or 

X;j 

P;i = Z. 
I/ 

(33) 

Typical capacities (c) range from 1,250 to 3,400 passenger­
car-equivalents per hour in the study area, covering local 
streets through superhighways; his a calibration constant with 
typical values of .4, .5, and .6. 

The network aggregation algorithm reduces the number of 
zones from 49 to 14 (see Figure 3), nodes from 155 to 76, and 
links from 568 to 222. It follows exactly the same procedure 
as the previous example except that a multipath assignment 
is used as described earljer . 

Three line-haul link-improvement projects were identified . 

Project 1: liL vn xn = 5 min at a cost of 2 units, 

Project 2: 1:1Lx1v v = 5% min at a cost of 1.5 units , and 

Project 3: 1itxiv 1 = 81/2 min at a cost of 2.5 units . 

A total budget of four units is imposed. 
Branch-and-backtrack is used in the tree search rather than 

branch-and-bound. For simplicity, the tree search was con-
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ducted entirely in the aggregate network without calibration. 
Instead of branching from the lowest bouml, ihe branch-and­
backtrack method keeps on branching from the latest active 
node (19): 

• r = 1: Initialize at}\ = (0,0,0), with £ 1 = 6.6919 x 
106 vehicle-minutes . Branch to nodes 2 and 3, corresponding 
to Y1 = 1 and 0, respectively. Because !l_ 2 = b1 = 2 < R, 
node 2 is declared active. On the other hand, as !l_3 = b2 + 
b3 = 4 ~ B, node 3 is a feasible solution. The reassignment 
performed at node 3 yields §.3 = 6.5112 x 106 vehicle-min­
utes, which is a better level of system congestion than §.1 • Set 
U = §.3 and declare node 3 as inactive. Branch from node 2. 

• r = 3: Nodes 4 and 5 are obtained corresponding to Y 2 

= 1 and 0. Because !}.A = b1 + b2 = 3.5 < B, node 4 is 
active. Similarly , node 5 is also active because !ls = b 1 + b3 

= 4.5 > B . 
• r = 5: Branch from node 5 to nodes 6 and 7. Because 

Jl.6 = b1 + b3 = 4.5 > B, declare node 6 to be inactive. On 
the other hand, !l_7 = b1 = 2 < B, node 7 is feasible . Traffic 
assignment shows that §.7 = 6.6386 x 106 > U. Node 7 is 
declared inactive; node 4 is the only place where branching 
can take place. 

• r = 7: Branch from node 4 to 8 and 9. As !ls = b1 + 
b2 + b3 = 6 ::> B, node 8 is declared inactive. !l_ 9 = b 1 + b2 

= 4 ~ B and §.9 = U = 6.5712 x 106 = §.*. We stop 
branching because the optimum has been found, correspond­
ing to improving L vn xu and Lx1v v. 

For actual implementation purposes, we disaggregate 
L vu xn into the parallel chains of (144, 59) and (23, 58) and 
Lxivv, into parallel chains of (108, 107) and (109, 15). From 
Equation 14: 

l:::./144 59 = 5, and 

l:::.f23 SS = 5; 

yielding the obvious answer of a travel time reduction of 5 
min for both detailed links (144,59) and (23,58). Likewise, 

!:::.Fis 13 = l:::.f10s 101 = 5.5 and 

t::.F5:1 1s = t::.f109 ls = 5.5; 

which means a reduction of 5.5 min for both (108,107) and 
(109,15) . 

This case study illustrates the practical value of the hier­
archical search algorithm in solving realistic size network 
problems. The city of Taipei, with its population of 2.4 mil­
lion, was analyzed using a FORTRAN IV traffic assignment 
code on IBM OS/360. In spite of the use of this relatively 
outdated machine, the multipath assignment in the detailed 
network took less than 5 min to cover all the computational 
trials, yielding an adopted h value of 0.6 in Equation 32. The 
network design tree search on the aggregate network was also 
simple enough to be conducted by hand as already shown. It 
is estimated that an eightfold savings of computational 
requirement was achieved. Most of this is the result of net­
work abstraction, which reduces the number of links/nodes, 
hence expediting traffic assignment and tree search in an 
exponential manner. Because no calibration was performed. 
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however, there is no measurement on the quality of the 
approximate solution. 

COMPARISON OF NETWORK ABSTRACTION 
WITH NETWORK EXTRACTION 

To assess further the afore-described abstraction algorithm in 
network design applications, a comparison is made with the 
previously mentioned network extraction algorithm of 
Haghani and Daskin (3). A common square-grid network of 
25 nodes and 40 links as shown in Chan (5) is analyzed, in 
which a kth best path traffic assignment (21) is performed. 

In this controlled experiment, the second network design 
formulation (Equations 30 and 31) is used, wherein the budget 
constraint allows for the implementation of only one of the 
two candidate projects. The first project reduces the cost of 
two detailed links from 15 to 10 and from 10 to 5 min of travel 
time, respectively. The second project reduces one single 
detailed link by three separate amounts: 15 to 9 (Case A), 
15 to 8 (Case B), and 15 to 5 (Case C). Results of this exper­
iment are shown in Table 2. 

The results show that investment decisions made on both 
the abstracted network and the extracted network agree to a 
large extent with those on the detailed network. Two of the 
three link improvement decisions are the same between the 
detailed analysis and each aggregate algorithm. The abstrac­
tion algorithm performs better in estimating both the total 
congestion (in vehicle-minutes) and the congestion reduction 
of Project 1. The extraction algorithm, on the other hand, 
yields identical congestion reduction as in the detailed analysis 
for Project 2. 

Although this constitutes only a limited experimentation, 
a few observations can be made. 

1. Because of the "invariance" property of abstraction, 
traffic assignment in the abstracted network appears to yield 
a total system congestion closer to the detailed network than 
to the extracted network. 

2. Depending on the candidate links for network improve­
ment, the congestion reduction effect may be estimated to be 
different by the two aggregation schemes. In the case of a 

TABLE 2 ABSTRACTION AND EXTRACTION 
COMPARED 

Detailed Abstracted Extracted 
Network Network Network 

Total congestion 
(vehicle-min) 2,385" 2,178" 2,125 

Congestion reduction 
for project 1 (vehicle-min) 145 134 130 

Congestion reduction 
for project 2 (vehicle-min) 

Case A 138 94 138 
Case B 161 109 161 
Case C 230 157 230 

Selected project 
(vehicle-min) 

Case A 1 1 2 
Case B 2 1 2 
Case C 2 2 2 

"The two figures are not the same due to path shifts in the abstracted 
network . By definition . figures are identical without reassignment. 
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relatively insignificant candidate link, abstraction yields better 
results . For a major link, on the other hand, extraction algo­
rithm works better. This shows that abstraction is a more 
"balanced" aggregation algorithm in which the properties of 
all links-both major and minor-are included in the aggre­
gate network, whereas extraction tends to favor major links 
to the minor ones, inasmuch as the algorithm explicitly retains 
major links and discards minor ones. 

3. Owing to their different premises, one should not expect 
the abstraction algorithm to yield identical results as extrac­
tion, although there should be some similarity between anal­
yses performed on the aggregated networks and the detailed 
networks, irrespective of the aggregation method. 

CONCLUSION 

In this paper, we applied a hierarchical search algorithm to 
solve network design problems for three spatially abstracted 
networks. The branch-and-bound and branch-and-backtrack 
techniques, respectively , were used in the first two formula­
tions of the problem, assuming the objective function of least 
budget and least travel cost, respectively. These techniques 
result in a greatly reduced search space, as well as a functional 
grouping of the detailed links into access/egress, line-haul, 
and bypass categories. The latter allows network improve­
ment projects to be specified in terms of the corresponding 
aggregate links that are identified by the function they per­
form . 

The hierarchical search algorithm-combining network 
abstraction with tree search-was also shown to possess 
tighter bounding criteria than tree search alone, thus accel­
erating computational efficiency. Equivalency was established 
between the aggregate space and the detailed space, including 
certain invariance properties, such as conservation of vehicle­
minutes of travel between the abstracted and detailed net­
works. The inaccuracy introduced by the approximate opti­
mization procedure was measured by an "error function," 
showing the solution's percentage divergence from the global 
optimum. Aside from a numerical example, a case study was 
taken from the metropolitan area of Taipei , Taiwan , Republic 
of China, to illustrate the usefulness of the algorithm . For 
example, the case study shows that computational require­
ment is reduced by a factor of 8 (22). 

To the writers' best knowledge , and in their opinion, the 
hierarchical search algorithm is the first "scientific" attempt 
to establish equivalency between abstracted and detailed net­
work design decisions. The only required system behavior is 
monotonicity of two figures of merit as the tree search is being 
conducted; in our formulation, these are cumulative project 
expenditure and system congestion level. As such, it is an 
extremely flexible technique to take care of this class of NP­
hard problems. For example, it is conceivable that elastic 
demands can be tackled as long as monotonicity is maintained 
in the figures of merit chosen . 

The abstracted network is, in essence, a convex combina­
tion of the link and node attributes of the original network. 
This convexity property is exploited to the fullest in estab­
lishing the equivalency already mentioned, including the con­
servation of system travel between the abstracted and detailed 
networks during aggregation and disaggregation. Should no 
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path shift at all during the search, strict equivalency is guar­
anteed. The network design methodology becomes approxi­
mate when paths do shift as a result of reassignment or net­
work improvement, and the divergence from global optimum 
in this case is then measured by an error function (in per­
centages), as alluded to earlier. 

The abstraction method was compared with extraction on 
the third and last network in our research . It was found that 
both yield investment strategies approximati11g the detailed 
network design model, although there is little correlation 
between the two aggregation approaches. Because of its invar­
iance property , abstraction appears to estimate the total sys­
tem congestion (in vehicle-minutes) more accurately. There 
is little distinction between the two, however, in estimating 
the specific congestion-reduction associated with link 
improvements. 

Although the preceding findings represent modest progress, 
much work remains to be done in the hierarchical search 
algorithm. Among them are the following: 

1. Further computational experience can be gained by 
relating the "error function" to the sequence with which link 
improvement projects are introduced into the search tree and 
the frequency of calibration. The objective is to find a strategy 
that minimizes the error in aggregate search. 

2. Another set of experiments can be performad to clarify 
the trade-off between the level of abstraction and the inac­
curacy introduced into the solution. The objective is to know 
the "appropriate" level of aggregation for a given problem. 

3. "Branching from the minimal lower bound or the latest 
active node" is used throughout this paper. Although it served 
to introduce the hierarchical search algorithm, more efficient 
tree searches along the line of work by Chan (19) can be used 
to gain even better computational efficiency through the use 
of double bounds. 

4. In spite of the insights gained in our experiments, addi­
tional tests can obviously be conducted to compare the per­
formance of an abstraction approach with the extraction 
approach in network design. 

It will be useful eventually to generalize the algorithm to 
perform user-optimizing network designs, in addition to the 
system-optimizing ones performed here-although this is by 
no means a straightforward extension inasmuch as monoto­
nicity properties are no longer guaranteed in the tree search 
due to Braess's Paradox. 
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APPENDIX: Proof that the System Cost in an 
Aggregate Search, [i, is the Upper Bound for the 
Corresponding Statistic, E, in the Detailed Space 

There are two possible consequences of shortening an aggre­
gate link at node k of the tree search: either a path shift occurs 
or it does not-that is 

I.k = !f_c,, or 

To show the inequality between lb and Ek, one has four 
possible pairwise relationships to consider. 

1. En E"· , 
2. En EC· , 
3. EC En; and 
4. EC - Ee. 

Our objective is to show that in all four cases, §. 2: E. 
Case 1. When there are no path shifts, shortening the aggre­

gate link will, by virtue of Equation 26, yield the same vehicle­
minute reduction as shortening the corresponding set of detailed 
links; hence I_n = £n. 

Case 2. This follows from the result of the first case. Because 
fj/ = E" and E" > Ee from Equation 16, it follows that 
fj;_n > Ee. 

Case 3. A detailed link may get categorized under more 
than one aggregate link, as can be seen in Equation 13 and 
in Table 1 for f 6 4 . Disaggregation of an aggregate link 
improvement into the detailed network at a node of the aggre­
gate tree means that each improved detailed link (i, j) benefits 
diverse 0-Ds (including intra flows) that use (i, j) according 
to Equation 30, even though no path shifts occur by definition. 
For the aggregate link, on the other hand, functional restric­
tions are placed in the flow paths given that each aggregate 
link is derived on the basis of some outdated flow pattern 
further up the tree following Equations 13 through 15. Even 
though paths shift in the abstracted network owing to the link 
improvement, the limited amount of flexibility in the outdated 
network does not allow as great a vehicle-minutes of travel 
reduction as the corresponding arithmetic update in the detailed 
network where each and every unit of reduction is accounted 
for. This means that the aggregate travel congestion is likely 
to be greater than or equal to that of the detailed after link 
improvement as illustrated in node 5 of Figure 2. 

Case 4. This case follows when one combines the result of 
the preceding finding with Equation 16 (or E" > Ee). There­
fore 

Conclusion: In all cases, §. ~ E. 
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Efficient Algorithm for Locating a 
New Transportation Facility in a 
Network 

HuEL-SHEN TsAY AND LIANG-TAY LIN 

The single-location problem is to locate a new transportation facil­
ity in a network that can serve all customers at the minimum 
distance or cost. There are four types of single-location problems. 
The absolute I-center problem is considered in this paper. By 
definition, in that problem, the customers are on any vertex and 
the center may be a vertex or a point on an edge. There are two 
previous methods for finding the absolute I-center: (a) the Hakimi 
method (I965) and (b) the Minieka method (I98I). They consid­
ered all possible links of a network to determine the best candidate 
point. Later, Larson and Odoni proposed a shortcut to reduce the 
number of links needed for calculation. In this paper, a new short­
cut with a stricter bound is first proposed to find the absolute 1-
center directly. The Larson and Odoni shortcut is then introduced 
and integrated with the Minieka method to form a combined method. 
Finally, a new method is developed to find the absolute 1-center 
based on a spanning tree that is obtained from that of the vertex 
to all shortest distances. The number of iterations needed to per­
form the analysis is in proportion to the number of vertices instead 
of edges for any given network. To make a consistent comparison, 
four different methods have been programmed and tested with 
several networks. The results show that the new method or the 
new shortcut is fast and powerful in finding the absolute 1-center 
location. They provide the same solutions and belong to polynomial 
time-bounded algorithms. Therefore, we recommend use of the 
new method or shortcut for locating a new facility if the absolute 
1-center problem is considered in a network. 

In selecting the optimal facility, location plays a vital role in 
the fields of transportation, communications , and distribution 
management. Applications may include transit stops, fire sta­
tions, warehouses or plant locations, post offices, schools , and 
public buildings. A major concern in location models is to 
find the optimal placement of facilities on a network so the 
cost of locating, operating, and providing service is mini­
mized. Here , the cost of serving customers can be defined as 
the cost incurred between customers and the assigned depot; 
it refers to the transportation cost that is primarily due to the 
distance traveled to and from the depot location. Therefore, 
the back-and-forth distance between two nodes is an impor­
tant component in determining the location of new facilities. 

Generally speaking, network location research can be cat­
egorized into two types : single-depot location and multiple­
depot locations. The sirtgle:depot location problem considers 
locating only one depot in the network, either to minimize 
loss or to maximize benefit or to provide good service to 
customers. This facility and its customers may be located at 
the vertex (node) or anywhere along two vertices. The mul­
tiple-depot location problem , on the other hand, finds loca-

Graduate School of Transportation and Communication Management 
Science, National Cheng Kung University, Taiwan, Republic of China . 

tions for more than one depot to serve all customers with an 
objective of minimizing total related cost, minimizing the 
maximum travel distance, or providing the best service. 

Because locating a new transportation facility in a given 
network is our main consideration, it is necessary to know 
the differences between various types of single-location prob­
lems. There are four major types of single-location problems 
shown in Table 1. From Table 1, the vertex also represents 
nodes, and each link or edge has an infinite number of possible 
point locations. The vertex I-center and general I-center loca­
tion problems have been solved and programmed through 
efficient methods (1,2). These are all polynomial, time-bounded 
algorithms. 

The absolute 1-center problem is defined as a poillt located 
such that the maximum distance from this facility to any node 
is minimized. This new location can be anywhere on a link 
(edge) or at a node (vertex). Basically, it is a problem of one 
point serving multiple nodes. One application of the absolute 
1-center problem, for example, locates a fire station in a rural 
community in a manner that minimizes the maximum response 
time from the station to any farmhouse. It was first presented 
by Hakimi (3,4). The literature on network location problems 
has grown rapidly since the appearance of Hakimi's paper 
(5). The Hakimi method, for each link, constructs upper 
envelopes continuously to compute the intersecting points 
from all nodes in the network. From all feasible intersecting 
points, we choose the best local minimum for the correspond­
ing link. Once all links have been examined, the best among 
all such local minima is selected as the absolute 1-center of a 
given network. Its solution is more difficult and complex than 
that of either the vertex 1-center or general 1-center problem. 
In this paper, four methods for solving the absolute 1-center 
problem are extensively discussed and compared . 

