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Method for Determining Optimal 
Blading Frequency of Unpaved Roads 

ROEMER M. ALFELOR AND SuE McNEIL 

Management systems for unpaved roads are often viewed as 
unwarranted because of the low levels of traffic normally found 
on these roads. However, unpaved roads in many developed and 
developing countries represent the larger portion of mileage in the 
network. Even at the low cost of maintenance per mile of unpaved 
roads, the total cost resulting from multiplying this value by the 
overall road mileage corresponds to a large financial outlay. There­
fore, the efficient management of these roads is justified. Recog­
nizing the need to optimize the blading and regraveling frequencies 
of unpaved roads, some agencies tried to develop methodologies 
for determining the appropriate maintenance strategies. The pro­
cedures vary from road classification-based maintenance to eco­
nomic analyses of alternative maintenance frequencies. However, 
the general approaches used in solving the maintenance problem 
are unsatisfactory as they either require restrictive assumptions 
or do not give closed-form solutions. This paper presents a dynamic 
optimization approach for determining the optimum blading fre­
quency for an unpaved road using the principles of optimal control. 
The model is based on a procedure developed for setting overlay 
frequency and thickness for paved roads. The optimization equa­
tions are formulated for unpaved roads and applied to hypothetical 
cases. A sensitivity analysis is performed to evaluate the param­
eters in the model. The study indicates this approach is appropriate 
for determining optimal blading strategies for unpaved roads. 
However, further research is required to develop suitable dete­
rioration and user cost functions and to include the frequency of 
regraveling. 

For low-volume unpaved roads, loose gravel or plain earth is 
the primary riding surface. These roads are designed to pro­
vide low-cost highways for accommodating low traffic vol­
umes. They are found in many agricultural areas where access 
is needed for the transport of farm products. In many devel­
oping countries, unpaved roads constitute a significant portion 
of the total road mileage and play a major link in the overall 
economy. Some of the routes connecting major cities in these 
countries are unpaved, owing to the economic infeasibility of 
transforming these roads into hard-top, all-weather surfaces. 
Most third-world economies rely on farm-based industries, 
but several developed countries also have substantially exten­
sive farming activities, giving rise to a large number of earth 
and gravel roads. The proportions of unpaved roads in rep­
resentative developed countries in 1978 ranged from 5 to 63 
percent, whereas for developing countries they are as high as 
70 to 97 percent of the network (J). 

Maintenance of unpaved roads involves blading using a 
motor grader or a modern tow-type blade to restore the shape 
and surface of the road to ensure drainage and enhance ride­
ability. Regraveling is also performed for gravel-surfaced roads 
when the gravel thickness falls below a minimum value. The 
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major difference between paved and unpaved roads with regard 
to maintenance is that the former, once built, will exist for a 
number of years with minimal or no maintenance whereas the 
latter deteriorate faster and require frequent maintenance. 

Compared with that of paved roads, very little attention 
has been given to the maintenance of unpaved roads. As 
significant portions of the road network are unpaved in both 
developed and developing countries, even low-level mainte­
nance consumes valuable resources. The development of 
management systems for unpaved roads aims at the efficient 
allocation of these resources. Existing systems either use 
unrealistic simplifying assumptions or do not give closed-form 
solutions. 

This paper develops an analytical method to determine opti­
mal blading frequencies for unpaved roads. The dynamic 
optimization technique optimal control is used. This proce­
dure was applied by Tsunokawa (2) in solving for the optimum 
frequency and thickness of overlay in the rehabilitation of 
highway pavements. Tsunokawa's formulation, however, 
assumed that the performance of a pavement can be expressed 
in terms of a single measure, which is roughness, and that 
there is only one maintenance activity to correct for roughness 
at various levels. Deterioration of the pavement is manifested 
in many ways and is corrected or remedied by maintenance 
activities that vary with the extent and type of deterioration. 
For an unpaved road, roughness is the primary indicator of 
condition, and routine maintenance is limited to blading. Using 
performance functions derived from previous studies, a dynamic 
optimization model is formulated using roughness as the state 
variable and blading frequency as the decision or control 
variable. 

The following section presents measures of condition for 
unpaved roads and reviews studies of performance and exist­
ing management systems. Then, the optimal control model 
for unpaved roads is developed and a case study, including 
sensitivity analysis, is presented. This research demonstrates 
the applicability of optimal control technique for determining 
blading frequencies and identifies areas for further research 
to determine its feasibility. 

BACKGROUND 

Previous research on the maintenance of unpaved roads has 
focused on measures of condition or deterioration, perform­
ance, and maintenance systems (3). Measures of condition 
and the performance of unpaved roads are fundamental ele­
ments of any maintenance management system as they are 
used to quantify the impacts of maintenance. The relation-
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ships between condition and impacts have been developed in 
many of the existing maintenance management systems. A 
comprehensive review is presented in Alfelor (4). These rela­
tionships are briefly reviewed in this section as they are used 
in the determination of optimal blading frequencies. Some 
representative approaches to maintenance management are 
also described to illustrate the limitations of existing approaches. 

