Effects of Truck Restrictions on Regional Transportation Demand Estimates

John P. Reilly and Jeffery J. Hochmuth

Abstract

The effects of currently imposed truck restrictions on transportation demand estimates, the mix of trucks in congested traffic, and truck travel times and trip length are examined. During the past 3 years, the Chicago Area Transportation Study (CATS) has been developing the Transportation System Development Plan for 2010. The travel demand process incorporates the results of a 1986 commercial vehicle survey, 1980 and 2010 socioeconomic variables, and network characteristics in the traditional four-step demand modeling process. The CATS practice of combining truck trips with automobile trips in the form of automobile vehicle equivalences before path assignment does not accurately reflect demand on a number of major Chicago area roadways where truck restrictions exist. The assignment procedure has been adjusted to prevent trucks from being loaded to restricted roadways. The resulting traffic assignment shows the significant effects of the restrictions on the vehicle mix of congested roads. A comparison of restricted versus unrestricted demand estimates shows that truck restrictions affect truck travel times and trip lengths. It was determined that these restrictions significantly affect the transportation industry and do not appear to be effective in reducing overall congestion in selected locations.

The effects of currently imposed truck restrictions on traffic congestion, travel times, and route length of truck trips on Chicago area roadways are examined. In addition, some questions regarding truck restrictions are explored.

The Chicago Area Transportation Study (CATS) has adopted a long-range program known as the 2010 Transportation System Development (TSD) Plan (1). In creating the plan, travel demand estimates were developed for commercial vehicles as separate trip types. Many transportation planning agencies model truck travel by increasing automobile person trips by 5 to 15 percent, but CATS has traditionally used separate demand estimate models to account for truck travel. For the 2010 TSD plan, truck trip characteristics were developed for four distinct types of commercial vehicles according to the results of the CATS 1986 commercial vehiche survey (2). These truck trips were then combined with automobile trips to estimate travel demand on alternative highway networks.

The current practice of combining automobile and truck trips, bcfore trip assignment, on the simulated networks assigns vehicles to roadways without regard to truck access limitations. This practice assumes that all vehicles have equal access to all streets and does not accurately reflect the actual circuitous routes that trucks are forced to take because of restrictions on numerous streets in the region. CATS staff have explored a new method to analyze the assignment of commercial vehicles in the regional demand modeling process,

[^0]the results of which are reported here. CATS is currently developing other methods (e.g., parallel path assignments) that may improve the modeling process further.

Truck restrictions are in place for a number of reasons:

- To improve or maintain the residential quality of neighborhoods,
- To remove trucks from roads such as parkways and boulevards,
- To reduce damage to roadways and bridges,
- To minimize noise levels,
- To restrict the movement of hazardous materials,
- To minimize pedestrian conflicts, and
- To increase the roadway capacity available to automobile drivers.

Many large trucks are also effectively restricted from access to some major streets because of low clearances under older railroad viaducts, most of which are in the city of Chicago. In addition, truck restrictions interact with many strategic decisions and operational characteristics of private-sector transportation companies, such as the location of and access to manufacturing plants and industrial complexes.
The following discussion covers the effect of truck restrictions on the local nonrestricted roadways (increasing the percentage of trucks on nonrestricted streets), the added costs to the transportation function for many businesses (from the increase in travel and delivery times), and the possible environmental implications (from longer and more circuitous truck trips).

DEFINITIONS

In 1986, CATS embarked on a major study of commercial vehicle behavior. As presented in Table 1, the majority of commercial vehicles are divided by the Illinois Secretary of State into two separate groups for licensing purposes: (a) the Weight Plates Group (WPG), which includes local cartage companies such as United Parcel Service and Waste Management, and (b) the International Registration Program (IRP), which includes over-the-road operators such as Yellow Freight. Also included in the survey were United States Postal Service (USPS) vehicles. The USPS operates 1 percent of the total commercial vehicles in the region. As seen in Table 1, 360,000 commercial vehicles were registered in the six-county Chicago area in 1986.

The four vehicle class definitions [i.e., B truck (Illinois license plates that end with B or have B TRUCK written on
the side), light, medium, and heavy] presented in Table 1 were necessary to model their distinct trip characteristics more accurately in the regional modeling process. Table 2 presents the average (mean and median) daily trip frequency and trip length for the four classes of commercial vehicles. The survey demonstrated that the length and type of trips made by stepvans and pickup trucks were different from the length and type of trips made by the large tractor-semitrailers.
Because the regional highway assignment allocated trips and calculated capacity in a base unit of passenger automobiles, truck trips were converted to automobile vehicle equivalents (VEQ) in the modeling process. The presence of a heavy commercial vehicle on a section of road is obviously much different from that of a passenger car. Given the various types of operational considerations (e.g., size, weight, acceleration, speed, and maneuverability) of the distinct truck classes and the various types of roadway characteristics (e.g., speed limit, level of access control, parking, intersection capacity, and lane width) throughout the region, the VEQ for each class represents an average equivalent number of passenger automobiles that a truck from that class represents on the road. For example, in the regional model, one heavy truck added to a section of road would have the assumed equivalent effect on capacity and traffic congestion of three automobiles. The VEQs applied in the development of the 2010 plan and
for this exercise are 1 VEQ for B and light trucks, 2 VEQs for medium trucks, and 3 VEQs for heavy trucks.