The general absolute 1-center location problem is , among 
four types of single-location problems, the most difficult to 
solve. This is a problem of one point serving an infinite num­
ber of customer points on each link. Recently, some algo­
rithms have been developed and proved to be effective (J,2,6) . 
Because the absolute 1-center is our focus, the general abso­
lute 1-center location problem is not discussed here. 

LARSON AND ODONI SHORTCUT 

Because the Hakimi method requires the examination of each 
link before the best absolute center in a network is chosen, 
the number of calculations grows rapidly and sometimes 
becomes unacceptably large as the number of links increases. 
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TABLE 1 FOUR TYPES OF SINGLE LOCATION PROBLEMS 

Type Facility Customer 

Location Locations 

Vertex 1-center Vertex Vertex 

General 1-center Vertex Link* 

Absolute 1-center Link* Vertex 

General Absolute 1-center Link* Link* 

* Represents infinite possible points located on each link or edge. 

Some links, in fact, cannot further improve the optimal solu­
tions. Larson and Odoni proposed a shortcut to reduce the 
computational effort required to obtain the absolute 1-center 
(7). That shortcut takes advantage of the fact that it is simple 
to find the optimal solution of a vertex 1-center problem in 
a given network. This solution is then treated as the upper 
bound value to identify those links that actually cannot improve 
the final result. This shortcut is represented by the following 
equation: 

m(r,a) + m(s ,b) - l(r,s) ( "*) 
2 

< mt (1) 

where 

m(r,a) = the distance required for node r to serve the far­
thest node a in the network; 

m(s,b) = the distance required for nodes to serve the far­
thest node b in the network; 

l(r,s) = link distance between nodes rands; and 
m(i*) = the optimal solution of vertex 1-center. 

It implies that the Hakimi method can be applied to those 
links that do not violate Equation 1. So, for a link (r,s) that 
satisfies Equation 2: 

m(r,a) + m(s,b) - l(r,s) ('*) 
~'----'------'"~'----..__~ °2! m I 

2 
(2) 

The local 1-center of this link (r,s) cannot further improve 
the vertex 1-center solution m(i*). The fact is that the max­
imum distance associated with the vertex 1-center must be 
greater than or equal to the corresponding distance for the 
absolute 1-center (7). In other words, if Equation 2 is satis­
fied, the link (r,s) need not be examined further. Through 
such a test, considerable computational effort will be reduced. 
But the number of computations that can actually be saved 
depends on the network configuration. It is difficult to predict 
a specific number of reductions if the shortcut is applied. 
However, this shortcut shows its ability to eliminate several 
unnecessary calculations. 

A NEW SHORTCUT 

A new shortcut is proposed in this section . Nodes a and bare 
assumed to be the farthest nodes that can be reached by nodes 

r and s shown on Figure la. Then, we have 

ra = m(r,a) 

sb = m(s,b) 

There exists one point p on the path r-a that makes pa 
m(i*). Similarly, there is another point q on sb with the prop­
erty of qb = m(i*) . Equation 1 can be rearranged in the 
following form: 

m(r,a) - m(i*) + m(s,b) - m(i*) - l(r,s) s 
0 

2 

Then, based upon the preceding definitions , we have 

rp + sq - l(r,s) s 0 

(3) 

(4) 

It means that any link in the network satisfying Equation 4 
may be able to improve the final solution of the absolute 
1-center. Only such a link will be considered in making further 
calculations. From Figure lb, x and y are defined as: 

{x I xr + ra = xs + sa , x E link (r,s)} 

{y I ys + sb = yr + rb , y E link (r,s)} 

Let x' and y' have this relationship: 

x'r = Lir + rp 

y's = 2ys +sq 

(5) 

(6) 

As far as ~ rsa (Figure 1 b) is concerned, the distance from x 
passing through node r to node a should be equal to the 
distance traveling from x through nodes s to a. Suppose x is 
the absolute 1-center of a given network; path x-r-a will have 
the longest distance. This value can be further decreased if 
the absolute 1-center is not located on x. There are two pos­
sibilities. The first way con ·ide rs the center located on the 
left-hand side of x. In such circumstances, the best location 
obviously belongs to node r. The distance from node r to the 
farthest node a is m(i*) plus rp , ra = m(i*) + rp. It is greater 
than or at most equal to m(i*) and may not be the best choice. 
Another possibility is to move the center to the right-hand 
side of x. The distance from x' to a becomes m(i*) if only rp 
distance units are shifted from x to x'. Furthermore, once the 
length of link (r,s) is larger than x'r (i.e., l(r,s) "2! 2xr + rp, 
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x'r = 2xr + rp 

Y'S = 2ys + sq 

37 

FIGURE I (a) Graphic representation of service from link (r,s). (b) Graphic 
representation of different service range for link (r,s). 

the service distance from x' to node a will be less than or 
equal to m(i*). It is also necessary to make l(r,s) ~ 2ys + sq 
to have the same property. Besides, x' must lie in the left 
side of y' to guarantee that the shortest distance from x' to 
node a or from y' to node bis smaller than m(i*). Thus, 

l(r,s) ~ 2.Xr + rp + 2ys +sq (7) 

[( ) 
> 2 [m(r,a) + l(r,s) + m(s,a) _ ( )] ( ) _ ('*) r,s -

2 
m r,a + m r,a m z 

+2[ m(s,b) + l(~s) + m(r,b) - m(s,b) J + m(s,b) - m(i*) 

l(r,s) ~ l(r,s) + m(s,a) - m(i*) + l(r,s) + m(r,b) - m(i*) 

m(s,a) + m(r,b) + l(r, ·) ('*) 
~-~-~--~~ s mi 

2 
(8) 

m(r, b) = the distance from node r to the farthest node b 
(for s) and 

m(s,a) = the distance from nodes to the farthest node a 
(for r). 

Any link that violates Equation 8 cannot improve the final 
solution of absolute 1-center and will not be further 
considered. 

Because 

m(r,a) s m(s,a) + /(r,s) 

m(s,b) s m(r,b) + l(r,s) 

m(r,a) + m(s,b) - L(r s) 

2 

m(s,a) + m(r,b) + l(r,s) ('*) s s m z 
2 

(9) 

It is noted that the proposed shortcut has a more strict bound 
than the Larson and Odoni shortcut does based on Equa-
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tion 9. If the proposed shortcut given in Equation 8 is con­
sidered, then the local 1-center of link (r,s) is located on the 
middle point of x'y'. Its location has DI distance units from 
node r. 

DI= x'r + 112[/(r,s) - x'r - y's] 

= l(r,s) + m(s,a) - m(i*) + [l(r,s) 

- 2l(r,s) - m(s,a) 

- m(r,b) + 2m(i*)] 

112[/(r,s) + m(s,a) - m(r,b)] (10) 

The service distance of this local 1-center to the farthest node 
is 

SS = m(i*) - l/2[l(r,4s) - x'r - y's] 

= m(i*) - 112[/(r,s) - 2l(r,s) - m(s,a) 

- m(r,b) + 2m(i*)] 

l/2[m(s,a) + m(s,b) + l(r,s)] (11) 

Based on the preceding discussion, the proposed shortcut can 
be performed as follows. First, for any link in the network, 
we check whether it satisfies Equation 8. If the answer is yes , 
then Equations 10 and 11 will be applied to find the local 
1-center of that link. Otherwise, the link need not be further 
considered. After all links have been examined, the location 
and service distance of absolute 1-center for the given network 
can easily be determined. The foregoing procedure is rather 
simple and makes it easy to obtain the final solution without 
using elaborate computations. Comparisons of this new short­
cut with other methods are given later. 

MINIEKA METHOD 

A polynomial time algorithm for finding the ab. olute l-center 
of a network was propo ed by Minieka (8). This alg rithm is 
combinatorial in nature and requires only knowledge of the 
ho.rtesl path di taoces between all pairs of nodes. Concep­

tually , it j · different from the H akimi method . onsider p on 
a link (r,s) as one point on the .link (r,s) that is p unit from 
r and l(r,s) - p units from s where 0 :S p s l(r,s) . Tho e 
n des that are best reached from p by traveling through node 
r are set in node set R. Similarly, others best reached through 
node s belong to set S. On the basis of this definition, the 
Minieka method for finding p *, the local 1-center on a link 
(r,s), follows these steps: 

Step 1: Obtain the shortest matrix between all nodes through 
any efficient algorithm . 

Step 2: Place all nodes in R, and arrange the e<juence of 
nodes according to tbe order of their distance from node r, 
with the most distant node first. Compare the maximum dis­
tance from node r to all other nodes of the network with the 
link length l(r, s) and then store the higher value as the first 
point-to-node distance . 

Step 3: Remove from R and place into S the node that is 
currently most dista."?t from node r . 

Step 4: Compare the di tance from nodes to the node that 
bas the maximum distance in R with the largest value of the 
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current set S. If this new distance is smaller than the existing 
maximum distance, go to Step 3; otherwise go to Step 5. 

Step 5: Calculate the maximum distance needed from both 
sets R and S, using the equation 

MD = [d(r,z;) + d(sh) + l(r,s)]/2 (12) 

where 

MD = the current maximum distance needed to serve 
customers in the both sets R and S; 

d(r,z;) = maximum distance from node r to node Z; in the 
current set R; 

d(s ,zk) = maximum distance from node s to node zk in the 
current set S; and 

l(r,s) = actual link distance between nodes r ands. 

Step 6: Compute the p* by subtracting d(r, z ;) from MD . 
Step 7: Go to Step 3 until all other nodes have been exam­

ined and moved to set S. Compare the length of link (r,s) 
with the maximum distance from S, and then store the higher 
value as a MD with p * equal to the length of link (r ,s). 

Step 8: Choose the smallest MD and its related p* value 
among all candidates . This is the local 1-center of link (r ,s) . 

The foregoing procedure can be used for finding the local 
1-center of link (r,s). Obviously, it is also applicable to all 
other links. Thus, the local centers of other links are found 
through the same steps . After all links have been examined , 
the best absolute 1-center of the network is determined simply 
by choosing the minimum among all local 1-center candidates . 
This method performs the preceding steps easily and can be 
used to solve large network problems. Its computational effort 
mainly .lies in obtaining the all-to-all shortest-distance matrix . 
Therefore, this is a polynomial time-bounded algorithm and 
is easy to program. 

A COMBINED METHOD 

Although the Minieka method is efficient in computing the 
local 1-center on a link , it still requires much effort to examine 
all links of a given network if no bounding technique is applied. 
For the Larson and Odoni shortcut, considerable reduction 
in computational effort can be achieved by omitting many 
unnecessary links before searching for the absolute 1-center. 
After the shortcut is applied, however, the inefficient Hakimi 
method is used to find local centers for those critical links 
that do not violate Equation 1. Therefore , it becomes feasible 
to combine the Minieka method with the Larson and Odoni 
shortcut to reduce further the number of calculations and 
computer time. The basic idea of this combination is simply 
to consider the Larson and Odoni shortcut first in deleting 
links that cannot improve the solution. Then only those links 
satisfying Equation 1 are examined and calculated to deter­
mine their local centers using the Minieka method. It is expected 
that the computational effort will be reduced through this 
combined method. The steps of this combined method are 
summarized next. 

Step 1: Obtain the shortest distance matrix between all 
nodes. 

Step 2: Apply the Larson and Odoni shortcut to delete 
those links that satisfy Equation 2. 
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Step 3: Use the Minieka method to find the local 1-center 
for each critical link and store it as a candidate. 

Step 4: Repeat Step 3 until all critical links have been 
examined. 

This combined method takes advantages of the most effi­
cient parts of the Minieka method and the Larson and Odoni 
shortcut. Tests of a newly developed computer program show 
that the program works well and reduces some computer time. 
These tests are discussed more extensively later. 

ANEW METHOD 

In this section, a new method for finding the absolute 1-center 
is proposed. The solution is obtained from a spanning tree 
based on the vertex's one-to-all shortest distances. It first 
considers the longest and second longest distances of the span­
ning tree from each node in a network (9,10). For each such 
tree, the local 1-center is found. Then the minimum of local 
centers is selected as the absolute 1-center for the entire net­
work. Because the new method finds the local 1-center from 
the spanning tree of each node, the maximum number of 
iterations needed to perform the computation is in proportion 
to the number of nodes, instead of links, for the given net­
work . In other words, conceptually, the new method can reduce 
computer time more than the previous method if larger net­
works are considered. The steps included in this new method 
are as follows: 

Step 1: Obtain the shortest path for each vertex to all other 
nodes. 

(a) 

B 

(b) 

B 

\ 
\ 
\ 
\ 
\ 

K 

M 
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Step 2: Find the farthest node i and second longest distance 
node j to form the nonoverlap distance x(i,j) according to the 
minimum spanning free of each node from Step 1. 

Step 3: Determine the service distance of local 1-center for 
each node and store it as a candidate: 

1/2(max x(i,j)] (13) 

Step 4: Repeat Steps 2 to 3 until all nodes have been 
examined. 

Step 5: Choose the minimum value among all candidates. 
This is the absolute 1-center for the given network. 

It is easy to perform the preceding steps by using the graphic 
method manually. Steps 2 and 3 need to be modified, how­
ever, if the new method is to be programmed. After several 
tests, it is found that the local 1-center of the designated node 
may not always be located on the path that includes the longest 
and second longest distances rooted at each node. More ver­
ifying steps must be added to obtain a better solution of the 
local 1-center. The best way to perform this analysis is to 
check all connecting links from that node. This can be observed 
in Figure 2a. Suppose node I, with the longest path I-A and 
the second longest path 1-B, is under consideration. The piv­
otal local 1-center of node I is located on M with MI distance 
from node I. Link (I, K) represents one connecting links orig­
inating from node I. The service distance SS of the initial local 
1-center based on the previous steps equals V2(IA + IB). If 
the shortest distances from node K to nodes A and B satisfy 
Equation 14, 

Max [D(K,A),D(K,B)] GL <SS (14) 

A 

z 

A 

FIGURE 2 (a) The farthest node A and second longest distance 
node B for node I and one of connecting links (l,K). (b) Checking 
steps for connecting links rooted from node I. 
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where 

D(K,A) = the shortest distance from nodes K to A­
D(K,B) = the shortest distance from nodes K to B: and 

GL = higher value of D(K,A) and D(K,B), ' 

then it is possible for the local 1-center to be located on the 
connecting link (/,K) instead of the original shortest path. 
What would be the most desired loclltinn of local 1-center for 
node I? Before performing more analyses, we denote W as 
the nodes that are different from nodes I, K, A, and B but 
satisfy the following two conditions. 

D(K,W) ~ GL 

D(I, W) + D(l,K) ~ GL 

where 

D(K, W) = the shortest distanc~ from nodes K to W; 
D(I, W) = the shortest distance from nodes I to W; and 
D(I,K) = the shortest distance from nodes I to K. 

Let Zbe the node that has the largest value among all D(I, W). 
The new local 1-center stays on link (/,K) if Equation 15 is 
met. 

D(l,Z) + D(J,K) ~ GL (lS) 

Otherwise, the local 1-center remains at the node K. The 
service distance and location of local 1-center for node I become 
SS and p *, respectively. 

SS1 = 1/2[D(/,Z) + D(I,K) + GL] 

p* = SS1 - D(l,Z) 

(16) 

(17) 

After obtaining the new SS1, if SS1 is smaller than SS, then 
SS 1 will substitute SS as the new service distance of local 
1-center. The location of this local 1-center is located on the 
connecting link (/,K) with p* distance units from node I. 
Otherwise, the SS value still represents the service distance 
of local 1-center. After all connecting links have been exam­
ined, the smallest value among all SS is chosen. The smallest 
value and its corresponding location p * are considered the 
local 1-center of node /. 

To put the preceding discussion into sequential steps, we 
substitute the following Steps la through Sa for Steps 2 and 
3 and add Steps 6a to 8a for checking connecting links. Before 
describing these steps, let c(i,j) be the shortest distance from 
nodes i to j and b(i,j) = A be the nearest node number on 
the shortest path from node i to all other nodes j; g(i,j) rep­
resents the largest value among all c(i,j), and h(i,j') denotes 
the second largest value in the all remaining c(i,j). B gives 
the node letter j that has the second longest distance from 
node i. Besides, N(i) shows the node letter i currently under 
consideration. 

Step la: List all c(i,j) and b(i,j) = A for node i; 
Step 2a: Find the largest value g(i,j) among c(i,j) and its 

nea!est node letter A from node i to all other nodes; 
Step 3a: Determine the second largest value among 

remaining c(i,j) that the nearest node number is not A and 
denote it as h(i,j') and b(i,j') = B; 

Step 4a: Calculate Q(i) through the following equation: 

(
") g(i,j) + h(i,j') Q l = ;;;_c.-'-'------''-'--'-

2 
(18) 
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Step Sa: If [Q(i) - h(i,j')] is less than or equal to c(i,A), 
then Q(i) is the local 1-center distance for node i. Determine 
the suitable location p * for Q(i) and go to Step 6a. If 
[Q(i) - h(i,j'] > c(i,A), go back to Step 4; 

Step 6a: Check one connecting link from node i to node 
k: 

GL = Max[D(k,A),D(k,B)] 

If GL ~ Q(i), go to Step 7a; otherwise, go to Step 8a; 

Step 7a: Find z that satisfies the following two conditions 
and has the largest value: 

D(i,z) + D(i,k) ~ GL and D(k,z) ~ GL 

If there is no z available, go to Step 8a. 