Measures of Condition 

Deterioration of unpaved roads is manifested and quantified 
in terms of the following measures of condition: 

1. Surface roughness, 
2. Gravel loss of the wearing surface, 
3. Rut depth, and 
4. Depth of loose surface materials . 

Roughness is the primary component of serviceability of 
the road (5), and the way it is perceived by the road user is 
very important. In terms of profile, roughness can be defined 
as the summation of variations in the surface profile. For a 
gravel-surfaced road, traffic and environment act together to 
cause reduction in gravel thickness. This change in gravel 
height measured over a period of time is called gravel loss. 
Excessive gravel loss results in earth riding surfaces that become 
impassable during the rainy season. Ruts decrease the service­
ability of the road because they cause vehicle displacements. 
The operating speed of the vehicle is substantially reduced 
because the vibration increases with speed. Loose material 
on the road leads to loss of traction and was found to increase 
fuel consumption for a wide spectrum of vehicles in the Kenya 
study (6). The present study focuses only on roughness because 
for unpaved roads, all other measures of condition contribute 
to surface roughness. 

Roughness measures are classified as either profile numeric 
or summary numeric. For profile numerics, the longitudinal 
elevation profile of the road is measured and then analyzed 
to obtain one or more roughness indices. High-speed and 
manual profilometers are in use. The most popular measures 
of roughness using statistics from profiles are the root-mean 
square deviation (RMSD) and the Quarter Car Index (QI). 
The former was developed by the British Transport and Road 
Research Laboratory (TRRL) using an instrument for stati­
cally measuring profiles called the TRRL beam ( 7). The Quarter 
Car Index, on the other hand, was developed for the Brazil 
road cost study and was originally measured by the General 
Motors Surface Dynamics Profilometer. The research team 
in Brazil later adopted a simplified method of obtaining the 
index using rod and level. 

Summary numerics are measured using instruments known 
as Response-Type Road Roughness Measuring Systems 
(RTRRMS). For these systems, a vehicle is instrumented with 
a road meter that produces a roughness reading as a result of 
the vehicle motions that occur while traversing the road. 
RTRRMS provide means to acquire roughness data using 
relatively low-cost equipment. The main disadvantage of these 
systems is that the roughness measure is intimately tied to the 
vehicle response, which varies among vehicles and likewise 
with time, vehicle condition, and weather. The quarter car 
model is a response-type system that produces the quarter car 
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index and is used as a standard measure. The most popular 
RTRRMS in the United States is the Mays Road Meter because 
it is simple and cheap. 

The condition measures just described are used in studies 
of the performance of unpaved roads and in the development 
of management systems. 

Studies of Performance 

The majority of research on unpaved roads was performed 
as part of a larger study that included paved roads. Hence, 
the focus of the study was not necessarily on unpaved roads 
themselves. These major studies were conducted in devel­
oping countries with the objective of establishing rational, 
quantitative bases for highway decision-making in those coun­
tries. The World Bank realized that situations in developing 
countries (i.e., economic, labor, and technology) are different 
from those of developed countries where pavement manage­
ment systems exist , and concluded that those systems are not 
appropriate for use in entirely different environments. For 
this reason the World Bank initiated collaborative research 
with institutions in several countries, and took a share in 
funding this research. The original research was conducted in 
Kenya and included both paved and unpaved roads . This was 
followed by studies in the Caribbean, Brazil, India, and Bolivia, 
among others. The result is a large data base and empirical 
models that can be used for economic evaluation of unpaved 
roads. Included in the studies of performance are deteriora­
tion and vehicle operating costs as well as impacts of main­
tenance on condition. The result of this study was used in 
some of the existing management systems described next. 