With the goal of adequately measuring the impact of restrictions on larger commercial vehicles, a number of resources were reviewed to determine what type of commercial vehicle classes should be defined as large trucks. These trucks would be prohibited from using the restricted streets on the regional network. It was determined that the medium and heavy groups defined in the survey would be aggregated as large trucks. This group consisted of those vehicles with a gross weight range of 28,001 to $80,000 \mathrm{lb}$, corresponding closely to the $26,000-\mathrm{lb}$ threshold established for Class 7 and 8 vehicles as defined by the Motor Vehicle Manufacturers' Association (3). Examples of this large truck group include beverage trucks, concrete mixers, charter buses, dump trucks, fuel trucks, tractorsemitrailers, and multitrailer vehicles. The total number of trips for the base year of 1980 and the forecast year of 2010 are presented in Table 3.

RESTRICTED ROADWAYS

The CATS internal study area consists of six northeastern Illinois counties. In addition, CATS has divided the region into 1,542 internal zones and 101 external zones. In general,

TABLE 1 COMMERCIAL VEHICLE REGISTRATIONS IN NORTHEASTERN ILLINOIS

Note: Data are from 1986 commercial vehicle survey (4).

TABLE 2 TRIP FREQUENCY AND TRIP LENGTH OF COMMERCIAL VEHICLES

Vehicle Class	VEQ ${ }^{\text {a }}$	Total Registrations	Working Vehicles ${ }^{b}$	Daily Trip Frequency ${ }^{\text {c }}$		Average Trip Length ${ }^{\text {d }}$	
				Mean	Median	Mean	Median
B truck	1	240,600	129,398	6.9	5.0	11.1	7.4
Light	1	48,182	28,277	7.9	6.0	9.6	7.3
Medium	2	21,800	12,240	9.3	8.5	10.4	8.4
Heavy	3	48,801	12,854	5.9	4.8	24.9	22.4

[^1]TABLE 3 CHICAGO AREA TRUCK TRIPS

	No. of Trips by Type of Vehicle	
	All Commercial Vehicles	Medium and Heavy Trucks $>28,000 ~ \mathrm{lb}$
Internal n		
1980	$1,348,155$	180,915
2010	$1,713,488$	156,805
External b	115,644	67,493
1980	131,551	77,087
2010	$1,463,799$	248,408
Total Trips	$1,845,039$	233,892
1980	2010	

"Trips made within the region.
${ }^{b}$ Trips into, out of, or through the region.
the size of the zonc is determined by the population, household, and employment density. The internal zonal system is shown in Figure 1.

The CATS highway network file contains over 18,000 links (a section of roadway that connects two intersections) that represent over 11,000 bidirectional mi of roadway. Speed, distance, capacity, impedance, and other variables are coded as network characteristics for each link. A list of restricted links was compiled and applied to the highway network file. The impedance variable on this file allows the analyst to effectively eliminate the link as a possible path for choice components.

Given that (a) not all roads and streets are coded into the highway network (especially residential streets), (b) not all types of truck restrictions apply exclusively or completely to

FIGURE 1 Traffic assignment zone system (revised 1984).
the large truck group as defined，（c）not all truck operators comply with the restrictions as posted，and（d）staff－hour and computer－time constraints exist，it was determined that only one network with all of these restricted links would be nec－ essary for this exercise．If the results were determined to be significant（measurable），then further research would be war－ ranted．

Examples of restricted links in this study include the express lanes of I－90／94（Kennedy and Dan Ryan expressways），Lake Shore Drive（US－41），the boulevard system in the city of Chicago，and locations where height restrictions（viaduct clearances less than 13 ft ）prohibit tractor－semitrailer activity． In fact，many truck drivers avoid clearances in the 13 ft 0 in ． to 13 ft 6 in ．range because of variances between the posted sign and the actual clearance．These restricted roads and the limits of the restricted links are presented in Tables 4 and 5， respectively．Only a few of these roads are not on the CATS highway network．

In total， 568 links representing 377 directional mi were effectively removed from the network as restricted roads． Table 6 presents the 2010 base network file＇s directional miles and number of links．The last two columns indicate the num－ ber of links and miles that were removed．Most of these links are in the city of Chicago，and a significant percentage is in the older industrial section of the south and southeast portions of the city．

TRAVEL DEMAND ANALYSIS

Future travel demand estimates are generated from forecast socioeconomic data and proposed network improvements using the four－step transportation demand modeling process．Inter－ nal truck trip productions and attractions were generated for
each zone from rates developed in the 1986 commercial vehi－ cle survey and applied to household and employment levels （4）．Trip distributions were then developed from the produc－ tions and attractions using a doubly constrained intervening opportunities model（IOM），in which trip destinations are a function of production and attraction values for each zone matched against the distribution of trips from all zones．To properly measure the total activity level of commercial vehi－ cles，CATS applied the results of a 1984 external survey（5）． This survey determined the number of truck trips into，out of，and through the region．Commercial vehicle trips in the external analysis were divided into comparable classes of com－ mercial vehicles and then combined with the results of the 1986 survey．Total commercial vehicle and large－truck trips are presented in Table 3.

In trip or vehicle assignment，truck trips are traditionally combined with automobile trips in the network as VEQs and then an equilibrium assignment process is used．Paths are chosen on the basis of minimum times and loaded using a series of all－or－nothing（AON）assignments．Link impedances are computed after each AON assignment and used to cal－ culate a new set of paths，which are then reloaded．Five iter－ ations of this process are combined to compute the equilib－ rium volumes．The five sets of paths from the assignment on the restricted network are saved．
The large－truck trips were reloaded onto these paths and combined using the equilibrium weights from the initial assign－ ment to get the final large－truck link loads（6）．This process was run using both an unrestricted and a restricted network．The loads on unrestricted streets in a restricted network were then compared with the unrestricted large－truck link loads from the original assignment．The analysis of this procedure generates some ideas concerning the effect restrictions have on the mix of vehicles on congested unrestricted streets．