Q'(i) = 1/2[D(i,z) + D(i,k) + GL] 

If Q'(i) < Q(i), then Q(i) = Q'(i), p* = Q'(i) - D(i,z). 
Go to Step 8a. 

Step 8a: Check other connecting links originating from node 
i. If all links have been examined, go to Step 4; otherwise, 
go to Step 6a. 

EXAMPLE 

Find the absolute 1-center of the network shown in Figure 3 
using the new method. This example requires that the shortest 
distance from each node to all vertices be calculated in the 
first step. Then, the spanning tree of the designated node 
based on the shortest distance from each node to all vertices 
is calculated in the second step. The spanning tree of the 
designated node based on the shortest distance is then obtained. 
Figure 4 shows the spanning tree of node 7. After several 
checking steps, the initial local 1-center becomes the center 
of node 7. From this figure, it can be seen that the distance 
between nodes 5 and 10 is 15S. Thus, the initial local 1-center 
for node 7 equals 77.S units, according to Equation 13. This 
center will be located on link (7,8) at a distance of O.S units 
from node 7. Similarly, the initial local 1-center of node 6 can 
be easily obtained from Figure Sa. This initial local 1-center 
has 62.S distance units and stays on link (6,10) with a distance 

25 

FIGURE 3 Distance and configuration of given network. 
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FIGURE 4 Spanning tree of node 7 and its location of local 1-center. 
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(b) 

25 

5 

10 

x location of 
initial local 
1-center 

x location of local 
1-center 

FIGURE 5 (a) Initial local 1-center of node 6 with 62.5 units service distance. (b) 
Location of local 1-center for node 6 with 58 units. 
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of 2.S units from node 6. It is not the best solution for node 
6. Tn fact, the local 1-center of node 6 is located on link (6,8) 
with SS distance units from node 6 to serve all other nodes 
by applying Steps 6a to Sa to examine each connecting link 
rooted from node 6. Its final location can be seen from Figure 
Sb. This location and service distance also represents the abso­
lute 1-center for the given network. Therefore, from this 
example, it is important to examine all connecting links 
of any designated node before its local 1-center is finally 
determined. 

Another way of searching the local 1-center of each node 
is simply to apply the given Steps la to Sa. A complete com­
putational procedure for node 7 is shown on Table 2 based 
on these steps. Definitions of all variables in the table are 
referred to this section. Table 3 gives the computational result 
of local 1-center for node 6. This case provides the user a 
better solution after checking each connecting link originated 
from node 6. It is noted that the results obtained from Ta­
ble 3 are the same as those shown in Figure Sb. 
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COMPARISON OF FOUR METHODS 

Thus far, four different methods for finding the absolute 
1-center have been discussed: the new shortcut, the Minieka 
method, the combined method, and the new method. As far 
as computer time and computational complexity are con­
cerned, it is necessary to understand the capabilities and lim­
itations of these four methods. One analytic strategy is to 
apply four methods to the same given network. To make such 
a comparison, nine networks with different numbers of nodes 
and links are selected. In these networks, an absolute 1-center 
will be sought such that the maximum service distance from 
this center to all nodes is minimized. The absolute 1-center 
can be located anywhere on a link or at a node. 

Four computer programs have been developed separately 
for the four methods. Each program reads the same network 
input file and prints the output in an identical format. Each 
program was run on a PC/ AT with a math coprocessor 
80287-10. For each network, the final distance and location 

TABLE 2 COMPUTATION OF LOCAL I-CENTER FOR NODE 7 BY APPL YING 
STEPS la TO 8a 

Node i Node j 

N(7)=7 

c(7,j)= 

b(7,j)= 

1 2 3 

36 52 13 

4 4 4 

4 5 6 

9 77 32 

4 4 4 

A. Search the initial local 1-center: 

g ( 7. 10) = 78. A = 10, h(7,5) = 77, 

b(7,10) = 8 ~ b(7,5) = 4 

Q(7) = g(7,10); h(7,5) = 77.5 

7 8 9 

0 27 28 

7 8 9 

B = 5 

Q(7) - h(7,5) = 77.5 - 77 = 0.5 < c(7,8) = 27, O.K. 

10 

78 

8 

11 

38 

9 

The initial local 1-center of node 7 is located on link (7,8) 

B. 

and 0.5 distance units from node 7. 

Check each connecting link 

( 1) link ( 7, 4) , k = 4 

GL = max[D{4,10) = 87, D(4,5) = 68] = 87 I; Q(7) 

(2) link (7,9), k = 9 

GL = max[D(9,10) = 86, D(9,5) = 95] = 95 I; Q(7) 

No connecting links can provide a better solution, so the local 

1-center of node 7 is still located on link (7,8) and 0.5 

distance units from node 7. 



Tsay and Lin 

TABLE 3 COMPUTATION OF LOCAL 1-CENTER FOR NODE 6 BY APPLYING STEPS 
la TO Sa 

Node i Node j 

N(6)=6 1 2 3 4 5 6 7 8 9 10 11 

c(6,j )= 50 20 27 33 45 0 42 15 50 65 60 

b(6,j)= 4 2 4 4 2 6 4 

A. Search the initial local 1-center: 

g(6, 10) = 65, 

b(6,10) 1 b(7,11) 

A = 10, h(6,11) = 60, 

Q(6) = g(6,10) + h(6,11) = 62.5 
2 

8 4 

B = 11 

Q(6) - h(6,11) = 62.5 - 60 = 2.5 < c(6,10) = 60, O.K. 

10 

The initial local 1-center of node 6 is located on link (6,10) 

and 2.5 distance units from node 6. 

B. Check each connecting link: 

(1) link (6,2), k = 2 

GL = max[D(2,10) = 85, D(2,11) = 80] = 85 ~ Q(6) 

( 2) link ( 6, 4) , k = 4 

GL = max[D(4,10) = 87, D(2,11) = 47] = 87 t Q(6) 

( 3) link ( 6, 8), k = 8 

GL = max[D(8,10) = 51, D(2,11) = 47] = 51 < Q(6) 

One connecting link (6,8) may provide a better solution. 

More checking steps need to be undertaken. 

D(6,1) + D(6,8) = 65? GL = 51 

D(8,1) = 63? GL = 51 

Q'(6) = [D(6,1)+D(6,8)+GL] = [50+15+51] = 58 ~ Q(6) 

P* = Q'(b) - D(b,1) = 58 - 50 = 8 ~ c(6,8) = 15 O.K. 

8 

Thus, the local 1-center of node 6 is located on link (6,8) 

and 8 distan~e units from node 6. 
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of the absolute 1-center are the same according to the output 
of the four computer programs. They all provide the best 
solution. Comparisons of computer time used and the num­
bers of links and nodes considered by each method are sum­
marized in Table 4. It can be seen that the combined method 
is more efficient than the Minieka method, because the former 
skips many unnecessary links before searching the local 1-
center. The new method and the new shortcut are obviously 
better than the combined method. Both the new method and 
the shortcut use almost the same computer running time. For 
a network with 80 nodes and 141 links , the new method and 
shortcut need only 45 percent of the Minieka's computer time 
and 61 percent of the time required by the combined method. 
The results show that the new method and the shortcut are 

computationally fast and powerful if larger networks are con­
sidered. Also, both new methods can be categorized as poly­
nomial time-bounded algorithms. 

CONCLUSIONS 

The combined method finds the absolute 1-center with fewer 
link computations than the Minieka method does, if the latter 
is assumed to examine all links. The computational complexity 
of this technique relies on the efforts of finding the all-to-all 
shortest distance paths and requires O(N3) calculations. Hence, 
the combined method is a polynomially bounded algorithm 
and requires less computational effort. The proposed new 
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TABLE 4 COMPARISONS OF FOUR METHODS BY RUNNING ON PC/AT WITH A 
MATH COPROCESSOR 80287-10 

Network No. of No. of Minieka 
Method 

Number Nodes Links (sec) 

1 15 27 3.6 

2 17 36 4. 7 

3 25 50 9.9 

4 30 40 13.1 

5 40 56 27.7 

6 45 95 44.0 

7 50 74 51. 7 

8 65 100 109.5 

9 80 141 207.4 

shortcut gives a stricter bound than does the Larson and Odoni 
shortcut. After this new shortcut is applied, the location and 
its service distance to the local 1-center for the desired link 
can be obtained directly. The new method finds the absolute 
1-center by considering the number of nodes instead of the 
number of links in a network. Although the combined method 
has reduced the number of links needed in calculating the 
local 1-center, the number of remaining links, in most cases , 
is still greater than the number of nodes considered for the 
given network. Therefore, after several tests, it can be con­
cluded that the new method and the new shortcut are faster 
and more powerful than the combined method or the Minieka 
method, especially for a large network. On this basis, the new 
method or the new shortcut is recommended for use in locat­
ing a new transportation facility if the absolute 1-center loca­
tion problem is being considered. 
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Combined New Shortcut New Method 
Method 
(sec) (sec) (sec) 

4.5 4.1 3.7 

5.3 4.5 4.0 

9.5 7.5 7.2 

12.4 10.0 9.5 

23.3 17.5 17.0 

32.8 22.6 22.2 

41.0 28..4 28.0 

82.2 53.4 53.0 

148.0 90.4 90.0 
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Locomotive Scheduling Under 
Uncertain Demand 

ScoTT SMITH AND YosEF SHEFFI 

Each day, railroads face the problem of allocating power to trains. 
Often, power requirements for each train are not known with 
certainty, and the fleet of locomotives may not be homogeneous. 
To deal with both of these complications, we formulate a multi­
commodity flow problem with convex objective function on a time­
space network. The convex objective allows us to minimize expected 
cost under uncertainty by penalizing trip arcs likely to have too 
little power. Our solution heuristic sends locomotives down the 
shortest paths (based on marginal arc costs) in the time-space 
network and then attempts to improve interchanges of locomotives 
around cycles. Two lower bounds are also developed by relaxing 
the multicommodity aspect of the problem. In 19 test problems, 
ranging in size from 15 to 404 arcs, the heuristic performed well, 
with short running times and costs averaging within 3 percent of 
the best of the two lower bounds developed. 

A problem frequently faced by transportation carriers is the 
allocation of a fixed supply of vehicles to a given schedule. 
Examples include the allocation of locomotives to freight trains, 
of buses to transit routes, and of airplanes to flights. These 
examples have the following features in common: 

1. There is a published or "committed to" schedule of ser­
vices that have to be carried out; 

2. The supply of vehicles to <rips can be represented as an 
integer, multicommodity minimum cost flow problem over a 
network of trip, layover, and storage arcs. The problem has 
multicommodity aspects because the vehicle fleet is not homo­
geneous; for example, locomotives may have different power 
ratings and airplanes may be of different sizes. (Naturally, 
however, there are some important differences between the 
modes. For example, in the rail mode, two or more loco­
motives typically are used to meet demand for a given trip, 
whereas only one airplane is used for a single airline trip); 

3. Even though the schedule is fixed, the demand for ser­
vice may vary. In the rail context, the tonnage of a given train 
is variable. In the bus or airline context, the number of pas­
sengers on a given trip will vary. Further, it may sometimes 
be desirable not to meet all the demand, for example, by 
having standees on buses, or refusing airline reservations, or 
leaving cars behind for the next freight train to pick up. 

This paper formulates this allocation problem and suggests 
solution techniques in the context of rail. First, background 
information on both the formulation of the problem and past 
research in this area is presented. Second, the problem is 
formulated as a mathematical program. Third, a fast heuristic 
solution technique is presented. Finally, the results of the 

Department of Civil Engineering, Massachusetts Institute of Tech­
nology, 77 Massachusetts Avenue, Cambridge, Mass. 02139. 

heuristic are compared with lower bounds obtained through 
various relaxations. The techniques presented here explicitly 
consider uncertainty in locomotive demand and are able to 
deal with locomotives of different power ratings. 

BACKGROUND 

This section looks at the network representation of the loco­
motive scheduling problem. This formulation underlies vir­
tually all other attempts in the literature to develop a solution 
for this problem. Some of that research is reviewed in the 
second part of this section. 

Time-Space Representation 

The rail scheduling problem is typically formulated as a min­
imum cost flow problem on a time-space network, which is a 
graph of locations versus time on which activities are plotted 
(Figure 1). Each node in this network represents a terminal 
(yard) at a point in time, and arcs are of the following types: 

1. Trip arcs represent trains between the upstream terminal 
node and the downstream terminal node that the arc connects. 

dummy supersource 

Layover arc 

Trip arc 

End arc 

FIGURE 1 Sample time-space network. 
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There is a power requirement for each trip, which may be 
represented either by a lower bound on the arc flow of loco­
motives or by a penalty function that increases greatly as this 
flow falls below the minimum desired value; 

2. Layover arcs represent short-term storage at a terminal. 
They have a lower bound of 0 and some fixed cost per unit; 

3. Bypass arcs represent long-term storage of unneeded 
units and have very low cost per unit; and 

4. End arcs represent locomotive requirements at each ter­
minal at the end of the planning horizon. Any practical time­
space representation has a finite planning horizon. Therefore, 
if this horizon is short, end effects must be considered. In the 
model here, we want to know how many locomotives are 
needed at each terminal at the end of day, week, or whatever 
period we are modeling. Thus, the end arcs will have either 
cost functions or lower bounds similar to those for trip arcs. 

This is a multicommodity network flow problem with either 
a "bundle constraint" in the lower bound for each arc or a 
penalty term in the cost function that "bundles" the com­
modities. We flow locomotive units of various types through 
the network, but a minimum level of motive power must be 
met for each arc. 

Past Work 

Comprehensive reviews of rail scheduling are contained in 
two papers by Assad (1,2) and one by Peterson (3). Some of 
the earliest analytical work in locomotive assignment is that 
of Bartlett in 1957 ( 4), who presented a pairing algorithm to 
assign vehicles to a fixed schedule. Later, McGaughey et al. 
(5) described the distribution of locomotives and cabooses 
with a time-space network model. They used an out-of-kilter 
algorithm to find the optimal flow of units through a single­
commodity network with a fixed lower bound on the power 
supplied to each arc. In 1976 Florian et al. (6) considered the 
multicommodity aspect of locomotive scheduling, with fixed 
lower bounds. They used Bender's decomposition to solve 
this multicommodity flow problem and reported good results 
with medium-size (about 200 train movements) problems but 
had less success with larger problems. In 1980, Booler (7) 
formulated the same multicommodity flow problem but 
obtained an integer solution using a heuristic method based 
on linear programming. 

All of this work assumes deterministic, known lower bounds 
on the power flows. Furthermore, there has been only limited 
success with multicommodity flows, particularly with large 
problems, as already mentioned. As the first step to the expla­
nation of our approach to the problem, the next section for­
mulates the locomotive allocation problem as a mathematical 
program. Later we assume that the lower bound is not known 
with certainty, and we reformulate the problem using a 
penalty function. 

FORMULATION 

This section starts with the "traditional" mathematical pro­
gramming formulation of the problem. It then incorporates 
the uncertainty in locomotive requirements directly into the 
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power needs. The formulation and notation that follow relate 
to the time-space representation of the locomotive assignment 
problem. 

Define the following: 

i = arc number in the time-space network, 
j = locomotive type, 

x 11 = flow of locomotive type j on arc i, 
H1 = horsepower rating of locomotive type j 
s1 = horsepower flow on arc i (s; = "i.1Hr;), 
x1 = vector of locomotive flows of type j on all arcs, 

C1(s;) general operating cost function on arc i, 
c, operating cost per unit HP flow on arc i, 
!1 demand for power on trip arc i (this may be either 

a deterministic value or a random variable), 
F, cumulative distribution function for l;, 
f, = probability density function for l1, 

µ 1 = average demand for power (expected value of l;), 
rr, standard deviation of demand for power, 

Pls) = general penalty cost function for power shortfall 
on link i, 
penalty per unit of power shortfall on arc i, p, 

Z,(s,) cost function on arc i (including operating cost and 
penalty), 

N = node arc incidence matrix for the time-space net­
work, and 

b1 = vector of sources and sinks for locomotive type j. 

We first formulate the problem with deterministic lower bounds 
on the power requirements, and then show how these lower 
bounds can be modeled as random variables. That formula­
tion leads to the use of penalty functions in the objective of 
the mathematical program. In all cases, we assume that the 
lower bound is expressed in terms of horsepower, so that 
combinations of locomotive types with the same total power 
rating are interchangeable. The mathematical formulation is 

subject to 

"i.1Hr,1 ~ 11 for all i 

Nx1 = b1 for all j 

x;1 integer and ~ 0 

(1) 

(2) 

(3) 

(4,5) 

This is a multicommodity minimum cost network flow prob­
lem. The objective is to assign all locomotive types j to the 
network, whose node-arc incidence matrix is N, at minimum 
cost. The various locomotive types cannot be assigned sep­
arately because they all contribute to the power on each train 
link. This bundling of locomotive types appears in the lower 
bound constraint 2. 