Existing Approaches to Maintenance Management 

Maintenance management systems provide data for planning 
as they determine maintenance needs and the cost of exe­
cuting a desired level of maintenance. Two types of manage­
ment systems are currently used for unpaved roads-namely, 
the road-classification based and mathematical optimization 
techniques . Road classification is a simple way to assign main­
tenance to a road. The procedure is to divide the roads into 
different classes based on characteristics such as traffic vol­
ume. For each class a level of maintenance is defined. One 
example is the Ontario Road Classification System (8). In this 
system, roads are divided into three classes based on four 
quality-of-service characteristics: (a) average daily traffic, (b) 
visibility, (c) ease of passage, and (d) all-season travel. The 
main criterion used is the average daily traffic. The overlaps 
in the classification are taken care of by the other character­
istics. The purpose of the classification is to establish a basis 
for distributing maintenance funds. A formula w·as developed 
that relates maintenance costs to each class in a linear manner. 
Given the ratios of maintenance costs among the classes, the 
portion of budget to be allocated to each class is computed. 
This system does not attempt to come up with optimal main­
tenance strategies, as it is designed only for allocating main­
tenance funds. It is also not clear how the other criteria (i.e., 
visibility and ease of passage) can be quantified as they are 
very subjective. The assumption on linearity of cost with aver­
age daily traffic is very unrealistic . 
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The more elaborate procedures applied in setting mainte­
nance frequencies for unpaved roads consist of analysis of 
quantitative relationships describing the road's performance 
and determination of the most economic strategy using a cer­
tain objective function. Kerali and Snaith (9) proposed a sim­
ple analytical model that aims at minimizing the total costs 
involved after a road is constructed. The performance rela­
tionships are taken from the Kenya Study that predicts dis­
tresses on unpaved roads as functions of cumulative traffic 
and surfacing materials (6). The same study determined that 
roughness was the surface condition measure by which road 
user costs can be predicted. Assuming that the geometric and 
traffic characteristics of the road remain fixed, Kerali con­
cluded that the vehicle operating cost incurred on a given 
road per vehicle-kilometer will change only if the road rough­
ness changes. The relationship between unit vehicle operating 
cost and cumulative number of vehicles (and roughness) is 
graphed for a particular type of vehicle and surfacing material 
and a maintenance activity assumed to be repeated several 
times after a constant traffic interval. Assuming zero traffic 
growth, the cumulative increase in postconstruction cost (VOC 
+ maintenance cost) is drawn against the cumulative traffic. 
Cost of maintenance is a fixed vertical line every time main­
tenance is performed. A Total Cost Line (TCL) connects the 
total cost coordinates for each maintenance cycle. The slope 
.of the TCL will depend on the shape of the excess VOC curve 
and on the unit cost and interval of maintenance activity. The 
optimum maintenance interval is given by the TCL with the 
least gradient. The major flaw in the analysis is the assumption 
that roughness is brought back to the constructed value every­
time maintenance takes place. Maintenance cost was also 
assumed fixed no matter how rough the road is before blading. 

A model called Maintenance and Design System (MDS) 
that evaluates alternative regraveling and blading strategies 
for unpaved roads was developed by Visser (1) using the 
performance relationships estimated in the Brazil study but 
calibrated for South African conditions. The criterion used 
in the evaluation was total transport costs, including road 
maintenance and road user costs. The model generates blad­
ing alternatives expressed in number of bladings per year. 
Annual average roughness is computed by integrating the 
roughness-time relation for every grade/curvature combina­
tion and obtaining the weighted average over the road link 
using as weights the proportion of the road link in each grade/ 
curvature combination. This annual average roughness is used 
in the user cost computations. The total costs of maintenance 
and vehicle operation are computed for each maintenance 
strategy. The program terminates by ordering the strategies 
in terms of increasing discounted total costs. The MDS model 
is one of the most comprehensive ever applied to unpaved 
roads. The main disadvantage of using the model is that it 
has no closed-form solution: the user has to define several 
alternatives, simulate each alternative, and pick the one with 
the least cost that is not guaranteed to be the optimal solution. 

From the results of the Brazil study, the World Bank devel­
oped a comprehensive model for evaluating investments on 
highway design, construction, and maintenance in developing 
countries. The system is called Highway Design and Main­
tenance Standards Model (HDM) (10). It performs financial 
and economic analyses of user-defined alternatives for both 
paved and unpaved roads. In the present working model (HDM 
III), sets of design, construction , and maintenance options 
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are input as alternatives and analyzed by calculating their life­
cycle costs. For unpaved roads, maintenance options are entered 
as number of bladings per year (blading frequency). A steady­
state roughness cycle is assumed that represents an equilib­
rium condition given a specific blading frequency. The anal­
ysis period used is equal to one regraveling cycle. The HDM 
model is designed to evaluate new construction instead of 
exclusively the costs involved after the road is constructed 
(which include maintenance and road user costs). Manage­
ment systems are generally applied to already constructed 
highways , and HDM is not the appropriate tool for this 
purpose. 

In general, the existing maintenance management systems 
applied to unpaved roads could be improved by applying a 
technique that generates the optimal blading frequency as a 
function of the road characteristics and their actual relation­
ships with vehicle operating costs and maintenance costs. An 
ideal system is that which does not require the user to define 
alternatives, which is the more rigorous solution approach. 
In view of this, the optimal control technique is worth 
exploring. 