TABLE 4 TRUCK－RESTRICTED ROUTES DUE TO BOULEVARD DESIGNATION，LOAD LIMIT，OR LENGTH LIMIT

Fioute Name	From	To
100th Boulevard	Escanaba Elvd．	Avenue＂L＂Elva．
10Jrd Street	Western Āve．	Vincennes Âve．
107 th Street	Western Ave．	M．L．k ing Dr．
112th Houllevard	Avenue＂L＂Elvd．	Indiana state line
$115 t h$ Street	Western Ave．	Vincennes Ave．
24th Eoulevard	Marshall Elvd．	California Ave．
26th Street	Kostner Ave．	Kiedzie Ave．
Slst Equlevard	Califarnia Blvd．	Western Ave．
ふ 1 st Street	Ogden Ave．	IL 50 （Cicer口 Ȧve．）
3̇d Boulevard	Michigan Ave．	South Fkwy．
4－rd Street	Archer Ave．	Western Elvd．
Slst Street	Cottage Grove Ave．	Lake Fark Ave．
57th Boulevard	IC Fiailroad	Stony Island Ave．
S9th Street	IL 50 （Cicera Ave．）	California Ave．
$715 t$ Street	Ashland Ave．	I－94（Dan Fyan）
71 st Street	Fulaski Ra．	Western Ave．
8Srd Street	Kiedzie Ave．	Halsted Ave．
G2nd Equlevard	Jeffery Ave．	Anthony Elva．
Adams Eouleva；－d	Central Ave．	Austin Elvd．
Anthany Euul evard	92nd Blvd．	Escanaba Elvd．
Ashl and Avenue	Irving Fark Fid．	Clark St．
Ashl and Eoulevard	Pratt Elvd．	Farga Ave．
Ashland Eoulevard	Roosevelt Fid．	Lake St．
Augusta Eoulevard	Elston Ave．	Als「tin Elvd．
Austin Houlevard	Cermak Fid．	Narth Ave．
Avenue＂L＂	100th Elvd．	112th Elvd．

TABLE 4 （continued on next page）

TABLE 4 (continued)

Route Name	From	To
California Avenue	$515 t$ St.	67 th 5 t .
California Avenue	Archer Ave.	47th 5t.
California Boulevard	24th Elvd.	J1st Elvd.
California Boulevard	Roosevelt Fid.	18th St.
Campoell Fark Eoulevard	Dakley Elvd.	Leavitt St.
Central Avenue	State Fid.	lusra St.
Central Avenue	Slst 5t.	Fershing Fid.
Central Avenue	Cermak Fd.	$26 t h$ St.
Central Fark Eoulevard	Jackson Elvd.	Sth Ave.
Central Fark Boulevard	Madison St.	Jackson Elvd.
Central Fark Eoulevard	West Service Dr.	Garfield Sq.
Chicago Avenue	Thatcher Ave.	Austin Elva.
Damen Avenue	$47 \mathrm{th} \mathrm{St}$.	B7th St.
Dearborn Farkway	Eurton Flace	North Elva.
Diversey Farkway	Cannon Dr.	Dakley Elvd.
Division Street	Thather Ave.	Austin Elva.
Douglas Eoulevard	Independance Sq.	Douglas F'ark:
Drexel Square	Drexel Elvd.	Cottage Grove Ave.
Escanaba Eoulevard	Anthony Elva.	100th Elvd.
Franklin Eoulevard	Sacramento Sq.	Central Fark Elvd.
Fullerton Parkway	Lincoln Fark West	Orchard 5t.
Fulton Eoulevard	Sacramento Elvo.	Central Fark Blva.
Garfield Eoulevard	M.L. King Dr.	Western Avenue
Garfield Square Boulevard	Manticeilo Ave.	Central Fark Ave.
Hamlin Eoulevard	Lake St.	5th Ave.
Humboldt Eoulevard	Falmer Square	North Ave.
Hyde Fark Eoul evard	Drexel Elvd.	56 Sh 5t.
Independance Eoulevard	Garfield Fark	Independance Sq.
Independance Square	Independance Elvd.	Independance Sq.
I -90/94	Express lanes of the	Kennedy Expressway
1-90/94	Express lanes of the	Dan Fiyan Eiopressway
Jackson Eoulevard	Austin Glvd.	5 Lake Shore Dr.
Jeffery Avenue	Jackson Fark	92nd Elvd.
Kedzie Eoulevard	Logan Sq.	Madison St.
King Drive	I-94 (Calumet)	115 th St.
King Drive	I-90 (Skyway)	US 12/20 (55th 5t.)
King Drive	26th St.	63rd St.
Lake Shore Drive	Hallywood	Hayes Dr.
Laramie Avenue	Lake St.	I-290
Lincaln Fiark West	Clark St.	Fullerton Pkwy.
Logan Boulevard	Diversey Fkwy.	Logan Square
Logan Square	Tray St.	Kedzie Elva.
Loomis Eoul evard	47 th 5 St	87th St.
Marine Drive	Sheridan Fed.	Foster Dr.
Marquette Road	IL 50 (Cicero Ave.)	Stony Island Ave.
Marshall Boulevard	Douglas Fark.	24th Elvd.
Michigan Avenue	Dak St.	Garfield Elva.
Midway Flaisance	Stony I Sland Ave.	Cottage Grove Ave.
Normal Eoulevard	Garfield Elvd.	72nd St.
North Avenue	Clark St.	East End Turnabout
Dak Fark Avenue	North Ave.	Cermak: Fid.
Dakley Eoul evard	Roosevelt Fid.	North Ave.
Dakwood Eoulevard	M.L. King Dr.	Drexel Elvd.
Ogden Eoulevard	Oakwood Elvd.	Albany Ave.
Falmer Eoul evard	Kedzie Elvd.	Humboldt Elvd.
Fershing Avenue	Kedzie Ave.	Archer Ave.
Pratt Houlevard	Lake Michigan	CNW FFR
Fiandalph Drive	Lake Shore Dr.	Michigan Ave.
Fiidge Eoulevard	Devon Ave.	Howard 5t.
Fidgeland Avenue	North Ave.	Roosevelt Rd.
Foosevelt Road	Ashland Elvd.	Ogden Ave.
Sacramento Boulevard	Augusta Elva.	Doitglas Fark
Sacramento Square	Sacramento Elvd.	Sacramento Elvd.
Sheridan Road	Melrose St.	Diversey Pkwy.
Sheridan Fioad	Chicago city limits	Lake Shore Dr. feeder
South Shore Drive	Jackson Foark	日isrd Fil.
State Fiarkway	Schiller St.	North Elvd.
Warren Boulevard	Ogden Ave.	Garfield Fiark
Washington Eoulevard	Harlem Ave.	$15 t$ Ave.
Washington Eoulevard	Canal St.	Austin Elvd.
Western Eoulevard	Garfield Elvd.	31st Elvd.
Yates Eoulevard	$715 t 5 t$.	87th St.