Recall that the original problem calls for uncertainty in 
demand. Therefore, the fixed lower bound formulation of 
Equations 1 through 5 may not be realistic. This is because 
a fixed lower bound can be thought of as an infinite cost 
penalty on flows below it. Such a cost function for an arc with 
a lower bound of 5000 and cost per unit flow of c is shown 
in Figure 2. According to this cost function, 4999 HP on this 
train has an infinite cost whereas 5000 HP has the lowest cost, 
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FIGURE 2 Arc cost function with deterministic lower bound. 

"' 
N 

"' 0 
u 

0 

FIGURE 3 

5000 
Flow s(HP) 

10000 

Arc cost function with uncertain power demand. 

requirement is actually a random variable, which can attain 
values lower than 5000 HP. A more realistic cost function 
(Figure 3) might be obtained by reasoning as follows: 

Our forecast demand is 5000 HP but we know the forecast 
might be off by-.as much as 1000 HP. Therefore, our safest 
assignment would be to have 6000 HP on this train; 5000 HP 
would probably work; 4000 HP would be unacceptable. How­
ever, we do not want a fixed lower bound of 6000 HP because 
5000 HP may be all the power we have available. 

To yield a cost function that looks like the one shown in 
Figure 3, we move constraint 2 into the objective with a pen­
alty term. By doing so, we acknowledge that (a) power 
requirements may vary in a random manner and (b) the lower 
bound on power is not a hard-and-fast rule; rather, there is 
a trade-off between service quality and the amount of power 
supplied. This formulation provides a more realistic repre­
sentation and, arguably, makes the problem easier to solve. 
Thus, rather than having the demand for power, 11, as a fixed 
lower bound, it is modeled as a random variable. 

The shape of the cost function derived this way depends 
on three elements: 

1. The operating cost of additional power; we assume this 
is some function, C;(s;) of the power supplied, s1• This cost is 
assumed independent of the demand, 11, and locomotive type; 
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2. The distribution of the demand for power, l;. The prob­
ability density function for l; is denoted by f; and its cumulative 
distribution by F1• This· distribution has mean µ,1 and variance 
a}; and 

3. The magnitude and shape of the penalty, given a short­
age. This will have the form P1(l1 - s;) (recall thats1 = IjH;c1J. 

In the equations that follow, the subscript i is dropped to 
make the notation easier to read . 

The cost as a function of power supply, s, is Z(s). Given 
the probability density function of l, this cost can be expressed 
as follows: 

Z(s) = C(s) + r P(l - s) f(I) di (6) 

As a tractable approximation to the normal distribution, we 
assume that l follows a logistic distribution where 

F({) = [1 + exp ((alu) (µ, - {))] - 1 

f({) = (alu) exp((a!u) (µ, - /)) 

x [1 + exp((a/rr) (µ, - 1))]-2 

where a = -rr/\/J = 1.81 

The cost function, Z(s), now becomes 

Z(s) = cs + p r lf(l) di - ps r f({) di 

= cs + p r If(/) di + ps(F(s) - 1) 

After integrating (by parts) the cost becomes 

Z(s) = cs + (pula)log(l!F(s)) 

(7) 

(8) 

(9) 

(10) 

In the logistic distribution mentioned above, negative demand 
is theoretically possible. However the parameters are such 
that this is not a problem in practice. 

Cost functions were also derived for uniform and gamma 
distributed demands , with some examples plotted in Figure 
4. Note the following points: 

1. All functions approach the CT = 0 case asymptotically as 
s becomes either very large or very small with respect to f.L; 

2. There is not much difference between the ca es wi.th 
logistic, uniform , and gamma distribution-. This is reassuring, 
I ecause it indicates that the exact shape of the distribution 
for demand may not matter much , and we can u e the logi tic 
distribution to form a tractable cost function . Although the 
gamma di tribution i probably the most realistic r presen­
tation of l (it never ha values bel w zero) it does not yield 
a clo ed form for Z(s) and, consequently, i difficult to work 
with; 

3. All functions have the desired shape (as in Figure 3). In 
the remainder of the paper, we assume that the demand for 
power I is logistically distributed with mean µ, and standard 
deviation u. 
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FIGURE 4 Arc cost function under various demand 
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The problem we are solving can now be summarized as fol­
lows: Minimize the total cost of flowing power on all arcs, 
subject to the following constraints: 

1. Flow conservation constraints are met for each power 
class and 

2. The number of locomotives on each arc is integer and 
nonnegative. 

In other words: 

min I;{c,s, + (p,a/a) log(l + exp [(a/µ;)(µ,-s,)])} (11) 

subject to Nxj = bj for all j 

X;j integer and ;::: 0 

(As before, s, is defined as IjHr,i and a = 1.81.) 

(12) 

(13,14) 

This representation, in addition to having the advantages 
mentioned earlier, also lends itself well to the treatment of 
uncertain end effect arcs, which can be modeled like trip arcs 
with high CJ. The next section looks at solution approaches 
for this problem. 

SOLUTION APPROACHES 

We have formulated a nonlinear, multicommodity integer net­
work flow problem. Exact solution techniques for such a prob­
lem are likely to be neither easy nor fast. This problem, how­
ever, is similar to the (multicommodity) traffic assignment 
equivalent program. The traffic assignment problem deals 
with the assignment of an origin-destination trip matrix to a 
transportation network so as to minimize each user's travel 
time (or cost). In traffic assignment, the arcs have a fuzzy 
upper bound that arises from highway congestion effects, 
whereas our problem has a fuzzy lower bound arising from 
power shortfall . Both problems can be formulated as a solu­
tion to a convex program over network flows. The heuristrc 
used to solve the locomotive scheduling borrows from both 
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the incremental assignment method and the Frank-Wolfe 
algorithm used to solve the traffic assignment problem. 

Review of Incremental Assignment and Frank­
Wolfe 

In incremental assignment , wc start with zero flow on the 
network and choose a number of increments, n. The algo­
rithm, then, in each of n iterations, greedily assigns lln of the 
total flow along each shortest path from origin to destination. 
Because the cost function is nonlinear, these shortest paths 
may change with each iteration (8). Although this algorithm 
can be set to maintain integrality of the solution, has intuitive 
appeal, and is easy to implement, it has a number of short­
comings. First, it does not always work, as shown through 
counterexamples by Ferland et al. (9). Second, if it is to 
produce reasonable solutions, the number of increments may 
have to be very large, thus unduly increasing the running time. 

The Frank-Wolfe algorithm (8) is a feasible direction method 
and therefore starts with an initial feasible solution and moves 
to improved solutions , maintaining feasibility throughout. It 
does this by developing linear approximations to the objective 
function and by solving linear subproblems to find the correct 
distances to move in improving directions . With cost min­
imization and a convex objective function, the Frank-Wolfe 
method does converge to the optimal solution and is easy to 
implement on networks. Furthermore, a lower bound to the 
optimal solution is provided at each iteration. Flows, how­
ever, are split between paths; thus integrality is lost. In most 
traffic assignment problems, convergence is rapid (about five 
iterations) but may be slowed if the solution is in a highly 
nonlinear portion of the objective function (10) . 

The Two-Commodity Heuristic Approach 

The heuristic presented here obtains a feasible solution to the 
problem through incremental assignment, and then obtains 
improvement. through a fea ible direction method. Unlike 
Frank-Wolfe, it maintains integrality and exploit the int -
grality of the problem by moving one locomotive unit at a 
time, thus obviating the need for line searches in the feasible 
direction method. 

The heuristic runs in two phases. First, it loads the network 
by assigning one unit at a time to shortest paths. This is 
referred to as the GREEDY phase. Second, after the network 
is loaded, it attempts improvements by sending flows around 
augmenting negative cycles in an INTERCHANGE phase. 
These augmenting cycles are similar to the augmenting paths 
of maximum flow algorithms in that they include both forward 
and reverse arcs; thus flow can be removed from an arc when 
going against the flow direction. Both phases are outlined in 
more detail below: 

GREEDY Phase 

Step 0. Initialization. Start with zero flow, and compute 
arc marginal costs at zero flow. 

Step 1. Send one unit down the shortest path from any 
source to the supersink; update arc flows. (Note rhat the order 
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in which units are selected will affect the outcome. For the 
experiments here, the largest units were arbitrarily selected 
first). 

Step 2. Recompute arc marginal costs along that path. 
Step 3. If all units have been sent, go to the INTER­

CHANGE phase, otherwise, go to Step 1. 

Note that for large problems, this phase can be speeded up 
by sending more than one unit at first. Also, saving the short­
est path tree rooted at the sink node and reoptimizing it after 
every assignment (rather than recomputing the shortest path 
at each iteration) offers another opportunity to speed up this 
phase of the heuristic. 

INTERCHANGE Phase 

tep 0. Identify arcs thal are candidates for improvement. 
In the pre enl implementation the e a re arc with large neg­
ative marginal co t (i.e., trip arcs with insufficient pow r) . 

Step L. earcb for a flow-augmenting negative cycle involv­
ing ome candidate arc. lf no negative cycle can be found in 
the network, stop. Otherwise, go to Step 2. 

Step 2. Interchange flows around this cycle and update arc 
marginal costs. Go back to Step 1. 

The interchanges performed in the second phase are gen­
erally more complicated than simply sending one unit of flow 
around the cycle. This is because the interchanges often involve 
minor HP changes and thus may involve the exchange of two 
Joe motive type . For example, if our two locomotives types 
have 2000 I P and 3000 HP, respectively two interchanges 
that wou ld produce a small hor epower change would be: 

1. Add one high-power and remove one low-power unit 
on the arc that needs additional power (net change of 1000 
HP) or 

2. Add two I.ow-power and remove one high-power unit 
(net change of 1000 HP). 

Within the heuristic, these interchanges are performed in the 
following manner: 

1. Create an ordered list of arcs that will benefit from more 
power. 

2. Attempt to find an improving interchange involving one 
of the arcs on the ordered list. This is done as follows: 

2a. Select the first interchange type. 
2b. REPEAT. 

Select the first arc. 
REPEAT. 

Try to find an improving interchange (flow­
augmenting negative cycle) with this arc and inter­
change type. If one is found, go to Step 3. Other­
wise, select the next arc 

UNTIL all arcs examined. 
Consider the next interchange type. 
UNTIL all interchange types have been considered. 

3. If we have found an interchange 
Perform the interchange and update arc marginal 
costs. 
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Update the ordered list of arcs, go back to Step 2. 
Otherwise, we terminate, because no interchange can 
be found. 

Example 

Consider a two-node network with two trip arcs and one 
bypass arc (Figure 5) . The arc costs are showrt in Table 1. 
The locomotive supply includes one high-powered (3000 HP) 
and two low-powered (2000 HP) locomotives. The greedy 
phase of the heuristic performs as follows: 

1. Send the high-powered unit down arc 1. 
2. Send a low-powered unit down arc 2. 
3. Send a low-powered unit down arc 1. 

We now have 5000 HP on arc 1 and 2000 HP on arc 2. Arc 
2 is short of power. 

arc 1 

3000HP [!] E ... , ? 
2000 HP © - -:::;r ------------------bypass arc 

FIGURE 5 Sample network. 

TABLE 1 COSTS FOR THE EXAMPLE 
NETWORK 

arc 1 arc 2 bypass 

Parameters 

4200 3000 0 

1000 1000 0 

c 1 1 0 

p 10 10 0 

Costs 

Flow (HP) arc 1 arc 2 bypass 

0 42002 30024 0 

1000 33016 21146 0 

2000 24102 12837 0 

3000 15596 6829. 0 

4000 8919. 4837. 0 

5000 6166. 5146. 0 

6000 6208. 6024. 0 

7000 7034. 7003. 0 

8000 8005. 8000. 0 
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Moving to the interchange phase, we see that the high­
powered unit on arc 1 can be exchanged with the low-powered 
unit on arc 2. After this exchange is performed, we are fin­
ished , as no more improving interchanges can be seen. 

The progress of the heuristic in terms of the arc flows and 
the objective function is plotted in Figure 6. The method 
works by first moving in big jumps (whole units) toward the 
optimal solution, then refining the solution by making smHller 
jumps (interchanges). 

Advantages and Disadvantages of the Heuristic 
Approach 

This doub!e-ph3se heuristic has several advantages . First, it 
maintains feasibility throughout. Second, by always moving 
in an improving direction, the method is intuitively appealing. 
Therefore, it may lend itself well to interactive use. Third, it 
is easy to incorporate other side constraints into the frame­
work of this heuristic. Some of these are the following: 

1. Prohibition of certain locomotive types from certain sec­
tions of track, 

2. Assigning newer, more reliable, locomotives to high­
priority trains, and 

3. Sending locomotives to home shops for scheduled 
maintenance. 

Finally, the heuristic is also quite fast and produces close to 
optimal results in several test problems. 

The disadvantages of this method are, first, its heuristic 
nature: optimality is not guaranteed. In addition, the com­
plexity of the interchange phase increases as the number of 
the commodities is increased beyond two. This was not a 
problem in the case study reported later but may present 
difficulty in other applications. 

LOWER BOUNDS 

Several lower bounds were derived to test the performance of 
the heuristic. A lower bound may be (a) an optimal solution 
to a relaxed version of the primal problem, (b) a dual feasible 
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FIGURE 6 Progress to the best heuristic solution. 

TRANSPORTATION RESEARCH RECORD 1251 

solution, or (c) some combination of the foregoing, such as a 
dual feasible solution to a relaxed version of the primal. Two 
lower bounds were derived for the problem discussed here. 

Frank-Wolfe Relaxation 

By relaxing the integrality constraint in the original problem, 
we obtain a single-commodity (horsepower) network flow 
problem with convex objective function. This can be solved 
with the Frank-Wolfe (convex combinations) method already 
reviewed. The Frank-Wolfe method provides both a feasible 
solution and lower bound on the relaxed problem at every 
iteration. This lower bound on the relaxed problem will, nat­
urally, also provide a lower bound on the original minimi­
zation problem in the following manner: 

heuristic solution ~ optimal solution 

~ optimal solution to relaxed problem 

~ lower bound to relaxed problem 

Unfortunately, a complete relaxation of the integrality con­
straint in this manner may lead to a large gap between the 
optimal solution and the optimal solution to the relaxed prob­
lem. Such a gap makes it difficult to evaluate the performance 
of the heuristic. 

Greatest Common Factor (GCF) Relaxation 

This relaxation is based on the following observation: Any 
feasible solution will have a horsepower flow in each arc that 
is a multiple of the greatest common factor (GCF) of the 
horsepower ratings. For example, if there are two locomotive 
types rated at 2000 HP and 3000 HP, the flow on each arc 
will be a multiple of 1000 HP. If there are three locomotive 
types with ratings of 1750 HP, 2000 HP, and 3000 HP, the 
flow on each arc must be a multiple of 250 HP. Any other 
horsepower flow is infeasible because it cannot possibly be 
produced as a combination of locomotive flows. 

We can use this observation to transform the original net­
work problem with convex nonlinear cost function to a con­
ventional linear network flow problem with integral upper 
bounds on the arc flows. This latter problem is easy to solve. 
The steps in the transformation are 

1. Let b = GCF of the locomotive power ratings. 
2. Transform the cost function by making it piecewise lin­

ear with breakpoints at multiples of b. See Figure 7. Note 
that the cost function remains convex and we change its value 
only at points that cannot be generated by any combination 
of locomotives. 

3. Create n arcs (one for each division in the cost function) 
for each original arc in the network (Figure 8) . (We do not 
need to add additional constraints because the cost function 
is still convex, thus the arcs will be loaded in the correct 
order). 

4. Because our sources, sinks, and bounds are all multiples 
of b, we can scale flows down by a factor of b without losing 
integrality. The solution to this problem, when scaled back 
up, wiil be a muitipie of b. 
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5. We now have a conventional mm1mum cost network 
flow problem that will provide a valid lower bound on the 
original problem because (a) all feasible solutions to the orig­
inal problem are feasible in this problem and (b) the cost 
function was changed only at infeasible points in the original 
problem. Note, however, that a feasible solution in this prob­
lem may not be feasible in the original problem. An example 
would be an arc flow that is greater than zero but less than 
the power rating of the smallest locomotive. 

TEST PROBLEMS AND RESULTS 

The heuristic was implemented in FORTRAN on a Micro Vax 
II running Micro VMS 4.5 and tested on 19 problems of four 
time-space network configurations (Table 2). The smallest of 
these networks is shown in Figure 1, and Problems Ll-LS 
were drawn from an actual 3-day train schedule for the Grand 
Trunk Western Railroad. 