OPTIMAL CONTROL MODEL 

The maintenance of unpaved roads can be characterized as a 
dynamic system where both condition and performance change 
over time. For unpaved roads, dynamic optimization tech­
niques have the advantage of giving a closed-form solution to 
the highway maintenance problem compared with a simula­
tion model like the MDS, described previously. The inter­
action among maintenance, deterioration, and performance 
can also be modeled more realistically in the dynamic optim­
ization framework, avoiding such restrictive assumptions as 
constant roughness after blading or constant maintenance cost, 
which were assumed in the graphical model. 

A review of highway literature indicates extensive studies 
dealing with dynamic optimization of routine maintenance 
and rehabilitation of paved roads. Probabilistic dynamic pro­
gramming was used by Carnahan and colleagues (11) in deter­
mining optimal maintenance decisions for a pavement system. 
Balta (12) formulated a dynamic control model using the prin­
ciples of optimal control to compute the optimum time for 
rehabilitation of either flexible or concrete pavements. How­
ever, the jump in the performance function resulting from 
application of maintenance is difficult to model in the dynamic 
control framework because of the discontinuity over time of 
the state and control variables . This difficulty constrained 
Balta to consider only single overlay in his formulations. In 
a later study, Tsunokawa (2) proposed a procedure for 
approximating the discontinuous performance function by a 
continuous curve, and solved the maintenance problem using 
optimal control. This procedure is applied to determine the 
optimal blading frequency for unpaved roads. 

In optimal control problems , variables are divided into two 
classes: state variables and control variables (13) . The simplest 
form of the control problem is to choose the continuous con­
trol function u(t), t0 ::::: t ::::: t1 , to solve 

J
,, 

max 7T = f[t, x(t), u(t)] dt 
0 

(1) 
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subject to x'(t) = g[t, x(t), u(t)] 

t0 , t1, x(t0) = x0 fixed; x(t1) free (2) 

The functions f and g should be continuously differentiable. 
The control function u(t) is required to be piecewise contin­
uous with time and affects both the performance function 'TT 

through its own value and the change in the state variable 
x(t). Equation 2 is called the state equation. Solution of this 
type of optimization problem involves forming the Hamilton­
ian function (H) as follows: 

H[t, x(t), u(t), !1(t)] = f (t, x, u) + !1* g(t, x, u) (3) 

where !1(t) = dH/dg is called adjoint, auxiliary, or co-state 
variable. The Hamiltonian function is similar to the Lagran­
gian equation used in solving a nonlinear programming prob­
lem, with n as the Lagrangian multiplier or shadow price. 
Tnis variable represents the marginal contribution of the change 
in the state variable to the performance or objective function. 
To determine the optimal control variable u*(t), the derivative 
of the Hamiltonian function with respect to u, dH/du, is equated 
to zero. The formulation presented in Equations 1 and 2 is 
equivalent to a formulation for determining the optimal main­
tenance strategy where the function f is the discounted user 
and agency costs, x(t) is the condition of the road, and u(t) 
is the maintenance strategy. 

Roughness Trend Curve 

The extension of the general control problem to highway 
maintenance poses some problems because of the disconti­
nuity in state and control variables. Figure 1 shows the state 
variable (roughness) as a function of time under a mainte­
nance strategy (blading). This problem may be overcome by 
the use of the concept of roughness trend curve, which is a 
continuous approximation to the roughness sawtooth curve 

Roughness 

Ro 

t 2 

Time (Days) 

FIGURE 1 Sawtooth roughness trajectory curve. 
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shown in Figure 1. The times t1 , t2 , and t3 represent the blading 
times. The reduction Gin the roughness after the first blading 
is a function of the roughness before blading. To solve the 
problem using optimal control, the sawtooth roughness curve 
in Figure 1 is first approximated by a continuous average 
roughness curve that passes through all the midpoints of the 
spikes (line AB in Figure 1). Note that the time is in days, 
the reason being that deterioration of unpaved roads is rel­
atively rapid. The difference between roughnesses (MB) of 
the two points A and B on the midpoints of the spikes is equal 
to 

MB = I R(t) dt - 1/2 * [G(R(t,, +) 

+ G(R(t,. _1-))] 

where 

(4) 

R(t) = deterioration rate of the road = f(R(t)), 
G(R(t,._ 1 -)) = reduction in roughness due to blading at 

roughness R(t,. _ 1-), and 
G(R(t,.+)) = inverse of G obtained from rewriting x = 

y - G(y) as y = x + G(x); equal to the 
reduction in roughness needed to bring 
roughness to condition R(t,. . ). 

The concept of maintenance application rate h(t) is intro­
duced such that 

r_I h(t)dt = 1 (5) 

This is simply a uniform rate of blading that has the equiv­
alent of the impact on the average roughness in the period 
t,,_ 1 tot,, as the average impact of blading at times t,, _1 and t,.. 