TABLE 5 TRUCK-RESTRICTED ROUTES DUE TO LOW CLEARANCE (CLEARANCE $<13 \mathrm{ft} 0 \mathrm{in}$.)

Route Name	Qverhead Facility	$\underset{\text { From }}{\text { [----- Link }}$	closed -...---- To
16th Street	BRC	IL 50	Kostmer
18th Street	ATSF	Wentworth	Clark
18th Street	ATSF	Canal	Wentworth
26th Street	CF	Ryan Feeder	State
43rd Street	CR	Ryan	State
47 th Street	IHE	Halsted	Fiacine
bSrd Street	Metra	Ryan	State
67th Street	Metra	Normal	Vincenes
67th Street	CR	State	M.L. King
67 th Street	CWI	Halsted	State
$715 t$ Street	ICiMetra	Cottage Grove	Stoney Island
71st Street	CWI	Halsted	Normal
71st Street	Metra	Normal	Wentworth
日srd Street	Metra	Halsted	Vincenes
Armitage Avenue	CNW	IL 50	Kostmer
Belmont Avenue	Metra	Kostner	Fulaski
Eroadway Street	Metra	Western	Francisco
Canal Street	ATSF	Cermak	Archer
Central Avenue	CNW/CTA	Lake EE	Lake WB
Chicago Avenue	CNW	Kedzie	Sacramento
Clyborn Avenue	CNW	Fullerton	Diversey
Colfas Avenue	ERC	95th	9.3rd
Diversey Avenue	CTA	Lincoln	Halsted
Diversey Avenue	CNW	Damen	Ashland
Elston Avenue	CNW	North	Courtl and
Foster Avenue	CNW	Damen	Ashland
Foster Avenue	CTA	Eroadway	Sheridan
Fullerton Avenue	Metra	Kostmer	Fulaski
Halsted Street	ATSF	Archer	Cermak
Halsted Street	CR	Fershing	4.3 rd
Halsted Street	EN/CNW	16 th	Fionsevelt
Homan Avenue	CSX	Roosevelt	Eisen
Howara Street	CNW	Clark	Fiodge
Howard Street	CTA	Clark	Fiogers
Indiana Avenue	IC/Metra	130 th	13日th
Jeffery Avenue	EFEC	95th	9 Sr
Kedzie Avenue	WC	North Ave.	Armitage
Kedzie Avenue	CNW	Lhicago	Augusta
Kimball Avenue	CNW	Addi	kennedy
kostner Avenue	EN	Ogden	26 th
Lake Street	CTA	IL 50	Kostner
Laramie Avenue	CNW	Lake	Chicago
Lawrence Avenue	CTA	Broadway	Sheridan
Madison Avenue	CNW	California	Western
North Avenue	CNW	Elston	Kennedy
Ogden Avenue	CTA	Cermak	Central Fark
Racine Avenue	EN/CNW	16 th	Elue Island
Ridge Eoulevard	CNW	Feterson	Devon
State Street	CFi	bsird	Skyway
Touiny Avenue	CNW	Clark	Fiidge

Key to Iverhead Facilities:

ATSF	Atchison, Topeka and Santa Fe Railway Company
EN	Eurlington Northern Filroad Company
ERC	Ellt Railway Company of Chicago
CNW	Chicago and North Western Transportation Company
CR	Consolidated Fail Corporation
CSX	CSX Transportation, Inc.
CTA	Chicago Transit Authority
CWI	Chicago and Western Indiana Fiailroad Company
IC	Illinois Central Railroad Company
IHE	Indiana Harbour Belt Fiailroad
Metra Metropolitan Fiail Commuter railroad)	
WC	Wisconsin Central

TABLE 62010 BASE NETWORK MILES AND NUMBERS OF LINKS ON TOTAL AND RESTRICTED NETWORKS

	［ …－Total Directional Miles	－－－－］ Number of Links	```[-- Fiestri Directional Miles```	cted－－〕 Number of Links
Total	22，450． 29	18，036	376.79	568
Facility Type				
Arterial	16，526．12	13，756	329．39	501
Expressway	819.51	768	47.04	65
Ramps	267.52	8．55	0.00	is
Other	4， 837.14	2，677	0.86	2
Functional Class				
Freeway	726.54	634	14.92	10
Major Highway	975．79	日ころ	0.00	0
Area Service	1，ЗBE． 30	1，190	12.94	19
Frincipal Arterial	451.63	518	42.54	70
Minor Arterial	3，325．18	〕，ड心5	73．73	121
Urban Collector	2，703．44	3， 292	209.66	317
Rural Local Road	4，82日．日	2，967	22．64	29
Rural Collector	2，943． 37	1，758	0.00	9
Wther	5，107． 37	3，509	0.36	2