The logistic form of the cost function was used in all cases. 
The power requirements varied from 3000 HP to 15,000 HP 
on the trip arcs, and locomotive supplies were fixed to be 
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"barely adequate." The basic networks had pie = 10, e = 
0.5, er/µ = 0.20, but these were systematically varied in some 
of the test problems. Table 2 shows these parameters and 
results for the various networks. The heuristic-optimal values 
of the objective function behaved reasonably, with the fol­
lowing configurations having increased costs over the baseline 
(Problems Sl, Ll): 

• Higher penalty term: Increasing the penalty term tenfold 
approximately doubled the objective function (Problems S3, 
L3). 

• Higher standard deviation: Increasing er/µ from 0.1 to 1 
also increased the cost substantially (Problems S5, LS). 

• Lower power supply: Because the initial power supply 
was "barely adequate," reducing it increased costs somewhat 
as more trains were underpowered (Problems S6, L6). 

We would expect average running times to be a function 
of both the number of locomotives supplied and of the size 
of the network. In the cases here, as the networks became 
larger, running times seemed to be O(nt) where n is the num­
ber of nodes and t the number of locomotives. They were 
reasonable in all cases, ranging from O.S sec for the smallest 
network to 63 sec for the largest. This is acceptable because 
it is envisioned that in an operating environment, the model 
will be run about once per 8-hr shift rather than continuously. 

The numerical results were normalized to the best lower 
bound found, which was the GCF lower bound. The results 
of the heuristic were, on average, within 3 percent of this 
bound. These normalized results are shown in Table 2. Prob­
lems with a flat objective function (low pie and high er/µ -
problems S2, SS, L2, LS) tended to perform better with results, 
on average, within about 1 percent of the lower bound. Con­
versely, problems with a highly nonlinear objective (S3, S4, 
L3, L4) give results that were on average only within 6-7 
percent of the lower bound. The Frank-Wolfe algorithm also 
tended to have poor convergence on these problems. 

FURTHER WORK 

We have developed a model that deals explicitly with the 
uncertainty in power requirements. Moreover, the heuristic 
used to solve this model is promising because it is both fast 
and fairly accurate. Further research should focus on im­
provements to the heuristic and incorporation of schedule 
variability. 

The present implementation of the heuristic does not optim­
ize speed. Some improvements, mentioned earlier, include 
sending more than one unit at a time in the early stages of 
the heuristic, and keeping and reoptimizing a shortest path 
tree rooted at the supersink, rather than recalculating shortest 
paths for each iteration. Another improvement to the heu­
ristic would be the incorporation of additional side constraints 
and provision for more than two commodities. 

Of possibly greater interest is the incorporation of schedule 
variability. Although the model now assumes a fixed schedule, 
one way to do this would be to incorporate the heuristic into 
an interactive system that displays where and when shortages 
of locomotives are likely to occur, and then allowing the user 
to adjust the schedule accordingly before running the heuristic 



TABLE 2 TEST RESULTS 

GCF Normalized Costs · 

Trial Trips arcs nodes kHP p/c '1'/,,µ. Cost greedy 

Tl 

T2 

Sl 

S2 

S3 

S4 

SS 

S6 

S7 

Ml 

M2 

Ll 

L2 

L3 

L4 

LS 

L6 

L7 

L8 

3 

3 

9 

9 

9 

9 

9 

9 

9 

3S 

3S 

102 

102 

102 

102 

102 

102 

102 

102 

lS 

lS 

42 

42 

42 

42 

42 

42 

42 

1S3 

1S3 

404 

404 

404 

404 

404 

404 

404 

404 

10 

10 

2S 

2S 

2S 

2S 

2S 

2S 

2S 

88 

88 

239 

239 

239 

239 

239 

239 

239 

239 

13 

13 

S2 

S2 

S2 

S2 

S2 

37 

67 

137 

168 

283 

283 

283 

283 

283 

253 

309 

406 

10 0.1 

10 0.1 

10 0.1 

5 0.1 

so 0.1 

10 0.05 

10 1 

10 0.1 

10 0.1 

10 0.1 

10 0.1 

10 0.1 

5 0 .1 

so 0.1 

10 0 . 05 

10 1 

10 0.1 

10 0.1 

10 0.1 

18.8 

18 . 6 

123 

105 

249 

105 

254 

184 

110 

1156 

1085 

1531 

1191 

3598 

1414 

2475 

1577 

1484 

1454 

1.017 

1. 069 

1.025 

1.016 

1. 066 

1.053 

1.002 

1. 038 

1. 065 

1.034 

1. 035 

1. 065 

1. 027 

1.133 

1.117 

1.014 

1. 062 

1. 068 

1.041 

average 1.050 

Trips - number of trips in this network 

kHP = total horsepower supply (thousands HP) 

p/ c - ratio of penalty to cost term 

<r/p - coefficient of v ariation for power demand 

GCF Cost = Total cost (thousands $) for GCF relaxation 

greedy - total cost after GREEDY phase / GCF Cost 

int - total cost after INTERCHANGE phase / GCF Cost 

FW - total cost of Frank-Wolfe solution / GCF Cost 

FWLB - total cost of Frank-Wolfe lower bound / GCF Cost 

GCF - total cost of GCF relaxati on / GCF Cost 

int 

1.017 0.998 

1.028 0.991 

1.018 0.995 

1.013 0 . 999 

1.044 0.988 

1.047 0.994 

1. 000 1. 000 

1.000 0 . 999 

1.008 0.996 

1. 011 1. 013 

1. 031 1. 004 

1. 035 1. 020 

1. 021 1. 004 

1.104 1. 039 

1.067 1.034 

1. 010 1. 005 

1.048 1.017 

1. 046 1. 015 

1. 020 1. 009 

1.030 1. 006 

run time - total runni ng time for the heuristic, excluding input/output 

and computation time for relaxations . 

0.951 

0.981 

0.984 

0 . 991 

0.978 

0.881 

0.996 

0 . 995 

0 . 979 

0.976 

0.976 

0.933 

0 . 968 

0.914 

0.886 

0.992 

0 . 960 

0.927 

0.919 

0.957 

GCF 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
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again. However, to adjust schedules within the algorithm will 
require consideration of system wide train scheduling and cus­
tomer demand, both of which are very difficult to quantify. 
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System-Optimal Trip Scheduling and 
Routing in Commuting Networks 

GANG-LEN CHANG, HANI s. MAHMASSANI, AND MICHAEL L. ENGQUIST 

A time-space network formulation is presented for the system­
optimal assignment to departure times and routes of traffic flows 
from multiple origins to a common destination. Time is discretized, 
and congestion is represented using simplified deterministic queuing 
stations. The solution minimizes total travel time in the system 
subject to arrivals at the destination taking place within a specified 
time interval. Alternatively, a formulation is presented for the 
minimization of a total cost measure consisting of a weighted sum 
of the users' travel time and schedule delay. The solution can be 
obtained using efficient and widely available pure network optimi­
zation algorithms. A numerical application is presented to illus­
trate the methodology, including a network generator developed 
for this purpose. 

Peak-period congestion continues to be a severe daily annoy­
ance in most metropolitan areas where large volumes of com­
muters desiring to arrive at their destinations within a narrow 
time interval compete for limited transportation system capac­
ity. No major innovations for combating congestion seem to 
have emerged in the past 15 yr. Recently, the potential of 
advanced information and communication technology for 
congestion control appears to have rekindled interest and 
effort in this problem. However, the design and evaluation 
of various control strategies require deeper understanding of 
the systems' complex nature and methodologies with the capa­
bility to deal effectively with time-dependent flows in con­
gested networks. 

Several contributions have addressed the problem of find­
ing a time-dependent flow pattern that satisfies dynamic user 
equilibrium conditions in an idealized system consisting of a 
single route containing a bottleneck and connecting a single 
origin-destination pair (J-:9). Extensions have included mul­
tiple routes and alternative assumptions on the system's con­
figuration or behavioral mechanisms underlying tripmakers' 
decisions (10-14). The day-to-day dynamics of the interaction 
between commuter decisions and congestion in a traffic sys­
tem have also received some attention recently, using simu­
lation experiments (15) and observational studies (16-19). 
Relatively little attention has been directed toward the prob­
lem of solving for time-dependent traffic patterns that are in 
some sense optimal from a total system cost standpoint. 

Previous studies dealing with time-varying system-optimal 
traffic patterns have followed one of two lines: (a) optimizing 
the traffic-generation patterns in a given system with a single 
route (and one bottleneck) or (b) assigning known time-

G.-L. Chang, Department of Civil Engineering, University of Texas at 
Arlington; Arlington 76010. H. S. Mahmassani, Department of Civil 
Engineering, University of Texas at Austin, Austin 78712. M. L. 
Engquist, Management Science and Information Systems, University of 
Texas 3t .l1""ustin, .. A""ustin 78712. 

dependent flows from multiple origins to a single destination 
to the links of a network so as to minimize total system cost 
(travel time). Research along the first line consists of analyt­
ical derivations or discussions of system-optimal departure 
patterns, in connection with the aforementioned dynamic user 
equilibrium studies in an idealized system in which a number 
of commuters from the same origin are trying to arrive at a 
common destination at the same time (6, 9). Extension to the 
scenario of staggered work hours has been described else­
where (20). Discussions of system-optimal departure patterns 
are also given by Hendrickson et al. (21), Fargier (5), and 
Newell (14). 

Contributions along the second line of research are limited 
to situations where the time-dependent departures from mul­
tiple origins to a single destination are known, and congestion 
is modeled using link performance functions intended for static 
traffic assignment applications. As such, these are direct 
extensions of the standard system-optimal network assign­
ment formulations. Merchant and Nemhauser (22, 23) for­
mulated the problem as a discrete time, nonlinear but non­
convex math program where the objective is to minimize the 
total travel time spent by the given trips in the network. A 
recent paper by Carey (24) reformulates that problem as a 
convex nonlinear program, which is of course more attractive 
computationally than the previous formulation, and discusses 
possible extensions to more general situations. 

The present paper addresses a more general system-optimal 
state, which includes not only the assignment of known time­
varying flows to the links of a commuting network but also the 
determination of the corresponding optimal time-dependent 
traffic-generation patterns from the various origins, given con­
straints on desired arrivals at the destination. The paper pre­
sents a methodology for the system-optimal assignment of 
commuters to departure times and routes subject to specified 
constraints on acceptable arrivals. It consists of a time-space 
network formulation that can easily be solved using existing 
efficient network flow programming codes. The scope is still 
limited to commuting systems with a single major destination, 
such as a CBD or other large industrial or business employ­
ment center, but allows for multiple routes and multiple origins. 
It is intended primarily as a tool to explore the potential 
benefits that could be achieved from information-related and 
demand-side strategies aimed at reducing congestion. 

The next section presents the conceptual framework and 
principal features of the proposed approach, followed by a 
detailed formulation for the time-space network of principal 
activities for a simple commuting system with a single route 
and a single origin. Extension of the formulation to more 
general situations \Vith multiple routes and multiple origins is 
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discussed in a later section, followed by presentation of a 
numerical illustration. Finally, concluding comments and pos­
sible extensions are addressed. 

MODEL FORMULATION 

This section presents the key features of the time-space net­
work formulation, including the representation of the traffic 
system. The context considered here is a commuting corridor 
surrounded by residential areas. For convenience and ease of 
presentation, we start with the simplest scenario, shown in 
Figure 1, where only one highway facility exists in the corridor 
for use by residents from adjoining areas in their daily com­
mute to the same work destination. Concern here is primarily 
with the inbound, or home-to-work, direction. 

For the purpose of analytical representation, the highway 
facility is conceptually divided into a number of sections with 
each including, at most, one entry ramp. The time spent in 
any section or ramp depends on the facility's service char­
acteristics and the generated time-dependent flow patterns. 
In this formulation, the entire system is viewed as a network 
of queuing stations. Using a simplified representation adopted 
in several papers dealing with dynamic traffic assignment 
(7, 10, 11, 25), each highway section can be viewed essentially 
as a potential bottleneck with a given service rate (capacity) . 
If the flow is less than this service rate, then only the free­
flow travel time is incurred on the corresponding section; 
otherwise , a waiting time in queue is incurred, representing 
the excess travel time resulting from congestion. Likewise, 
entrance and exit ramps can also be modeled as typical, deter­
ministic queuing stations with service rates depending on each 
ramp's physical capacity and control system (e.g., in the event 
of ramp metering). Further detail is given hereafter. 

Because we are dealing with only one day's process at a 
time, the system is considered for a given duration that includes 
the earliest and latest possible (and meaningful) departure 
times. Time is discretized into equal intervals of a suitable 
small length l::i.t (in the order of a few minutes). The network 
formulation of the system-optimal dynamic assignment prob­
lem can be obtained by analogy to the time-space relation of 
individual vehicles traveling from the origin to the destination. 
The network is akin to a trans-shipment problem where it is 
desired to send flow units (tripmakers) from a set of supply 
points (origins) to a demand point (destination) at minimum 
cost using a network of arcs and nodes. The arcs correspond 
to activities, generally involving an expenditure of time or 
other cost , incurred on a per-flow unit basis; whereas the 
nodes correspond to the beginning and/Or end of activities . 
The activities here include but are not limited to movement 
on physical highway links. 
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There are basically three categories of activities in the for­
mulation: departure from origins, travel on links (including 
queuing at bottlenecks), and arrival at the common destina­
tion. Described are the formulation of each category as a 
separate subnetwork and then their integration to form the 
entire network for a given problem. The presentation is pri­
marily graphical in nature; the notational convention used in 
the network formulation follows the work of Klingman and 
coworkers (26) and is summarized in Figure 2. 

Formulation of the Departure Activity 

For a given origin (supply) node, each discrete departure time 
alternative (of length ~t) is represented by a node, as shown 
in Figure 3, with the earliest and latest possible departure 
times denoted respectively by nodes DA1 and DAn, and the 
intermediate nodes labeled sequentially. The total number of 
commuters originating from location A constitutes the total 
supply (in trans-shipment terminology) for node A, which is 
connected to each of the associated departure nodes by a 
unique outgoing arc. The flow on arc (A, DAk), k = 1, . . . , n, 
obtained in the solution corresponds to the number of users 
that depart from A in the kth time slice; the set of these flows 
thus represents the optimal departure pattern of users at this 
location. The departure time here is taken at the entry of the 
highway facility. Thus arc (A, DAk) corresponds to local travel 
from origin A to the facility. For simplicity, but without loss 
of generality, we assume that the time cost of this travel is a 
constant, T, associated with each arc (A, DAk), k = 1, . .. , n. 
This cost is not necessary from the perspective of model oper­
ation, however, because users at a given origin are uniquely 
assigned to an entry point. A more detailed formulation could 
let this assignment be determined in the optimal solution . 

Commuters may have to join a queue or be otherwise delayed 
at the entry point. The horizontal arc emanating from each 
departure node (see Figure 3) is designated to carry only those 
commuters actually entering the highway in that given inter­
val. The upper bound of flow through each arc, denoted as 
Cl , is used to control the maximum entry rate, reflecting 
either physical capacity restrictions or the effect of traffic 
control devices. The associated arc cost n represents the 
travel time to the next "state," a congested location in this 
case. Because of the preceding capacity constraint, com­
muters departing simultaneously (i .e ., in the same time slice) 
may not all be allowed onto the facility at the same time. 
Thus each departure node DAk is connected to the next depar­
ture alternative DAk+ 1 by arc (DAk, DAk+ 1), shown vertically 
in Figure 3. This arc will carry the excess number of com­
muters at DAk who could not be served in a given time slice. 
The resulting waiting time is then captured by the arc cost, 

Origin A ~ 
"-.:- - --

Tr ave I er s -------------------~Destin a ti on CBD) 

~----
OrlglnB ~ 

FIGURE 1 An idealized commuting system for analysis. 
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FIGURE 2 Notation for the network formulation. 
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FIGURE 3 Graphical representation of the departure activity subnetwork. 
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!::.t, equal in magnitude to the unit departure time slice. An 
upper bound on the flow on these waiting arcs can be specified 
to reflect physical storage capacity limitations or policy 
decisions. 

Other trip generation sources, such as origin B in Figure 
2, can also be represented in a similar manner. 

Formulation of Congested Locations 

It should first be noted that this representation is not intended 
to capture the details of the traffic flow phenomena taking 
place on the facility or the formation and dissipation of phys­
ical queues in the system. It is principally an approach to 
calculate realistic travel times under congested conditions for 
each link in the context of a pure network formulation of the 
system-optimal, time-varying assignment problem. There may 
not necessarily be a physical queue of stopped vehicles in the 
actual system, even if traffic is highly congested. Instead, users 
may be forced to slow down along some sections with partic­
ularly high concentrations. As noted in the previous section , 
such congested locations are modeled as queuing stations and 
are formulated as follows. 