Using this relationship, the approximation of the average 
roughness curve by the roughness trend curve is derived as 
follows: 

I h(t) *MB dt =I R(t)dt - I h(t)/2 

* [ G(R(t)) + G(R(t))]dt 

=I [R(t) - h(t) * K(R)]dt 

where 

R(t) = average roughness at time t, and 
K(R) = blading impact function, which 

(6) 

= [G(R) + G(R)]/2. (7) 

The slope of the average roughness curve is given by 

h(t) ~ MB = R(t) - h(t) • K(R) 

= f[R(t)] - h(t) * K(R) (8) 

For a small interval dt, Tsunokawa (2) shows that the slope 
of the average roughness curve is approximated by the slope 
of a roughness trend curve (S) equal to 

S = dS/dt = f[S(t)] - h(t) * K(S(t)) (9) 
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Problem Formulation 

The rate of change in roughness for the roughness trend curve 
is substituted into the Hamiltonian function for a general 
objective function of the form 

minH = C(s(t)) + h(t) * M(S(t)) 

+ z(t) * ff(S(t)) - h(t) * K(S(t))] 

where 

subject to h1 $ h $ h2 (10) 

C(S(t)) = user cost function, 
h(t) = blading application rate, 

M(S(t)) = agency maintenance cost 
function, 

z(t) = current value adjoint var­
iable, 

f(S(t)) - h(t) * K(S(t)) = S = g(S,t;h), and 
h,, h2 = minimum and maximum 

blading rates, respec­
tively. 

The necessary conditions for this minimization problem are 

(11) 

(12) 

(13) 

Equation 11 means that if the change in total cost with 
respect to the application rate h(t) is greater than zero, then 
it is best to blade at the lowest frequency (h 1). Conversely, 
if the marginal value of the total cost decreases with the appli­
cation rate (Equation 13), blading should be done as often as 
possible. The solutions defined by these two equations are 
called bang-bang controls. When the term H,, is equal to zero 
(Equation 12), h assumes values between h, and h2 and is 
called a singular control solution. In practice the constraints 
h 1 and h2 may be determined by resource constraints or man­
power equipment, capital resource use, and minimum accept­
able comfort levels. 

The road deterioration equation used in the analysis is an 
approximation to the relationship derived from the Brazil 
study (14) and is given by 

R = R 0 *exp T(0.0034 + l.3e-5 * Q) (14) 

where R is the roughness at time T, R 0 is the initial roughness, 
and Q is the average daily traffic in passenger car units (pcu). 
Differentiating Equation 14 with respect to T yields 

dR!dt = R0 * exp K1 * T * K1 = R * Ki (15) 

where K 1 is a constant term depending on the assumed value 
of Q. An equation predicting roughness after blading was 
estimated as follows: 

RA = RB0
•
63 * exp Kz (16) 
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where RB and RA are the roughnesses before and after blad­
ing, respectively, and K2 is a constant term defined by the 
input variables (i.e., width, plasticity index, traffic, surfacing 
material, etc.). The roughness values are in counts/kilometer. 

Letting K3 = exp K2 , the improvement in road condition 
or decrease in roughness G as a result of blading is just equal 
to 

G = RB - RA = RB - K3 * RB0 63 (17) 

For the continuous approximation, RB is equal to the 
roughness trend curve value S. The blading impact function 
is defined by Equation 7. The derivative of this function with 
respect to roughness is given by 

1 
K = - * (2 * G - G2)/(l - G ) s 2 s s s (18) 

Differentiating Equation 16 with respect to S, substituting 
this to Equation 18 for K. and finally integrating with respect 
to S results in the blading impact function 

K = 0.58 * St.37/K3 - 0.5 * K 3 * S0
•
63 (19) 

Equations 15 and 19 can be used to define the state equation 
S that is required to solve the Hamiltonian function. This 
equation is written as 

S = K, * S - h(t) (20) 
* (0.58 * s1.37/K3 - 0.5 *K3 * S° 63

) 

For simplicity in calculation, the only component included 
in the vehicle operating cost function is the cost of fuel con­
sumption. The analysis can be generalized by including other 
cost components. The expressions for vehicle speed and fuel 
consumption for a passenger car are taken from the Caribbean 
study (15). Cost of maintenance is influenced by the produc­
tivity of the motor grader, which is measured in terms of the 
number of kilometer-passes that a motor grader can blade for 
a given day depending on the roughness of the road to be 
bladed. An exponential approximation to the relationship 
derived from studies in South Africa (1) is used, which is 
given by 

N(RB) = 60/exp(0.009 * RB) (21) 

where N(RB) is number of kilometer passes/day and RB is 
the roughness before blading in counts/kilometer. For a road 
length of L kilometers and a daily cost of grader equal to CG, 
the maintenance cost is given by 

M(RB) = L * CG * exp(0.009 * RB)/60 (22) 

This is the equation used in the optimization model, again 
substituting S to RB for the roughness trend curve. Given the 
expressions for vehicle operating costs, maintenance costs, 
and the differential equation representing the change in 
roughness trend curve with time, the general optimal control 
problem for unpaved roads is formulated using the Hamil­
tonian equation. 
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An upper limit is set for the frequency with which main­
tenance is applied. It is assumed that the most frequent inter­
val of blading is every 25 days (h2 = 0.04) or approximately 
once every month. To avoid the computational problems that 
arise when very low values of h are considered (2), a lower 
bound (h 1) for the application rate is defined, which is 0.005 
or once every 200 days. Again, these bounds may be set to 
reflect resource constraints, resource use, and minimum com­
fort levels. 