TABLE 7 TRAVEL AND CONGESTION FORECAST

Year	VEQ Miles of Travel			Bidirectional Miles of Roadway		
	Total Automobile and Truck	Excess	Congested	Total	Congested	Percent
1980	108，229，548	8，180，174	43，543，539	9，437	1，377	14.59
2010	143，846，969	16，372，952	75，343，521	9，579	2，275	23.75

Note：Congestion is defined as exceeding level－of－service D．

TABLE 8 SUM OF TRAVEL TIMES AND DISTANCES BETWEEN ALL 1，542 INTERNAL ZONES

Year	Travel Times（min）			Distances（mi）		
	Unrestricted	Restricted	Percent Increase	Unrestricted	Restricted	Percent Increase
1980	5，397，756．36	5，989，457．71	10.96	3，009，173．30	3，046，229．65	1.23
2010	5，896，105．15	6，503，624．99	10.30	3，237，160．37	3，281，369．4！	1.37

TABLE 9 VMT，EXCESS TRAVEL，AND COST DUE TO RESTRICTED NETWORK

	1980	2010
VM＇I＇（VEQ mi of travel）		
Unrestricted	7，093，414	7，047，696
Kestricted	11，268，955	11，294，243
Percent increase	58.87	60.25
Avg daily excess hours of travel	52，631．73	53，526．75
Avg daily cost to		
trucking industry（\＄）	$1,003,844.26$	1，016，374．46
Annual cost^{a}（\＄）	250，961，065．50	254，093，614．88

Note：For March 1988 there were 46,319 trucking company employces in the Chicago area．Their average salary was $\$ 14.70 / \mathrm{hr}$ ．Fuel cost is estimated at $\$ 1.00 / \mathrm{gal}$ ．
${ }^{a}$ At 250 trading days per year．

The results of the 2010 TSD plan modeling process indicate that congestion is a problem in the Chicago area．From the 1980 simulations，it was estimated that 15 percent of the road mileage was congested，defined by exceeding level of service E．The congested mileage will increase to 24 percent in 2010. As presented in Table 7， 40 percent of the total vehicle miles of travel（VMT）is on congested roads；this will increase to 52 percent in 2010．One of the basic assumptions made in this analysis was that，as trucks（in VEQs）are removed from the restricted routes，they will be replaced by an equivalent num－ ber of automobiles（in VEQs）．Similarly，where the truck link volumes increase，an equivalent number of automobiles is removed．Therefore，the total congestion on both the restricted and nonrestricted roads is assumed to remain constant．This assumption appears to be reasonable for this analysis because
the modeled unrestricted traffic volumes (which included trucks as VEQs) on truck-restricted routes are close to the actual automobile counts.

RESULTS

The sum of travel times and the sum of the miles required to travel between each of the 1,542 internal zonal pairs increased from the unrestricted networks to the restricted networks. As presented in Table 8, increases were seen for both 1980 and 2010. The sum of restricted 2010 travel times increased 10.3 percent, and the sum of the miles required to travel increased 1.4 percent. These network characteristics are in minutes and miles. They are not weighted by the number of trips between each zone and converted to vehicle minutes and vehicle miles. For example, a single truck making a trip between a zonal pair will travel an average of 1.4 percent longer distance on a restricted network and will take an average of 10.3 percent more time.
In the original unrestricted network simulations, average trip distances for the four truck classes were calibrated to match the results of the 1986 commercial vehicle survey. However, most of the restricted links, along with many manufacturing facilities, truck terminals, and intermodal yards, are in
the city of Chicago and therefore a significant portion of the large truck travel is in the older portions of the city.
As shown in Table 9, the actual increase in total VMT for the large-truck group, as measured in VEQ, was 60 percent on the restricted network. The economic effects of restrictions and the concentration of truck activity can be seen when the data are broken down to examine the actual average daily excess hours of travel required ($53,527 \mathrm{hr}$ for 2010) on a restricted network, the additional truck fuel consumption ($250,000 \mathrm{gal}$), and the average daily cost to the trucking industry ($\$ 1,016,000$) from restrictions and circuitous routes.
Tables 10 through 13 present travel times and distances for selected zones in the region for 1980 and 2010 for unrestricted and restricted assignments. Travel times between zones increased more than the miles required to travel, and the effect on trips made from zones in the older, industrial regions of the city (e.g., CATS zone 0330) was larger than the effect on zones in other areas. If the previous routes were based on minimum times in a larger, less restricted network, it is obvious that minimum time paths on a smaller, more restricted network would be less direct and therefore more time-consuming. This rerouting forces trucks off the unrestricted minimum time paths onto slower, more congested parallel or alternative streets.