Two sets of nodes and associated connecting arcs are pro­
posed to model congested locations. As illustrated in Figure 
4, the first set of nodes, denoted as Blk, k = 1, ... , n, is 
used to represent the arrival at the bottleneck, with nodes 
BI1 and BI" representing the earliest and latest arrival times, 
respectively . Each node in the set {Bik, k = 1, ... , n} is 
connected by an arc (Blk> BOk), shown horizontally in Figure 
4, to a unique corresponding node in the second set {BOk, 
k = 1, ... , n} designated to model the exit from the bot-

FIGURE 4 Graphical representation of the bottleneck area 
subnetwork. 
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tleneck. The upper bound on flow in each of these arcs is 
defined by the bottleneck's service rate S (i.e., the number 
of users allowed to go through in a given time slice !::.t) . The 
associated arc cost 12 is the time through the section in the 
absence of congestion. As in the formulation of the departure 
activity, vertical arcs (in Figure 4) are specified from each 
node Blk to node Blk+ 1 , k = 1, ... , n, to carry the queuing 
flow, with arc cost again equal to the unit waiting time !::.t. 
Note that no such arcs are shown in Figure 4 between con­
secutive BOk nodes because queuing should not occur imme­
diately upon exit from the bottleneck. 

Finally, all arcs incident to the Blk nodes, except for the 
queue-carrying vertical arcs, are intended to carry commuters 
arriving at the bottleneck . Because each of these arcs origi­
nates at a departure node, the specification of the associated 
arc cost and upper bound on flow must be consistent with 
that specified in the departure formulation. Likewise, the arcs 
leaving each of the BOk nodes carry the flow departing from 
the bottleneck. No upper bounds are shown for these arcs in 
Figure 4 because the flow has already been regulated by the 
service rate S of the bottleneck, although we may want to 
specify such upper bounds for more general systems. 

Formulation of the Arrival Process 

The formulation of the arrival process subnetwork depends 
on the explicit definition of the system optimum sought. So 
far, we have implied that the desired solution would minimize 
total system cost, calculated as the sum of all arc costs incurred 
by the assigned flows. These arc costs have in turn been spec­
ified as either uncongested travel times or delays due to 
congestion at bottlenecks. We need to address further the 
costs contributed to the objective function incurred in con­
junction with the arrival process, as well as the constraints 
that need to be satisfied by this process. Now considered here 
are two basic alternative formulations reflecting different 
assumptions about the users' preferences or cost function: a 
satisfying formulation and a utility maximization one. We also 
describe how variants can be modeled. 

Before describing these two formulations and the under­
lying assumptions, it is useful to consider, qualitatively, the 
nature of the departure patterns that can be expected in the 
solution. First, it must be recognized that it is generally not 
feasible for all users to arrive simultaneously (in a single time 
interval !::.t) at the desired destination. There is a minimum 
duration for the arrival period that is governed by the capacity 
of the bottlenecks. If users were allowed to arrive at any time 
before the official work start time, then one can almost always 
find a solution that minimizes the total travel time in the 
system and that involves absolutely no queuing (i.e., all the 
vertical arcs in the network formulation would have zero flows) . 
Unfortunately, such a solution would likely exhibit so much 
spread in the departure (and arrival) pattern that it would be 
meaningless. In other words, we would have a trivial problem 
if there were no constraints on either the range of possible 
departures or the range of possible arrivals and if travel time 
were the sole consideration in the objective function. 

The first meaningful formulation we consider here con­
strains all arrivals to take place within a specified time band. 
It is consistent with empirical evidence that workers like to 
allow some extra time prior to the official work start time (18, 
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27); as such they may be indifferent to arrivals if they are 
within a reasonable time band. Referring to a recent paper 
by Mahmassani and Chang (12), it can also be noted that this 
formulation would yield the "best" departure pattern among 
the multiple patterns that satisfy boundedly rational user equi­
librium conditions for a given value of the indifference band, 
assumed to be identical across users. 

The second formulation places a penalty on the time between 
actual arrival at the destination and the work start time, also 
referred to as schedule delay. Thus the user's utility function 
would include both the travel time and the schedule delay, 
the latter multiplied by a weight reflecting its valuation rel­
ative to travel time. This type of function would be consistent 
with the classical microeconomic view of this problem, as 
presented by Vickrey (9) and by Hemlrickson and Kocur (7) . 
The solution would involve a trade-off between travel time 
and schedule delay, which would lead to spread-out depar­
tures and arrivals and thus high schedule delays. We next 
describe the network representation of the two cases , starting 
with the satisfying formulation. 

In all cases, we define a set of arrival nodes D" r = 1, ... , n, 
that define the arrival time alternatives, generally correspond­
ing to the departure nodes DA1 through DA". The satisfying 
feature is included in the formulation by specifying the subset 
of consecutive nodes from Dk to D,, as the acceptable range 
of arrival times , as shown in Figure 5. All commuters are 
supposed to traverse at least one of those nodes to end their 
trips. Each of these nodes is connected to a supersink (or 
total demand) node DE, the common destination, by arcs 
(Dk> DE), with upper bound on flow denoted by C3 in Figure 
5. This value may be the same across these arcs, representing 
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the physical constraint for the arrival rate, or may vary across 
arcs to reflect the operation of traffic control devices. Each 
of the feasible arrival nodes is connected to the next one by 
a vertical arc with cost 6.t to convey the queuing flow. 

Unlike nodes Dk through D ,,, nodes D 1 through Dk-tare 
not connected to the supersink. Vertical arcs with very high 
costs (M) are specified between each pair (D;, D;+ 1), i = 
1, . . . , k - 1. This will prevent flows in the network from 
taking paths ending in an unsatisfactory arrival time (i .e., 
outside the band) unless there is no feasible solution for the 
specified arrival time band. Obviously, nonzero flow on any 
of the "big M" arcs in the final solution will be a sign of 
unfeasibility, which could be resolved by widening the accept­
able arrival band to include additional arrival nodes. 

Given the foregoing formulations of the three principal 
activities, the network for the entire system can be constructed 
through careful integration of the three subnetworks, as shown 
in Figure 6 for the idealized commuting system of Figure 1. 
We next describe how the formulation of the arrival process 
can be modified to represent the utility maximization case. 

Utility Maximization Formulation 

As noted previously, the total trip cost of commuters depends, 
under this rule, on the specification of the utility function. A 
commonly used specification in this context involves a trade­
off between trip time and schedule delay, of the form: 

TC;,, = (a . TR;,,) + (o . b . SDE;,,) 

+ (1 - o) · c · SDL;,, 

Os-Total travel demand 
In the system 

Ds•VA+VB 

C3..Parameter denotes the 
maximum arrival rate 

(1) 

FIGURE 5 Graphical representation of the satisfying formulation for the arrival 
process subnetwork. 
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FIGURE 6 Example network formulation for the idealized commuting system. 

where 

TC;,, and TR;,, the total travel cost and travel time, 
respectively, incurred by flow unit i 
departing at time t; 

SDE;,, and SDL;,, = the schedule delay for early and late 
arrival, respectively, relative to the 
desired arrival time; 

a, b, and c = parameters capturing the disutility of 
a unit of travel time, schedule delay 
for early and late arrival, respectively 
(it is convenient to set a = 1 and scale 
b and c accordingly); and 

8 a binary variable equal to 1 for early 
arrival and to 0 for late arrival. 

We assume hereafter that all users are identical in terms of 
the parameters of the preceding function. To capture this 
trade-off between schedule delay and travel time, the network 
formulation of the arrival process can be modified as shown 
in Figure 7. Let node AR,, denote the work starting time; the 
other arrival time nodes form two groups: AR 1 to AR,,_ 1, 

and LAR1 to LAR'", which correspond to early and late arrivals, 
respectively. Only node AR,, is connected to the total demand 
node DE to force all flows, except those arriving at the AR,, 
node via a horizontal travel arc, to traverse the needed num­
ber of queuing arcs to reach AR,, before they can terminate 
their trips. The summation of the costs incurred on these arcs 
yields the schedule delay cost. In this formulation, the spec-

ification of the arc cost consists of the time slice 6.t multiplied 
by an appropriate factor consistent with the underlying utility 
function (Equation 1); for instance, in Figure 7, the multipliers 
EC and LC are equal to b/a and cla, respectively. 

The solution of the minimum cost trans-shipment problem 
under the preceding specification of the arc costs will thus be 
optimal for the system in terms of minimizing the total dis­
utility of system users. Several variants are possible here, such 
as constraining all arrivals to occur within a particular time 
band. In this case, a large number M can be imposed on all 
vertical queuing arcs with at least one end outside the band 
and the schedule delay costs on those entirely within the band 
(still only node AR" would be connected to DE). Alterna­
tively, one can represent a utility function combining the 
behavioral features of both the satisfying and utility maxi­
mizing formulation. In particular, an indifference band of 
acceptable arrivals can be specified where all nodes in the 
indifference subset are connected to DE and no cost is asso­
ciated with the vertical arcs connecting nodes in that subset. 
Vertical arcs outside this band will, however, be assigned a 
cost equal to the schedule delay disutility (but not large M). 

The values of the relative weights of the various cost com­
ponents would of course have to be determined outside this 
particular methodology. One use of this formulation is that 
is allows the systematic investigation of the impact of these 
relative valuations on the character of the optimal solution 
and the associated total system costs. However, the assump­
tion of identical valuation across users may be too strong for 
practical applications. 
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EC.At 

EC . .t.I 

FIGURE 7 Network formulation of the arrival activity under the 
utility-maximizing decision rule. 

EXAMPLES OF MORE GENERAL SYSTEMS 

In this section we describe the representation , in the context 
of the preceding network modeling framework, of more gen­
eral situations encountered in commuting systems. Still deal­
ing with multiple origins, single destination systems, we first 
consider multiple bottlenecks (in series) along a single route, 
then multiple parallel routes. These types of systems have 
also been considered by Ben-Akiva et al. (10, 11) in their 
study of stochastic user equilibrium time-dependent flows. 

Case 1: Multiple Bottlenecks Along a Single Route 

Figure 8 depicts an example commuting system with two con­
gested sections, BA and BB, where commuters departing 
from origin A have to traverse both sections, whereas those 
from downstream origin B encounter only the second bottle­
neck, BB. The network formulation for this problem is shown 
in Figure 9. Two sets of nodes {DA;, i = 1, ... , n} and {DBi, 
j = 1, . .. , n}, as defined previously, represent the feasible 
departure time aiternatives of commuters from origins A and 

B, respectively. The first bottleneck BA is modeled by a set 
of node pairs, with each pair {(BAk and BAt), k = 1, ... , n} 
as described in the previous section. In the same manner , 
activities in the second bottleneck are represented by the set 
of node pairs, {(BBk, BBk), k = 1, ... , n} . The cost and 
upper bound associated with each arc are defined as shown 
in Figure 9, in a manner similar to the basic model of the 
previous section. Note that the set of arcs {(BAZ, BBk), 
k = 1, . .. , n} corresponds to travel between the end of the 
first bottleneck section and the beginning of the second; no 
upper bounds on flow on these arcs need to be specified as 
these flows are regulated by the upstream bottleneck and no 
additional generation takes place in that sector. For the same 
reason , no vertical arcs connect the BAZ nodes. Finally, the 
arrival process follows the satisfying formulation illustrated 
in Figure 5, where the set of nodes {AR,, t = 1, ... , n} 
corresponds to the array of possible arrival times and the 
subset of those connected to the total demand node represents 
the presumed acceptable arrival interval. It should be men­
tioned that the possible departure periods for the two origins 
A and B are assumed to have an identical length and thus an 
equal number of nodes, for clarity of presentation. This is not 
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Origin B 

FIGURE 8 Commuting system with two bottlenecks along the single 
route. 

FIGURE 9 Network formulation for commuting system of Figure 8. 

necessary, however, as long as they are properly connected 
to the rest of the network. 

With the formulation of Figure 9, the system-optimal depar­
ture distribution patterns can be solved using any existing 
minimum cost, linear network code that implements the net­
work simplex algorithm or its variants. See Kennington and 
Helgason (28) for a discussion of these algorithms. 

Case 2: Multiple Parallel Routes 

In the commuting system of Figure 10, there are three parallel 
routes, each containing two bottleneck sections, and com­
muters can choose their departure time as well as their route. 
To construct the network formulation of such a system, we 
can essentially follow the same procedure as in Case 1, with 
each route being formulated independently as one sub­
network. Then all subnetworks are tied together at both the 
common supply nodes and arrival nodes. 

Figure 11 illustrates the resulting network formulation for 
this system. Nodes DAk, DBk, and DCk, k = 1, ... , n denote 
the feasible departure period of commuters from location A 
to travel through Routes A, B, and C, respectively. Node 
pairs (Alk, Ali:) and (A2k, A2k), k = 1, ... , n, represent 
Bottlenecks 1 and 2, respectively, on Route A. Node pairs 
(A3k, A3Z) and (A4k> A4k), k = 1, ... , n represent Bot­
tlenecks 3 and 4, respectively, on Route B. Node pairs (ASk> 
ASZ) and (A6k, A6j;), k = 1, ... , n correspond to Bot­
tlenecks 5 and 6, respectively, on Route C. The arrival process 
is represented as before with a common set of nodes D 1 to 
D,, for the arrival period, with the subset Dk to D,, defining 
the acceptable arrival time band. 

Again, it should be noted that, for convenience of pres­
entation, the feasible departure periods for the three routes 
in Figure 11 are assumed to consist of the same number n of 
time intervals. It is possible to let the feasible departure period 
vary from route to route. However, attention should be given 
to the formulation of the arrival period if the length of depar-
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ture period is specified differently for different routes or if 
travel times in the absence of congestion on each route are 
not identical. Then the arrival time nodes D 1 and D" should 
correspond to the earliest and latest possible arrival times, 
respectively, for any of the possible departure alternatives, 
on any route and from any origin. 

The commuting activities from origin B can also be formulated 
in the same manner, but the complete graphical representation 
is not incorporated in Figure 11 for clarity. With the complete 

~ rr 
Orlgln_ A ______ +'--'';.;;;B;.;;;A;;;;3-"---~;:;;B=A::.4---•• e 

gin 
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\~' Route~ 
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FIGURE 10 Commuting system with multiple bottlenecks on 
parallel routes. 
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network thus formulated, the minimum cost flow pattern in the 
network will yield the system-optimal assignment to both routes 
and departures times. In this example, we have considered only 
nonoverlapping routes. However, a more general transport net­
work can also be modeled in this framework, although the clarity 
of the graphical presentation would suffer markedly. A numer­
ical example is presented in the next section along with some 
comments on implementation. 

NUMERICAL APPLICATION 

To illustrate some of the issues involved in the application of 
the methodological framework discussed in this paper and the 
type of results one can expect , we describe an application to 
the commuting system shown in Figure 12a. The system is 
similar to that in Figure 10 in that it consists of two origins 
(A and B) with access to two parallel highway facilities to the 
common CBD destination. Each route contains two "bottle­
neck" sections, the first of which is traversed only by trip­
makers from origin A . A constant access time of 5 min is 
assumed from each origin to the corresponding entry point 
on the highway facility . Figure 12b shows the characteristics 
(travel time, capacity per .lt) of each spatial link. Each node 

FIGURE 1i Network formuiacion for commuting system of Figure 10. 
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ROUTE1 

ROUTE2 

(a) 

~I 
c~ 

Shown near each arc are the 
(uncongested travel time in minutes, service rate in vehicles per 61) . 
A 6t of 3 minutes is assumed in this example. 

(b) 

FIGURE 12 Commuting context and data for numerical example. 

is assumed to' generate a total of 960 vehicle trips during the 
commuting period. 

The network formulation involves adding the time dimen­
sion to model waiting times due to congestion and formulating 
the departure and arrival processes. It should be apparent 
that developing and coding the time-space network can be a 
rather time-consuming task. As this network exhibits an obvious 
repetitive structure, however, this task can be very effectively 
supported by a network generating code. We have developed 
such a network generator for commuting systems involving 
multiple parallel routes with multiple origins. The program is 
interactive and requires simple input on the number of origins, 
number of routes, number of spatial nodes, operational char­
acteristics of each spatial arc (i.e., the highway sections and 
ramps), total trips from each origin, size of the time slice t:..t, 
as well as the range of possible departure times from each 
origin and acceptable arrival time band (for the satisfying 
formulation described earlier). This obviously greatly simpli­
fies the practical use of this formulation, as the network can 
now be generated in an interactive session that requires only 
a few minutes. The network is then ready for solution by any 
pure network optimization code. These codes are known for 

their efficient execution and can easily handle networks with 
tens of thousands of arcs, thereby alleviating concern about 
the size of the network needed to model even relatively small 
physical commuting networks . 

For the example under consideration, we have executed 
the algorithm for three different lengths (in minutes) of the 
acceptable arrival band: 15, 36, and unconstrained (i.e., all 
arrival time nodes in the range considered are connected to 
the total demand sink node). The latter case is included to 
provide a benchmark for comparing the effect of tightening 
or relaxing the size of the acceptable arrival (indifference) 
band on the departure patterns. It was assumed that 8:00 was 
the common work start time, thus the indifference band would 
correspond to 7:45-8:00 A.M., 7:24-8:00 A.M., and anytime 
before 8:00 A.M., respectively. The case with 15 min is not 
feasible , because that would imply a combined arrival rate 
much in excess of the capacity of the bottlenecks on the two 
routes. Actually, 36 min is the minimum feasible arrival period, 
yielding a total system cost of 52,800 min and a uniform arrival 
pattern of 160 arrivals per t:..t (equal to 3 min in this example; 
see Figure 12). Because this solution involves no queuing, it 
cannot be improved on, as evidenced by the solution for the 
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FIGURE 13 Cumulative number of departures from each origin by route. 

unconstrained case, which yields more spread out departure 
and arrival patterns but at the same system cost. 