In summary, the optimal control model for unpaved roads 
has been developed using the deterioration and maintenance 
equations estimated in previous road studies. To be able to 
generate the components of the objective function (vehicle 
operating costs and maintenance costs) that will be minimized 
in the optimization problem, prediction equations for fuel 
consumption and number of days required to blade a road of 
certain roughness have been defined. The solution to the 
optimization probiem using these equations is not expected 
to generate results that correspond to actual field experience 
because of the nature of equations used. For instance, fuel 
consumption is the only component of vehicle operating cost 
included. This cost function monotonically increases with speed. 
Because speed is inversely related to roughness, the cost func­
tion used decreases with roughness. This is not the case when 
other costs are included, such as vehicle depreciation, because 
this cost component increases with roughness. On the other 
hand, the cost of blading increases with the roughness of the 
road. The cost of maintenance then increases with the rough­
ness. The functional equation used for maintenance cost is 
negative exponential, which simply means that extremely high 
blading costs are incurred at high roughnesses. This will offset 
the alternative to keep the road very rough and fuel con­
sumption at its minimum, as the road needs to be bladed at 
least every year and the cost for blading an extremely rough 
road is extremely high. The following case study is intended 
to illustrate the application of the model and its sensitivity to 
changes in parameters based on the cost components used. 
The results should not be compared with real field solutions 
but are intended to demonstrate the applicability of the solu­
tion method. 

CASE STUDY 

Two hypothetical cases with different levels of traffic are used 
to test the preceding models. The volumes are 30 pcus/day 
and 250 pcus/day, respectively. Table 1 shows the parameters 
assumed for both cases. These parameters were assumed con­
stant in the solution. 

Results 

The analysis begins by plotting the two curves Hh = 0 and 
iih = 0 on the S-z plane, as shown in Figures 2 and 3. The 
intersection of the two curves represents the singular control 
solution that also satisfies the steady-state conditions (S = 0 
and i = 0). At steady states, Sand z both attain time-invariant 
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TABLE 1 VARIABLES USED IN 
CASE STUDY 

Cost of Grading ............ $ 200 I day 

Rise ................................. 5 meters/km. 

Fall ................... ................ 5 meters/km. 

Interest Rate ........ .. ........ 8 % per annum 

Fuel Cost ........... .............. 28 ¢I liter 

Curvature ......................... 50 I km. 

Type of Surface ............... lateritic gravel 

Plasticity Index ......... .. ...... 5 % 

Length of Road ................ 10 kms. 

% Passing 0.075 mm Sieve ... 15 % 

Width of Road ................... 10 meters 

values corresponding to the coordinates of the intersection of 
the two curves defined by the following parameters: 

Case 1: Q = 30 pcus/days 
S = 150.5 QI 
z = 1.26 
h = 0.0056 

(every 180 days) 

Case 2: Q = 250 pcus/day 
S = 266 QI 
z 1.52 
h = 0.0074 

(every 136 days) 

The singular controls found in the two cases are between 
the minimum and maximum frequencies set for the problem, 
hence there are no bounded control solutions for this problem. 

Because the initial roughness of the road differs from the 
steady-state roughness, a roughness trajectory curve (2) is 
constructed for each case. Assuming a range of roughness 
values within which the initial roughness is assumed to fall, 
it is determined whether all values in this range actually con­
verge to the steady-state solution. The curves defined by such 
roughness values are called stable branches. Stable branches 
are derived by integrating the canonical equations S = 0 and 
i = 0 with respect to t and solving for the appropriate terms 
in the expressions S(t) and z(t) such that when both terms are 
differentiated, both Sand z are time invariant. However, the 
expressions for S and z in the unpaved roads problems do not 
allow such calculations to be made. Hence, the stable branches 
are determined by calculating S and z at different points on 
the S-z plane and drawing the curves that converge to the 
steady-state solutions. Figures 4 and 5 show the minimum 
roughnesses (70 for Case 1 and 230 for Case 2) that exist for 
the stable branches. A maximum roughness value of 300 for 
the roughness trend curve was arbitrarily assumed. These 
extreme values are the ranges to be used in the analysis. 