Table 14 shows that trucks, as a percentage of the total loadings, increased dramatically on the unrestricted links. As

TABLE 10 TRAVEL TIMES BETWEEN SELECTED ZONES: 1980

Zone	To:	Time (min) from:							
		Loop	Roseland	Chicago Heights	Brighton Park	West Lawn	O'Hare	McCook	Aurora
0069	Loop								
	Unrestricted	0.00	27.67	54.74	17.79	26.52	32.56	28.09	64.20
	Restricted	0.00	43.43	70.68	28.70	28.82	34.13	29.77	64.26
0128	Roseland ${ }^{\text {a }}$								
	Unrestricted	24.39	0.00	29.85	22.32	19.90	51.27	36.93	73.14
	Restricted	37.62	0.00	30.28	35.60	25.26	62.83	40.71	75.62
0203	Chicago Heights								
	Unrestricted	51.35	29.64	0.00	50.48	42.97	65.81	46.95	77.51
	Restricted	65.42	29.72	0.00	63.75	48.88	69.77	50.14	77.45
0330	Brighton Park4300 S. Archer								
	Unrestricted	15.94	22.95	51.29	0.00	10.64	40.33	18.09	57.96
	Restricted	28.03	35.61	63.91	0.00	22.64	51.22	28.16	67.42
0346	West Lawn6700 S. Cicero								
	Unrestricted	24.66	20.48	44.81	10.47	0.00	48.58	19.06	60.21
	Restricted	28.22	27.75	49.96	21.65	0.00	49.88	20.52	60.40
0514	O'Hare								
	Unrestricted	33.50	55.18	69.82	42.17	50.55	0.00	33.91	53.34
	Restricted	38.04	66.28	75.73	55.75	53.41	0.00	34.76	53.70
0602	McCook-Summit								
	Unrestricted	26.60	39.12	49.43	18.72	19.40	32.71	0.00	47.00
	Restricted	28.67	41.09	53.73	27.83	19.49	33.34	0.00	46.45
1284	Aurora								
	Unrestricted	63.06	75.78	78.08	59.94	61.59	52.37	47.95	0.00
	Restricted	63.82	77.08	78.09	69.82	62.59	52.88	47.91	0.00
Total									
Unr	stricted	73,444.34	86,415.35	103,225.98	76,260.06	80,464.06	66,074.88	67,830.42	86,987.00
Res	icted	89,174.69	101,735.68	115,729.07	103,179.49	92,408.82	76,661.09	77,427.23	96,663.10
Mean									
Unr	stricted	47.63	56.04	66.94	49.46	52.18	42.85	43.99	56.41
Rest	icted	54.28	61.92	70.44	62.80	56.24	46.66	47.13	58.83
Percent increase		13.95	10.49	5.22	26.98	7.79	8.89	7.13	4.29

Note: Total equals total travel time between Zone i and all other zones $(1,542)$ in the six-county region. Mean equals the average travel time between Zone i and all other zones.
${ }^{\text {a }}$ Junction of I-57 and I-94.

TABLE 11 TRAVEL DISTANCES BETWEEN SELECTED ZONES: 1980

Zone	To:	Distance (mi) from:							
		Loop	Roscland	Chicago Heights	Brighton Park	West Lawn	OHare	McCook	Aurora
0069	Loop								
	Unrestricted	0.00	13.38	32.24	7.32	11.61	17.84	15.17	40.93
	Restricted	0.00	14.93	33.43	8.64	13.03	17.87	15.58	41.09
0128	Roseland ${ }^{\text {a }}$								
	Unrestricted	12.83	0.00	14.30	10.25	9.21	29.83	22.69	43.49
	Restricted	13.40	0.00	14.30	10.21	10.31	34.90	17.05	43.82
0203	Chicago Heights								
	Unrestricted	32.05	14.30	0.00	23,88	22.41	44.38	27,50	51.59
	Restricted	34.40	14.30	0.00	31.21	23.41	4.4.38	29.58	52.19
0330	Brighton Park4300 S. Archer								
	Unrestricted	7.01	10.30	23.69	0.00	4.34	21.25	10.31	40.65
	Restricted	6.97	10.26	25.20	0.00	5,27	21.54	10.31	40.98
0346	West Lawn6700 S. Cicero								
	Unrestricted	11.62	9.26	22.92	4.34	0.00	30.99	7.50	39.19
	Restricted	13.05	10.24	23,92	4.44	0.00	32.29	7.50	40.82
0514	O'Hare								
	Unrestricted	18.60	30.83	46.45	21.71	31.84	0.00	21.29	36.93
	Restricted	18.24	36.08	46.45	22.00	24.01	0.00	21.29	36.93
0602	McCook-Summit								
	Unrestricted	14.92	17.05	30.17	10.35	7.50	20.46	0.00	30.47
	Restricted	15.39	17.19	30.41	10.35	7.50	20.51	0.00	30.80
1284	Aurora								
	Unrestricted	41.35	45.97	48.16	+1.37	39.67	36.36	31.14	0.00
	Restricted	41.57	45.88	48.33	42,33	40.63	36.58	32.10	0.00
Total									
Unrestricted Restricted		45,798.63	51,899.95	66,424.45	45,617.40	+7.807.88	+3.702.73	42,024,86	56.621 .53
		50,668.00	57,248.28	69,820,66	$50,549.09$	51.169 .93	49.712 .62	47,295.22	62,733,58
Mean									
Unrestricted		29.70	33.66	43.08	29.58	31.00	28.34	27.25	36.72
Restricted		30.84	34.84	42.50	30.77	31.14	30. 26	28.79	38.18
Percent increase		3,83	3.52	-1.35	4.00	0.46	6.76	5.62	3.98

Note: Total equals total distance between Zone i and all other zones (1,542) in the six-county region. Mean equals the arerage distance between Zone i and all other zones.
${ }^{a}$ Junction of 1-57 and 1-94.