The solution of the network optimization problem also 
includes the departure pattern from each node (i.e., the set 
of flows on the arcs connecting each origin to the possible 
departure time alternatives on each route), the arrival pattern 
at the CBD, the flows on the vertical queuing links, as well 
as all the link flows, in addition to the value of the objective 
function at optimality. The departure patterns from both ori­
gin A and origin B for each route are illustrated for the 36-
min arrival period in Figure 13. 

CONCLUDING COMMENTS 

In this paper, a network formulation framework was proposed 
to solve for the system-optimal time-varying flows in urban 
commuting networks, yielding optimal departure patterns from 
each origin on each route as well as the dynamic assignment 
of traffic to the network's components. The solution of the 
formulated problem can take advantage of state-of-the-art, 
large-scale network optimization algorithms. Of course, the 
representation of the traffic phenomena that may be occurring 
on the facilities is admittedly crude and simplified; however, 
this has been a problem in much of the network traffic assign­
ment work, for the static case and particularly for the time­
varying formulations. We feel that some compromises in 
representation, when applied judiciously to preserve the char­
acter of the system insofar as the phenomena of interest are 
concerned, are worth the resulting relative ease of the solution 
procedure and thus the ability to explore and gain insight into 
the various aspects of this problem. 

It should further be noted that the work presented here is 
not motivated by a desire to force people to leave at specified 
times and on preset routes, or by a naive presumption that 
they would comply if told to do so. Rather, it is intended to 
generate a benchmark, an "ultimate" solution against which 
to compare the effectiveness of various strategies, such as, 
for example, flexible work arrival times. Furthermore, it can 
be a useful tool to examine the potential of information-related 

strategies, whereby users could be guided toward the optimal 
solution. Of course, economists hold the view that one could 
approach the desired state through pricing; this strategy is not 
a particularly strong motivator for this work. Another appro­
priate application of this methodology is the development of 
contingency evacuation plans for use during some emergency, 
such as a hurricane or an incident at a nuclear power planl, 
or for military purposes. 

Several improvements and extensions of the methodolog­
ical framework can be considered. In terms of system rep­
resentation, extension to the many origins to many destina­
tions case would be most desirable. However, the penalty is 
rather severe as the problem would then exhibit the features 
of a capacitated multicommodity problem, which requires 
additional assumptions for proper resolution, in addition to 
the obvious increase in the level of complexity required in 
the representation. Improvements in terms of traffic modeling 
are certainly possible, but one would then have to sacrifice 
the easy-to-solve pure network formulation. 
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An Application of Optimal Control 
Theory to Dynamic User Equilibrium 
Traffic Assignment 

BYUNG-WooK Wrn 

Optimal control theory is applied to the problem of dynamic traffic 
assignment, corresponding to user optimization, in a congested 
network with one origin-destination pair connected by N parallel 
arcs. Two continuous time formulations are considered, one with 
fixed demand and the other with elastic demand. Optimality con­
ditions are derived by Pontryagin's maximum principle and inter­
preted as a dynamic generalization of Wardrop's first principle. 
The existence of singular controls is examined, and the optimality 
of singular controls is assured by the generalized convexity con­
ditions. Under the steady-state assumptions, a dynamic model with 
elastic demand is shown to be a proper extension of Beckmann's 
equivalent optimization problem with elastic demand. Finally, the 
derivation of the dynamic user optimization objective functional 
is demonstrated, which is analogous to the derivation of the objec­
tive function of Beckmann's mathematical programming formu­
lation for user equilibrium. 

The objective of this paper is to explore the application of 
optimal control theory to the problem of dynamic traffic 
assignment corresponding to user optimization. Two contin­
uous time optimal control problems will be formulated, one 
with fixed demand and the other with elastic demand. The 
present paper is concerned with dynamic extensions of the 
steady-state network equilibrium model, particularly Beck­
mann's equivalent optimization problem, which is a mathe­
matical programming formulation (1). This formulation is based 
on the steady-state assumptions: 

(1). The average arc travel cost is some known function of 
the total traffic flow traversed during the period of analysis; 

(2). Travel demands associated with each origin-destination 
(0-D) pair are constant over time; and 

(3). Flow entering each arc is always equal to flow leaving 
that arc during the period of analysis. 

Hence, the relaxation of the steady-state assumptions lead to 
the problem of dynamic traffic assignment in which the net­
work characteristics are explicit functions of time. 

A pioneering research in dynamic traffic assignment was 
accomplished by Merchant and Nemhauser (2-4). They for­
mulated the model as a discrete time, nonlinear, and non­
convex mathematical program corresponding to system 
optimization in a multiple-origin single-destination network. 
They showed that the Kuhn-Tucker optimality conditions can 
be interpreted as a generalization of Wardrop's second prin-

Department of City and Regional Planning, University of Pennsyl­
vani3, Philadelphia 19104. 

ciple, which requires equalization of certain marginal travel 
costs for all the paths that are being used. The behavior of 
their dynamic model was also examined under the steady­
state assumptions, and as a result the model was proven to 
be a proper generalization of the conventional static system 
optimal traffic assignment model. 

The algorithmic question of implementing the Merchant­
Nemhauser (M-N) model was resolved by Ho (5). He showed 
that, for a piecewise linear version of the M-N model, a global 
optimum is contained in the set of optimal solutions of a 
certain linear program. He also presented a sufficient con­
dition for optimality, which implies that a global optimum 
can be obtained by successively optimizing at most N + 1 
objective functions for the linear program, where N is the 
number of time periods in the planning horizon. 

Recently Carey (6) resolved a hitherto open question as to 
whether the M-N model satisfies a constraint qualification. It 
was shown that the M-N model does in fact satisfy a constraint 
qualification, which establishes the validity of the optimality 
analysis presented by Merchant and Nemhauser (4). More 
recently, Carey (7) reformulated the M-N model as a convex 
nonlinear mathematical program. As a consequence, the new 
formulation could have analytical, computational, and inter­
pretational advantages in comparison with the original M-N 
model. In particular, the Kuhn-Tucker conditions are both 
necessary and sufficient to characterize an optimal solution; 
in the M-N model, however, they are not sufficient because 
the constraint set is not convex. 

In contrast with the atoremenuoned mathematical pro­
gramming approaches, Luque and Friesz (8) provided a new 
insight into the problem of dynamic traffic assignment through 
the application of optimal control theory. They formulated 
the M-N model as a continuous time-optimal control problem 
corresponding to system optimization. The optimality conditions 
were derived by applying Pontryagin's maximum principle, and 
economic interpretation was conducted and compared with those 
obtained from Merchant and Nemhauser (4). 

It is worth noting that the Merchant-Nemhauser model and 
its extended models consider a system-optimized flow pattern 
that satisfies a dynamic generalization of Wardrop's second 
principle. In general, a traffic flow pattern obeying Wardrop's 
second principle minimizes the total transportation cost of the 
network as a whole, and it can be regarded as the most desir­
able flow pattern for society. In the present paper, however, 
we are interested in a user-optimized flow pattern obeying a 
dynamic generalization of Wardrop's first principle, which 
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requires equalization of certain unit travel costs for all the 
paths that are being used . Suppose that travel demands are 
time-dependent but fixed in a multiple 0-D network. The 
problem of dynamic traffic assignment corresponding to user 
optimization can be viewed as a noncooperative game between 
players associated with various 0-D pairs and departure times. 
Wardrop's first principle can then be generalized for dynamic 
traffic assignment such that: 

Individual drivers attempt to minimize their own travel costs 
by changing routes. At each instant in time , no one can reduce 
his or her travel costs by unilaterally changing routes; there­
fore , the unit travel costs on paths used by drivers who have 
the same departure time and 0-D pair are identical and equal 
to the minimum unit path costs for that 0-D pair. 

Our analysis is restricted to the network with one 0-D pair 
that is connected by N parallel arcs, as shown in. Figure 1. It 
is also assumed that there is one transport mode-for exam­
ple , private automobile. Note that A is the set of directed 
arcs. We will use index a to denote a directed arc. We will 
consider a fixed planning horizon of length T; that is, all 
activities occur at some time t E [O, T]. In the remainder of 
this paper, traffic flow is defined as the average number of 
vehicles passing a fixed point of an arc per unit of time, and 
traffic volume is defined as the total number of vehicles accu­
mulated on arc a at some time t E [O , T] . 

Our dynamic model is related to models proposed by Hur­
dle (9), Hendrickson and Kocur (10), Mahmassani and Her­
man (11), Mahmassani and Chang (12), de Palma et al. (13), 
Ben-Akiva et al. (14,15) , Smith (16) , Daganzo (17), and New­
ell (18). But our model differs in important aspects, which 
include its formulation as a continuous time optimal control 
problem. We do not attempt to compare our model with 
models proposed by the authors just cited . One may refer to 
Friesz (19) and Alfa (20) for literature reviews on the dynamic 
network equilibrium models proposed to date. 

ASSUMPTIONS 

Exit Function 

The flow leaving arc a E A is a function of the traffic volume 
accumulated on that arc at time t E (0 , T]. The exit functions 
g.(x.(t)] are concave, differentiable, nondecreasing, and non­
negative for all x.(t) ;::: 0, with the additional restriction that 
g.(O) = 0 (Figure 2). 

Origin 

N 
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Demand Function 

Denote by 0(t,D(t)] the inverse of the travel demand function 
where D(t) is the travel demand between origin and desti­
nation at time t E (O,T]. The function 0[t,D(t)] is strictly 
monotone, decreasing, differentiable, and nonnegative for all 
D(t) ;::: 0 and has a different function at each time t E (0, T] 
for time-dependent elasticity of demand (Figure 3). 

Cost Function 

The travel cost on arc a E A is a function of the traffic volume 
accumulated on that arc at time t E [O, T]. The cost functions 
c.(x.(t)] are convex, differentiable , nondecreasing, and non­
negative for all x.(t) ;::: 0. Note that the travel cost on arc 
a E A is simultaneously a function of the exit flow of that arc 
at time t E (0, T]; that is, C.(x.(t)) == C.{g.[x.(t)]} (Figure 4). 

0 

FIGURE 2 Exit function. 

0[t,D(t)) 

0 D(t) 

FIGURE 3 Demand function. 

Destination 

FIGURE 1 Simple network with N parallel arcs. 
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0 

0 

FIGURE 4 Cost function. 

DYNAMICS AND CONSTRAINTS 

The dynamic evolution of the state of arc a E A is described 
by the first-order nonlinear differential equations: 

. dx,,(i) 
xa(t) = --;ft = ua(t) - g.[x.(t)] 

\;/ a E A t E [O, 71 (1) 

where 

x.(t) = the state variable, denoting the traffic volume 
on arc a at time t; 

u.(t) = the control variable, denoting the flow entering 
arc a at time t; 

g.[x.(t)] = the flow leaving arc a at time t; and 
x.(t) = the time derivative of the state variable. 

Because the state variable is an explicit function of time, x.(t) 
can be interpreted as the instantaneous rate of change in the 
traffic volume on arc a with respect to time, which is the 
difference between inflow and outflow on arc a. Equation 1 
is called the state equation in this paper. We can see that the 
state equation is linear in the control variable and nonlinear 
in the state variable because of nonlinearity of the exit func­
tion g.[x.(t)] with respect to the state variable. 

For the origin node, the flow conservation constraints can 
be stated as 

L u.(t) = D(t) \;/ t E [O, 71 (2) 
a EA 
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Equation 2 requires that the number of trips generating at 
the origin node at time t must be equal to the summation of 
the control variables over all arcs at time t. Note that D(t) 
would be exogenously determined in the dynamic model with 
fixed demand and endogenously determined in that with elas­
tic demand; see following sections of this paper. 

In addition, we assume that the traffic volume on arc a is 
a known positive constant at time t = 0: 

x.(O) = x~ Va EA (3) 

We also ensure that both the state variable and control var­
iables are nonnegative for all arcs and t E [O, T]: 

x.(t) ::=::: 0 

u.(t) ~ 0 

V a E A t E [0, TJ 

V a E A t E [0, 71 

(4) 

(5) 

Because the assumption that g.(O) = 0 ensures that the state 
variables are always nonnegative, we do not subsequently 
consider constraints (Equation 4) in an explicit manner. For 
simplicity, we do not impose the upper bound on the control 
variables as a physical constraint, indicating the maximum 
inflow admitted to arc a. Define x = ( .. ., x., . .. ) and u = 
( .. ., u., ... ). To save notational efforts, the following set 
is used as the set of feasible solutions. 

D = {(x,u) : Equations 1, 2, 3, and 5 are satisfied} 

DYNAMIC USER EQUILIBRIUM TRAFFIC 
ASSIGNMENT WITH FIXED DEMAND 

Model Formulation 

(6) 

Suppose the number of trips generating from the origin at 
each time t E [O, 71 is fixed and known. We postulate that 
the following continuous time optimal control problem has a 
solution that is a user-optimized flow pattern satisfying a 
dynamic generalization of Wardrop's first principle: 

Minimize 1
1 

= L lTlx.ii>C.(w)ga'(w) dw dt 
a EA 0 0 

subject to (x,u) E D (7) 

The performance index 11 is the summation of an integrated 
integral over all arcs in the network. The derivation of 11 has 
the same analogy to that of the objective function of Beck­
mann's equivalent optimization problem with fixed demand. 
The detailed derivation of 1, is shown in the appendix. Because 
the performance index 11 does not have any intuitive economic 
interpretation, it should be viewed as a mathematical con­
struction to solve the problem of dynamic user equilibrium 
traffic assignment. When 11 achieves its minimum value, the 
control problem (Equation 7) provides us with a user­
optimized traffic flow pattern that is described by the optimal 
trajectories through time of both the state and the control 
variables. Note that the control problem (Equation 7) is for­
mulated in the Lagrange form because we do not impose any 
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state constraint at the terminal time T. We shall suppress the 
time notation (t) when no confusion arises. 

Optimality Conditions 

The necessary conditions for an optimal solution of the control 
problem (Equation 7) can be derived by Pontryagin's maxi­
mum principle [Pontryagin et al., (21)]. As a first step in 
analyzing the necessary conditions, we construct the Hamil­
tonian: 

H = L {xaCa(w)ga'(w)dw + L 'Ya·[ua - ga(xa)] 
aEAJo aEA 

+ µ-[D - L ual + L f3a"[ -ual (8) 
aEA a EA 

where 'Ya(t) is the costate variable associated with the ath state 
Equation 1; µ(t) is the Lagrange multiplier associated with 
the flow conservation constraints at the origin; and f3a(t) is 
also the Lagrange multiplier associated with nonnegativity of 
the ath control variable. 

We can obtain the first-order necessary conditions, also 
known as the Euler-Lagrange equations in the calculus of 
variations. The differential equations governing the evolution 
of the costate variables 'Ya are given from the Hamiltonian 
(Equation 8), which require [see Bryson and Ho, (22)]: 

aH 

= [C.(xa) 'Ya] g a' (xa) \>'aEA tE[O,T] (9) 

Equation 9 will be called the costate equation. Boundary 
conditions on the costate variables are obtained by the trans­
versality conditions: 

'Ya(T) = Q \>'a EA (10) 

According to Pontryagin's maximum principle, the Ham­
iltonian must be minimized at each time t E [O, T]. The Kuhn­
Tucker optimality conditions for u! to be an optimal solution 
that minimizes the Hamiltonian are readily obtained as: 

aH 
Q = 'Ya - µ - f3a \>'a EA (11) 

f3a 2'.: 0 and f3a . ua = 0 'v' a EA (12) 

In the terminology of optimal control theory, aH/aua is often 
called impulse response function because the gradient of the 
Hamiltonian with respect to the control variable represents 
the variation in the performance index 11 as a consequence 
of a unit impulse in the corresponding control variable at time 
t, while holding x~ constant and satisfying the state equation 
(Equation 1). In particular, Equation 12 contains the com­
plementary slackness conditions to take into account non­
negativity of the control variables. 

The preceding necessary conditions for optimality may be 
collected in the following compact form: 

-'Ya = [ C.(xa) - 'Ya] g~(xa) \>'a EA tE[O, T] (13) 

'Ya(T) = 0 \>'a EA 

\>'a EA tE [O, T] 

\>'aEA tE[O,T] 
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(14) 

(15) 

(16) 

The optimality conditions (Equations 13-16) can be under­
stood such that if at some time t E [O, T] 'Ya > µ for all a E 
A, the flow entering arc a is equal to zero, and if 'Ya = µ, ua 
is either zero or singular in nature. Singular ·control is dis­
cussed further in the next section. It is implied that the quan­
tities determining the control variable ua are the value of 
['Y~ - µ],which is the difference between the costate variable 
and the Lagrange multiplier. Hence, we may conjecture that 
the optimality conditions are analogous to the principle of the 
flow of electricity, in which electric current moves from a 
node with higher voltage to a node with lower voltage. 