The roughness trend curves are drawn assuming an initial 
roughness within the ranges defined. Such curves are shown 
on Figures 6 and 7 for Case 1. Equation 5 is used to convert 
the roughness trend curve to the true sawtooth curve that is 
also shown on Figures 6 and 7. The discrete blading times (t") 
are determined from the sawtooth curve. For the first blading, 
the roughness trend curve passes through the midpoint of the 
first spike. 

To check if the given solutions are the true minima, the 
total costs of the steady-state solutions are compared with the 
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FIGURE 2 Graph of Hh = 0 and Hh = 0 for Case 1. 
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FIGURE 3 Graph of Hh = 0 and Hh = 0 for Case 2. 
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FIGURE 4 Stable branches for Case 1. 

6 

5 

4 

z 
3 

2 

0 

H =0 
h 

H =0 
h 

~>0 
h=h , 

H < 0 
h 

h=h 
2 

20 40 60 80 100 120 140 160 180 200 220 240 260 280 

Roughness ( QI ) J stable branch Q = 250 pcu's/day 

FIGURE 5 Stable branches for Case 2. 



Alfelor and McNeil 

Roughness 

400-

roughness trend 

sawtooth 

29 

Q = 30 pcu's/day 
300 -

2 3 4 5 6 7 B 9 10 11 12 13 

Days ( 100 's) 

FIGURE 6 Roughness trend curve and sawtooth curve for Case 1 with initial 
roughness = 70 QI. 
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FIGURE 7 Roughness trend curve and sawtooth curve for Case 1 with 
initial roughness = 300 QI. 

costs associated with other blading frequencies. The results 
are shown on Table 2. The values shown are not significantly 
different from each other. However, note that the case study 
i only for a JO-km road. If the same analysis is made for the 
entire unpaved road network, say, in Bolivia, which ha a 
total length of 36,155 km the amount that represents the 
difference in blading interval of 30 day (every 150 days in tead 
of 180 days) for Case Lai e 1ual to $6.25 million for the entire 
planning horizon or $0.5 million annually u ing an interest 
rate of 8 percent. Ir traffi were to increase to 250 pcus/day 

as in Case 2, the amount corresponding to a difference in 
blading interval of 36 day (100 instead of 136) is equal to 
$17.8 million for an infinite planning horizon, or $1.42 million 
annually. For a developing country like Bolivia, these am unts 
represent significant improvement in the overa ll highway 
economy. The impacts are emphasized by comparing the total 
costs for the optimal solutions in both case when applied to 
the total road network in Bolivia. Table 3 gives us ome idea 
of the order of costs associated with a system of unpaved 
roads in a developing country like Bolivia. 



30 TRANSPORTATION RESEARCH RECORD 1252 

TABLE 2 TOTAL COSTS IN DOLLARS FOR OPTIMAL AND 
NONOPTIMAL SOLUTIONS 

optimum 

Case 1a every 180 days 

Ro= 56 QI 37,234 

Case 2a every 136 days 

Ro= 13201 287,496 

TABLE 3 TOTAL COSTS (OPTIMAL) WHEN EITHER 
SCENARIO APPLIES IN BOLIVIA 

for a 1 O km. road 

Case 1a $ 37,237 

Case 2a $ 287,496 

Sensitivity Analysis 

for the whole network 

$ 134.6 B (entire horizon) 

$ 10.8 M ( annually ) 

$ 1039 B (entire horizon) 

$ 83.2 M ( annually ) 

The objective of this exercise is to see how the solution shifts 
from the optimal solution of the base problems when other 
variables are changed and determine whether the shifts make 
sense intuitively on the basis of the relationships between 
maintenance and vehicle operating costs used in the formu­
lation . It is the direction of the changes that are important, 
not the absolute change . For example, if the traffic level is 
higher then it is expected that blading will be required more 
frequently. Table 4 shows th r ults of the e tests. Tbe opti· 
mum frequency of blading i indeed a Cuncti n of the different 
variables, notably the volume of traffic and the cost of fuel. 
For the base case with an average daily traffic of 30 pcus, it 
can be observed that increasing the fuel co ·t results in less 
frequent optimum blading (therefore higher teady-state 
roughness) becau e fu el consumption increases with speed ; 
therefore , it is better to keep the road rough to reduce the 
vehicle peed . . On the other hand , if the daily co l of grading 
is doubled , the ptimal solution i · t blad mor frequ ntly 
so that the steady-state roughne s declines. Becau e the main­
tenance cost increases with roughness before grading, it is 
more economical to keep the average roughnes low, reducing 
the cusl pt!r blading and the user costs. Interest rate is found 
to be insignificant in the optimal solution . 