TABLE 12 TRAVEL TIMES BETWEEN SELECTED ZONES: 2010

Zone	To:	Time (min) from:							
		Loop	Roseland	Chicago Heights	Brighton Park	West Lawn	O'Hare	McCook	Aurora
0069	Loop								
	Unrestricted	0.00	31.34	57.32	19.86	28.87	42.12	30.95	71.68
	Restricted	0.00	46.58	72.43	34.66	38.08	51.84	37.00	77.31
0128	Roseland ${ }^{\text {a }}$								
	Unrestricted	29.14	0.00	29.39	22.64	20.42	62.52	38.34	80.19
	Restricted	46.72	0,00	29.10	37.92	27.28	71.15	40.38	80,09
0203	Chicago Heights								
	Unrestricted	55.82	29.09	0.00	49.77	42.97	72.35	47.87	81.37
	Restricted	72.66	28.94	0.00	64.70	50.47	78.42	51.02	79.39
0330	Brighton Park4300 S. Archer								
	Unrestricted	18.58	22.91	50.76	0.00	10.57	48.73	18.58	66.10
	Restricted	30.00	37.71	65.48	0.00	22.13	64.06	28.87	77.41
0346	West Lawn6700 S. Cicero								
	Unrestricted	27.08	20.44	44.23	10.35	0.00	54.50	18.83	67.51
	Restricted	32.57	25.60	51.41	21.70	0.00	57.53	19.37	69.20
0514	O'Hare								
	Unrestricted	37.99	58.22	76.00	46.23	54.35	0.00	38.85	60.50
	Restricted	47.22	77.22	82.00	62.86	58.04	0.00	40.56	61.56
0602	McCook-Summit								
	Unrestricted	28.17	37.55	49.79	17.52	18.19	38.11	0.00	52.94
	Restricted	30.79	39.81	53.67	26.86	18.90	39.87	0.00	53.26
1284	Aurora								
	Unrestricted	67.12	79.43	81.25	63.30	64.87	59.47	51.37	0.00
	Restricted	66.74	78.98	80.21	72.59	65.54	57.28	51.33	0.00
Total									
	estricted	78,842.90	88,608.92	106,066.94	77,747.99	81,019.99	73.998.49	69,961.80	93,886,73
	ricted	96,441.44	103,377.58	117.627 .35	104.773.42	93,739.93	85,758.38	78,868.34	103,943.60
Mean									
	estricted	51.13	57.46	68.79	50.42	52.54	+7,99	45.37	60.89
	ricted	58.70	62.92	71.59	63.77	57.05	52.20	48.00	63.26
Perce	Percent increase	14.80	9.50	4.08	26.48	8.59	8.77	5.80	3.91

Note: Total equals total travel time between Lone 1 and all other zones (1.542) in the six-county region. Mean equals the average travel time between
Zone i and all other zones.
"Junction of I-57 and 1-94.

TABLE 13 TRAVEL DISTANCES BETWEEN SELECTED ZONES: 2010

Zone	To:	Distance (mi) from:							
		Loop	Roseland	Chicago Heights	Brighton Park	West Lawn	O'Hare	McCook	Aurora
0069	Loop								
	Unrestricted	0.00	15.00	32.28	7.70	11.99	17.77	15.55	41.09
	Restricted	0.00	13.96	32.82	7.58	12.88	18.71	15.43	40.97
0128	Roseland ${ }^{\text {a }}$								
	Unrestricted	13.02	0.00	14.30	10.24	9.25	29.83	17.22	43.28
	Restricted	15.21	0.00	14.30	10.21	10.32	34.90	17.08	45.69
0203	Chicago Heights								
	Unrestricted	32.24	14.30	0.00	22.98	22.41	44.38	27.50	47.88
	Restricted	34.68	14.30	0.00	25.82	23.41	44.38	27.50	52.80
0330	Brighton Park4300 S. Archer								
	Unrestricted	7.20	10.25	25.78	0.00	4.34	20.98	10.31	44.73
	Restricted	7.69	10.21	25.89	0.00	4.34	23.38	10.31	41.92
0346	West Lawn6700 S. Cicero								
	Unrestricted	11.64	9.21	21.50	4.34	0.00	30.99	7.50	43.27
	Restricted	13.26	10.27	24.31	4.38	0.00	30.99	7.50	40.46
0514	O'Hare								
	Unrestricted	17.19	29.78	45.03	23.05	23.74	0.00	16.12	34.70
	Restricted	19.04	40.50	46.45	21.26	22.55	0.00	20.63	34.70
0602	McCook-Summit								
	Unrestricted	15.11	17.03	28.75	10.35	7.50	20.46	0.00	28.32
	Restricted	15.60	17.08	30.17	10.35	7.50	20.46	0.00	28.32
1284	Aurora								
	Unrestricted	41.35	45.97	48.06	41.41	39.71	35.72	31.18	0.00
	Restricted	41.36	45.68	52.38	41.05	39.35	35.72	29.26	0.00
Total									
Unr	stricted	45,768.43	51,775.31	64,947.16	46,554.89	46,040.26	41,446.66	41,506.43	56,805.55
Res	ricted	52,392.58	60,912.32	70,429.54	51,195.16	51,372.12	47,521.60	45,654.51	62,694.45
Mean									
Unrestricted Restricted		29.68	33.58	42.12	30.19	29.86	26.88	26.92	36.84
		31.89	37.07	42.87	31.16	31.27	28.92	27.79	38.32
Percent increase		7.44	10.41	1.78	3.21	4.72	7.61	3.23	4.03

Note: Total equals total distance between Zone i and all other zones $(1,542)$ in the six-county region. Mean equals the average distance between Zone i and all other zones.
${ }^{a}$ Junction of I-57 and I-94.
large-truck trips were removed from the restricted roads, the trips were forced onto unrestricted roads. As presented in Table 14, the level of truck activity on unrestricted roads showed a significant increase when this shift occurred. For example, in 1980 the average percentage of large trucks (in VEQ) over the total assignment load was 7 percent (on the unrestricted expressway sections). After the trucks were removed from the restricted links and forced onto unrestricted roads, this value increased to 28 percent. In the case of express lanes, most trucks were shifted to the local, unrestricted lanes. In the case of arterial restrictions, trucks were forced onto parallel arterial sections.