The Arrow-Kurz sufficiency theorem (23, 24) ensures that 
the necessary conditions are also sufficient when the Hamil­
tonian is convex in the state variables. We can see that the 
Hamiltonian (Equation 8) is convex in the state variables 
under the assumptions made previously. Hence, the opti­
mality conditions (Equations 13-16) are necessary and also 
sufficient. 

Singular Controls 

Because the Hamiltonian (Equation 8) is linear in the control 
variable, the gradient of the Hamiltonian with respect to ua 
does not depend on the control variable. Therefore, the opti­
mality conditions for u: to be an optimal control that min­
imizes the Hamiltonian provide no useful information to 
determine the optimal control in terms of the state and costate 
variables. In this case we must take successive time derivatives 

aH 
of - = 'Y - µ - f3a and make appropriate substitutions 

aua a 

by using the state Equation 1 and the costate Equation 9 until 
we find an explicit expression for the control variables. The 
optimal control determined by this procedure is called a sin­
gular control. A finite time interval for which a singular con­
trol exist is called a singular interval. An extremal arc on 

which the determinant of the matrix ji_ [aH] vanishes iden-
iJ 110 dll0 

tically is called a singular arc. 
To determine the singular control, we must use the fact 

that successive time derivatives of the gradient of the Ham­
iltonian would be also constant and equal to zero on a singular 
arc. The first and second time derivatives of the gradient 
of the Hamiltonian with respect to ua give the following 
relationship: 

'Ya= fl and :Ya= fl (17) 

We substitute the costate equation (Equation 9) into the first 
relationship in Equation 17: 

(Ca - 'Ya)g~ + Jl = Q (18) 

The second time derivatives of Equation 18 are calculated: 

(C:,Xa - 'Ya)g~ + (Ca - 'Ya)g~ Xa + J1 = Q (19) 



70 

By using the state equation (1), we may manipulate Equation 
19 to yield the following expression for the smgular control: 

µg,: - j.i. + (C~g~ + (C. - µ)g:Jgrt 
I I + c ) II ,.ga " - µ g. 

(20) 

One may ask whether the singular control given by Equa­
tion 20 is optimal or not. To answer this question, we shall 
derive the necessary conditions for optimality of singular con­
trols. The generalized convexity condition can be obtained 
elsewhere (22): 

a [ d
2 [aHJJ 

aua dt 2 aua 
-(Ca - 'Ya)g~ - Cg~:::; 0 

(21) 

According to the costate equations (Equation 9) and assump­
tions made earlier, the generalized convexity conditions are 
satisfied. Hence, we can conclude that the singular control 
(Equation 20) is optimal. 

Dynamic User Equilibrium Principle 

The important question now arises as to whether or not a 
traffic flow pattern, described by time trajectories of the state 
and control variables as an optimal solution of Equation 7, 
satisfies a dynamic generalization of Wardrop's first principle. 
To answer this question, we define the following function by 
manipulating the costate equation (Equation 9): 

<l>a(t) = C.(xa) + 'Y)g~(xa) \faEA tE[O,T] (22) 

It is well known that when the performance index 11 achieves 
its minimum value l~, we have the following properties (22): 

ar 
'Ya(t) =_I_ 

c1x.,(t) 

. d ( iJ}I ) 
'Y.(t) = dt 1Jx,,(1) \f a E A t E [O, T] (23) 

We see that 'Y.(t) is the time rate of change in the value of 
the performance index 11 as a consequence of a change in the 
corresponding state variable x0 (t) along the optimal state tra­
jectory at time t E [O, T]. Therefore, we may interpret <l>a(t) 
as the sum of static and dynamic terms: C.(x.) is the unit 
travel cost on arc a that is equilibrated in the static user 
optimization problem; and 'Y.I g~ is· regarded as the contri­
bution to arc unit travel cost due to the dynamic nature of 
our control problem. In the present paper, we call <l>.(t) the 
instantaneous travel cost on arc a EA at time t E [O, T]. 

We are now ready to state and prove the following theorem: 

Theorem 1: If at some time t E [O, T], u. > 0 for all a EA, 
then <l>0 (t) = inf {<l>"(t) : \fa EA}. 
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Proof. From the costate equation (9), we see that 

\f a E A t E [O, T] (24) 

However, from Equation 15, we know that 

'Ya 2" µ \f a E A t E [O, T] (25) 

It follows at once from Equations 24 and 25 that 

<l>.(t) 2" µ \f a E A, t E [0, T] (26) 

\l./e also know that if ua > 0 for all a c:: A, then Equation 25 
holds as an equality because of the complementary slackness 
conditions of Equations 15 and 16. Hence, the theorem is 
immediately proved. 

Theorem 1 tell us that user equilibrium conditions hold at 
each instant in our dynamic model. Hence, we regard Theo­
rem 1 as a dynamic generalization of Wardrop's first principle, 
which is termed the Dynamic User Equilibrium Principle in 
the present paper. But it is restricted to a network with one 
0-D pair connected by N parallel arcs. This principle can also 
be restated at each instant t E [O, T]: 

u.(t) > 0 

u0 (t) = 0 

fora= 1,2,. .. . ,k 

for a = k + 1, ... ., N 

DYNAMIC USER EQUILIBRIUM TRAFFIC 
ASSIGNMENT WITH ELASTIC DEMAND 

Model Formulation 

(27) 

(28) 

(29) 

Suppose that travel demands change in response to travel costs 
between the elements of an origin-destination pair. We pos­
tulate that the following continuous, time-optimal control 
problem has a solution that is a user-optimized flow pattern 
obeying a dynamic generalization of Wardrop's first principle: 

Minimize 12 = L {T rx·(•) c.(w)g~(w) dw dt 
a E A Jo Jo 

{T (D(t) 

- Jo Jo 0(t, y) dy dt 

subject to 

(x, u) E !1 

D(t) = L u.(t) 
a EA 

(30) 

where D(t) is the number of trips generating at the origin at 
time t E [O, T] and 0[t, D(t)] is the inverse of the travel demand 
function. Note that D(t) is determined endogenously in the 
control problem (Equation 30). The performance index 12 is 
decomposed into two terms: the performance index 11 and an 
integrated integral of the inverse demand function. 
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Optimality Conditions 

To analyze the necessary conditions, we construct the Ham­
iltonian: 

ix, iD 
H = L Ca(w)g;(w) dw - 6(t, y) dy 

aEA 0 0 

+ L 'Ya · [u. - ga(x.)] + L ~a · [ -u.] (31) 
a EA a E A 

It is important to note that the second term of H is strictly 
concave in the control variable ua because the integral of a 
monotone decreasing function is strictly concave. The nega­
tive of a strictly concave function is, however, a strictly convex 
function. 

The costate equations and transversality conditions are 
identical to Equations 9 and 10, respectively. The Kuhn-Tucker 
optimality conditions for the minimization of the Hamiltonian 
(Equation 31) with respect to the control variables are obtained: 

aH 
- = 0 = 'Ya - 6[t, L Ua] - ~a 
aua aEA 

'v'a EA (32) 

~. 2: 0 and ~. · Ua = 0 'v'a EA (33) 

We may collect the necessary conditions for optimality of 
the problem of dynamic user equilibrium traffic assignment 
with elastic demand in the following compact form: 

-'Ya= [C.(xa) - 'Ya]g;(xa) 

-y0 (T) = 0 

'Ya - 62:0 

Ua ·('Ya - 6) = 0 

'v'aEA tE[O,T] 

'v'aEA 

'v'aEA tE[O, T] 

'v'aEA tE[O,T] 

(34) 

(35) 

(36) 

(37) 

It can be understood from the optimality conditions (Equa­
tions 34-37) that if at some time t E [O, T] 'Ya > 6 for all a 
E A, the flow entering arc a is equal to zero; and if 'Ya = 6, 
then ua is explicitly determined by the state equation (Equa­
tion 1) and the costate equation (9) as a solution of a two­
point boundary-value problem. It is worth noting that the 
control problem (Equation 30) does not have singular 
controls. 

The Arrow-Kurz sufficiency theorem (23, 24) ensures that 
the optimality conditions (Equations 34-37) are necessary 
and also sufficient, because the Hamiltonian (Equation 31) is 
convex in the state variables under the assumptions made 
previously. In addition, Theorem 1 holds for the dynamic 
model (Equation 30) except for the fact that µ(t) is replaced 
by 6[t, D(t)] in Equations 25 and 26. 

Equivalency Under the Steady-State Assumptions 

We wish to assure that the control problem (Equation 30) is 
a proper dynamic extension of Beckmann's equivalent optimi­
zation problem with elastic demand. To do this, we examine 
the behavior of our dynamic model under the steady-state 
assumptions, such that the time rate of a change in the traffic 
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volume on each arc would be zero during [O, T] and travel 
demands would be constant over time. 

Through a change of the variables of integration, we may 
rewrite the first term in the Hamiltonian (Equation 31) and 
have the following relation: 

i
x, ig,(x,) 

L Ca(w)g;(w) dw = L Ca(s) ds 
aEAO aEAO 

(38) 

Let fa denote the flow on arc a because u" is always equal to 
g0 (xa) under the steady-state a umptions. In addition , the 
inverse of the demand function is denoted by 0(D). We are 
now ready to formulate our dynamic model (Equation 30) as 
a nonlinear convex mathematical program under the steady­
state assumptions as follows: 

Minimize Z(f, D) 

subject to 

D = L fa 
a EA 

'v'a EA 

if, iD L C.(s) ds - 6(y) dy 
aEA 0 0 

(39) 

(40) 

(41) 

(42) 

The Kuhn-Tucker optimality conditions for the problem 
(Equations 39 through 42) can be readily obtained as 

fa [Ca(f.) - A] = 0 

C.Cfa) - A 2: 0 

D [A - 6(D)] = 0 

A - 6(D) 2: 0 

!a 2: 0 

'v'a EA 

'v'a EA 

'v'a EA 

(43) 

(44) 

(45) 

(46) 

(47) 

(48) 

where A is the Lagrange multiplier interpreted as the minimum 
travel cost between members of the 0-D pair. Because the 
optimality conditions (Equations 43-48) are identical to user 
equilibrium conditions, we can conclude that our dynamic 
model is a proper generalization of Beckmann's equivalent 
optimization problem with elastic demand. Obviously, the 
dynamic model (Equation 7) is also a proper extension of the 
static user equilibrium traffic assignment model with fixed 
demand. 

CONCLUSION 

Our analysis has been restricted to a very simple network. 
Obviously, its further extension would be to have a more 
complex network with multiple origins and multiple desti­
nations (25-27). We have not discussed any computational 
issues on implementing our dynamic model; such issues are 
important in assessing the applicability to a realistic network. 
The existing solution algorithms for dynamic system-optimal 
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traffic assignment could probably be modified to solve our 
dynamic model after the discretization of continuous time­
optimal control problems (3, 5). We have also assumed that 
the exit function is nondecreasing; however, it is not true 
according to traffic flow theory. In fact, an exit function is 
both increasing and decreasing, and an exit flow is maximized 
at an optimum density (traffic volume per unit length). Finally, 
the concept of dynamic user equilibrium milrle in this paper 
must be clearly redefined and compared with one that already 
exists in the transportation literature. An important question 
would be whether or not our dynamic model with elastic 
demand is equivalent to a deterministic user equilibrium model 
of joint route and departure time. 

APPENDIX: THE DERIVATION OF THE 
PERFORMANCE INDEX ] 1 

Luque and Friesz (8) considered the optimal control problem 
for dynamic system-optimal traffic assignment in a multiple­
origin, single-destination network. We need to transform their 
original formulation into the control problem for a single 
origin-destination network: 

Minimize J3 = .~ r S.[x.(t)] dt (A-1) 

subject to 

(x, u) E il 

where s.[x.(t)] is the total travel cost on arc a at time t. The 
costate equations are obtained: 

. oH 
- -y = -" ax. 

= s;(x.) - -y.g~(x.) \:/ a E A t E [0, T] 

Then we define the following function : 

<P.(t) 
s; (x.) + 'Y. 

g;(x. ) 
\:/ a E A t E [O , T] 

(A-2) 

(A-3) 

Luque and Friesz (8) state that the numerator of Equation 
A-3 has the units of incremental travel cost per unit increment 
of traffic volume on arc a, whereas g;(x.) has the units of 
incremental flow per increment of traffic volume. Equation 
A-3 expresses incremental travel cost per unit increment of 
flow; therefore <J>.(t) can be interpreted as the instantaneous 
marginal travel cost on arc a at time t. The theorem proved 
in Luque and Friesz (8) enables us to state a dynamic gen­
eralization of Wardrop's second principle for all t E [O, TJ: 

u.(t) > 0 

u.(t) = 0 

for a = 1, 2, .... , k 

for a = k + 1, . . . . , N 

(A-4) 

(A-5) 

(A-6) 
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We can see that the set of arcs is grouped into two subsets: 
one for arcs with positive inflow and equal instantaneous mar­
ginal travel cost, and the other for arcs with zero inflow and 
travel costs greater than or equal to minimum instantaneous 
marginal travel cost. 

We now hypothesize that the optimal control problem of 
Equation A-1 with a fictitious performance index f 3 deter­
mines a dynamic user-optimized traffic flow pattern . The 
remaining question is how to identify a fictitious performance 
index i 3 • To answer this question, we define S.[x. (t)] as a 
fictitious travel cost on arc a when it contains the traffic vol­
ume x.(t) at time t E [O, T]. Provided that the preceding 
hypothesis is accepted , the following optimal control problem 
must give a traffic flow pattern obeying the Dynamic User 
Equilibrium Principle : 

Minimize j 3 = L (T s.[x.(t)] dt 
aEA Jo (A-7) 

subject to 

(x, u) E il 

Then we can readily obtain the fictitious instantaneous mar­
ginal travel cost on arc a at time t as 

\:/ a E A t E (0, T] (A-8) 

For the hypothesis to be true, the following condition must 
be satisfied: 

<1>.(1) = <i>.(t) \:/a EA, t E [0 , T] (A-9) 

Using Equation 22, we have the following relation: 

\:/ a E A t E [O, T] (A-10) 

Then we manipulate Equation A-10 as follows : 

S;(x.) = C.(x.)·g;(x.) \:/ a E A t E [0 , T] (A-11) 

h S'( ) _ dS,,(x,,) 
w ere ax. - dx 

a 

Equation A-11 can be rewritten as 

dS;(x.) = C0 (x.)·g;(x. )·dx0 \:/a EA, t E [O, T] (A-12) 

Turning A-12 into a definite integral, we get the explicit form 
of a fictitious travel cost: 

r x .(t) 

sa(x.(t)] = Jo c.(w)g;(w) dw 

\:/ a E A t E [O, T] (A-13) 
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Consequently, we can get the explicit expression of the per­
formance index 11 by substituting Equation A-13 to Equation 
A-7: 

lT l'!(r) 2: c.(w)g~(w) dw dt 
a E A 0 0 

(A-14) 

GLOSSARY 

a: 
A: 
x0 (t): 

x.(t): 
u0 (t): 

-y .( t): 

'Y(t): 
µ(t): 

[3.(t): 

H: 
C.[x.(t)]: 

g.[x.(t)]: 

C~[xa(t)]: 

g~[x.(t)]: 

(0, T]: 

D(t): 

0[t, D(t)] : 
cf> .(t): 

<l>a(t): 

S~[xa(t)]: 

an arc; 
the set of arcs in the network; 
the state variable, indicating the traffic volume 
accumulated on arc a at time t; 
the time derivative of the state variable; 
the control variable, indicating the traffic flow 
entering arc a at time t; 
the costate variable to take account of the state 
equation in the minimization of the Hamil­
tonian; 
the time derivative of the costate variable; 
the Lagrange multiplier to take account of the 
flow conservation constraint at the origin node; 
the Lagrange multiplier to take account of the 
nonnegativity of the control variables; 
the performance index for dynamic user equi­
librium traffic assignment with fixed demand; 
the performance index for dynamic user equi­
librium traffic assignment with elastic demand; 
the Hamiltonian; 
travel cost on arc a when it contains the traffic 
volume x. at time t; 
the flow leaving arc a when it contains the 
traffic volume x. at time t; 
the derivative of the travel cost function with 
respect to the state variable; 
the derivative of the exit function with respect 
to the state variable; 
the period of analysis, where T is the fixed 
terminal time; 
the number of trips generating at the origin 
node at time t; 
the inverse of the travel demand function; 
the instantaneous travel cost on arc a at time 
t; 
the instantaneous marginal travel cost on arc 
a at time t; 
the total travel cost on arc a when it contains 
x.; and 
the minimum travel cost between members of 
an origin-destination pair encountered in a static 
user equilibrium problem. 
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