Increasing the average daily traffic to 250 pcus raises both 
the frequency of maintenance and the steady-state roughness. 
This makes sense intuitively because doing more frequent 
maintenance in this case does not stop the average roughness 
from attaining a high value as a result of the traffic. When 
the fuel cost is increased to $1 per liter and the traffic remains 
the same, no optimum is found. However, decreasing the 
price of gasoline to $0 .1 per liter shifts the optimum blading 

FREQUENCY 

every 150 days every 200 days 

38,963 43,105 

every 100 days every 150 days 

292,426 298,782 

frequency to a highe r value. With lower fu el prices the vehicle 
speed may be increased without considerably increasing the 
vehicle ope rating co ·t . T he optimum solution is to blade the 
road more frequently so tha t the average roughness (and 
therefore the co t of maintenance) can be lowered. Further 
increase in the tra ffi c volume (900 pcu. daily) results in no 
optimal solution because of th exponential form of the dete­
rioration flmction that predicts extremely high roughness for 
this volume. 

The preceding sensitivity analysis is made to test how the 
model responds to changes in the different parameters and 
whether the results of applying it to different scenarios cor­
respond with the expe ted re ults on the basi of the equations 
used in the formulation . T11e result that will be generated by 
using a diffe rent et of deterioration and cost functio ns will 
be different. 

Computer Implementation 

The amount of computation involved in ·oiving the optimal 
control problem requires the use of a computer. For this 
reason, a program was written that gives the values of the 
roughne s (S) and the adjo int variable (z) that were plotted 
on the , -z graph ·. The teady-state olutions (singular and 
bounded controls) ar al o calculated by the program. In 
dete rmining stable branche however, manual comput·1tion 
was made although thi. could have been done with the com­
pute r a well. Finally, the path traced by the roughn trend 
curve from th initial roughness was computed using a numer­
ica l approach. Co t computati ns were done using numerical 
integration. 

SUMMARY AND RECOMMENDATIONS 

The application of dynamic optimization in setting optimal 
bladine frequencies for unpaved roads is shown to be useful 
in the maintenance of unpaved roads. A re iew of the existing 
systems used to manage unpaved roads indicates that the 
classification-based type of maintenance y te rns are popular 
in developed countries. Some mathematical optimization and 
simulation techniques have been applied . These y ·tems 
however , either uffer .from very restrictive assumption l 

olve the pr blem or do not give closed-form solutions. The 
dynamic optimization approach Ives b th problems. It has 
the advantage o'f being m r reali tic than the graphical anal-
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TABLE 4 SENSITIVITY ANALYSIS 

PARAMETERS . 
1 2 3 

No. of PCUS. 30 250 

Fuel Cost ( $/liter) 0.28 

Cost of Grading ($/day) 200 400 

length ( km.) 10 

% passing 0.0075 mm 
15 sieve 

Plasticity Index 5 

Interest Rate ( % ) 8 

Width of Road (m) 10 

Surfacing T1 0 
T2 0 

Rise ( m/km) 5 

Fall ( m/km ) 5 

Blading Season wet 

Curvature ( deg/km ) 5 

No. of Bladings /year 2 2.7 2.4 

Steady State Roughness 150 266 124 

Adjoint Variable (z) 1.26 1.52 2.79 

no solution 

ysi . Likewise the user does not have to define pos ible main­
tenance strategies because the solution i · explicitly defined 
by the problem. The optimization techni.que chosen is optimal 
control, because the condition (roughness) curve is not con­
stant between blading and this is very difficult to model in 
the dynamic programming framework. However the discrete 
jump in the condition function due to application of main­
tenance make the optimal control solution infeasible. This 
was overcome by approximating the sawtooth condition curve 
by a coutinuous curve, following Tsunokawa's approximation. 

The results of this re earch must be interpreted carefully 
as the prediction equations and performance functions used 
in the analysis with which the optimization formulation was 
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CASES 

4 5 6 7 8 9 10 11 

900 250 250 250 250 250 

1 1 1 1 0.1 

400 

20 20 

1.97 1.8 3.4 3.1 

158 

1.24 

- -

175 

-1.1 

- -

182 208 

1.32 2.68 

value for block with no entry 
same as that for Case 1 

made are just approximations to the existing models and are 
in functional forms that may not represent the true relation­
ship between deterioration, maintenance, and vehicle oper­
ating cost. The existing models have very poor explanatory 
power and functional forms not suitable for the optimization 
formulation. Hence, the research is basically an exploratory 
analysis of the solution to the optimization problem. Further 
research is needed on (a) developing equations predicting 
highway deterioration, vehicle operating costs, and mainte­
nance costs with functional forms suitable for optimization 
and estimated from actual data; (b) solving the more general 
case of varying traffic volume that was assumed constant in 
the model; (c) incorporating other components of vehicle 
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operating costs, such as lubrication costs, tire wear, and parts 
consumption; and ( d) including regraveling in the mainte­
nance decision problem. 
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