RECOMMENDATIONS

Truck restrictions significantly affect the vehicle mix on unrestricted roadways and increase the travel times of total (and individual) truck movements. Therefore, proposed restrictions or removal of restrictions should not be viewed in isolation. Methods of accounting for truck travel and truck restrictions throughout the planning process must be explored. The processes that define commercial vehicles by size and weight, account for restrictions in network coding and simulation, and determine the VEQ factors should be evaluated so that restrictions that do not adversely affect traffic can be chosen or removed.

Restrictions increase the costs of transportation. These increases inflate the cost of goods to manufacturers and eventually to end users. The excess fuel consumption (and corresponding increase in pollution) caused by these inefficiencies could also be a significant factor. However, these negative consequences must be balanced against the many social, political, and economic pressures that support the benefits of truck restrictions, such as residential quality of life, pedestrian and automobile safety, and the cost of removing restrictions (e.g., viaduct rehabilitation or reconstruction and a possible increase in automobile-truck accidents).

Truck restrictions can be seen as a proactive measure, such as designating specified truck routes, or as a reactive measure, such as restricting truck traffic to allow commuters and automobiles to have access to larger levels of roadway capacity. In many cases, the restrictions are part of the historical nature of the road system and do not change with employment and housing patterns. Planners and highway agencies do not have to reevaluate the truck impact and the automobile-truck conflicts every few years to validate the original reasons for specific truck restrictions. However, agencies should be prepared to respond to questions concerning specific restrictions.

Two choices planners have in directing commodity flow (e.g., hazardous materials and steel coils) are to implement a designated or preferred truck route network or to restrict one set of roads while improving access on alternative or preferred routes. The process of implementing such plans on

TABLE 14 AVERAGE PERCENTIAGE OF LARGE TRUCKS（IN VEQ）（FOR UNRESTRICTED 1980 NETWORK LINKS ONLY）

Facility Type	Lurestricted	Festricted	\＃口f Dos．
Arterial	0.72%	5.01%	13,352
Expressway	0.79%	2日． 10%	732
Framps	2.03%	12.58%	$76=$
Functional Class	Unrestricted	Festricted	\＃of Jbs．
Freeway	6.78%	29.57%	653
Major Highway	1.90%	6.88%	641
Area Service	1.04%	5.28%	1，177
Frinclpal Arteriai	0.97%	5.04%	454
Minor Arterial	0.67%	5.32%	उ， 242
Urban Collector	0.63%	6． 34%	2，997
Fiural Local Fioad	0.45%	3． 45%	2，542
Major Collector	0.80%	4.37%	1，257
Minor Collector	0.57%	3.50%	508
ifor the	Unrestricted	Network Lin	
Facility Type	Unrestricted	Restricted	\＃of Obs．
Arterial	0.58%	4.20%	13，247
Expressway	6.02%	24.85%	701
Fiamps	1.60%	8.75%	754
Functional Class	Unrestricted	Festricted	\＃of Ubs．
Freeway	6.20%	26.36%	625
Major Highway	1.70%	6.22%	日S3
Area Service	0.73 \％	4.58%	1，171
Frimcipal Arterial	9．67\％	4.38%	448
Minor Arterial	0.57%	4.6 \％	3，214
Urban Callector	0.46%	5.00%	2，775
Fiural Local Foad	0． 37%	2.96%	2，730
Major Collector	0.57%	3． 30%	1，251
Minor Collector	0.46%	2.90%	507

a large scale in mixed－use neighborhoods requires a significant level of coordination and continual interplay among represen－ tatives of the community，industry，land use planners，and transportation agencies．

As part of the 2010 TSD plan，CATS has developed a network of strategic regional arterials．This 1，300－mi network will be studied over the next 5 years．One of the key elements in the plan of study for these arterials will be an evaluation of the long－haul truck traffic options．

Other truck restriction programs，such as restrictions that are based on the hour of day or number of trucks，may require an exorbitant level of personnel to administer．Although the elimination of some current restrictions（e．g．，increased via－ duct clearances）is generally supported for economic and safety reasons，such aclivities will change traffic patterns and should be evaluated．

It has been shown that truck restrictions can be reasonably incorporated into the traditional travel demand modeling process．The effect of truck restrictions on model outputs is significant on the regional level．To provide more effective
regional transportation system plans，analysts must consider the effect of restrictions and the ways they affect unrestricted， alternative roads and other transportation－related activities．

REFERENCES

1． 2010 Transportation System Development Plan．Chicago Area Transportation Study，Ill．，April 12， 1989.
2．Research News，Vol．26，No．1．Feb． 1987.
3．The Truck and Bus Manufacturing Industry：Building the Tools That Move America．Motor Vehicle Manufacturers＇Association， Nov． 1983.
4． 2010 Transportation System Development Plan：Technical Process Report．Chicago Area Transportation Study，III．，Jan． 1989.
5． 1984 Cordon Line Survey．CATS Working Paper 86－9．Chicago Area Transportation Study，III，April 1986.
6．An Alternative Approach to Performing Selected Link Analysis． CATS Working Paper 86－1．Chicago Area Transportation Study， Ill．，Dec． 1985.

Publication of this paper sponsored by Committee on Urban Goods Movement．

[^0]: Chicago Area Transportation Study, 300 West Adams Street, Chicago, III. 60606.

[^1]: ${ }^{a}$ VEQ is automobile vehicle equivalent.
 ${ }^{b}$ Working vehicles is the average number of vehicles operating in commercial activity on an average day.
 ${ }^{c}$ Trip frequency is the number of trips per day.
 ${ }^{d}$ Trip length is average miles per trip.

